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Abstract
Background: Twenty-eight genes putatively encoding cytosolic glutathione transferases have
been identified in the Anopheles gambiae genome. We manually annotated these genes and then
confirmed the annotation by sequencing of A. gambiae cDNAs. Phylogenetic analysis with the 37
putative GST genes from Drosophila and representative GSTs from other taxa was undertaken to
develop a nomenclature for insect GSTs. The epsilon class of insect GSTs has previously been
implicated in conferring insecticide resistance in several insect species. We compared the
expression level of all members of this GST class in two strains of A. gambiae to determine whether
epsilon GST expression is correlated with insecticide resistance status.

Results: Two A. gambiae GSTs are alternatively spliced resulting in a maximum number of 32
transcripts encoding cytosolic GSTs. We detected cDNAs for 31 of these in adult mosquitoes.
There are at least six different classes of GSTs in insects but 20 of the A. gambiae GSTs belong to
the two insect specific classes, delta and epsilon. Members of these two GST classes are clustered
on chromosome arms 2L and 3R respectively. Two members of the GST supergene family are
intronless. Amongst the remainder, there are 13 unique introns positions but within the epsilon
and delta class, there is considerable conservation of intron positions. Five of the eight epsilon
GSTs are overexpressed in a DDT resistant strain of A. gambiae.

Conclusions: The GST supergene family in A. gambiae is extensive and regulation of transcription
of these genes is complex. Expression profiling of the epsilon class supports earlier predictions that
this class is important in conferring insecticide resistance.

Background
Glutathione transferases (GSTs) are a diverse family of
dimeric proteins found in almost all living organisms.
Originally studied for their role in detoxification of
endogenous and xenobiotic compounds, they have since

been found to have additional important roles as trans-
port proteins and in protection against oxidative stress [1].
Each GST subunit consists of two domains, each contain-
ing two binding sites, the G site and the H site. The highly
conserved G site binds the tripeptide glutathione and is

Published: 13 August 2003

BMC Genomics 2003, 4:35

Received: 11 June 2003
Accepted: 13 August 2003

This article is available from: http://www.biomedcentral.com/1471-2164/4/35

© 2003 Ding et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all 
media for any purpose, provided this notice is preserved along with the article's original URL.
Page 1 of 16
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12914673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2164-4-35
http://www.biomedcentral.com/1471-2164/4/35
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genomics 2003, 4 http://www.biomedcentral.com/1471-2164/4/35
largely composed of amino acid residues found in the N-
terminal domain. The H-site or substrate binding site is
more variable in structure and is largely formed from res-
idues at the C-terminal [2].

Purification of independent homogenous GST prepara-
tions with differing substrate specificities indicated the
presence of multiple forms of GSTs [3]. Subsequently, the
availability of N-terminal sequence data led to the recog-
nition of five classes of cytosolic GSTs in mammals, the
alpha, mu, pi, theta and sigma classes [2,4,5] and an addi-
tional, structurally unrelated membrane bound micro-
somal class [6]. Recently the advent of large scale EST and
full genome sequencing projects has led to a marked
increase in the number of GST classes recognized. Some of
these, such as the omega and zeta classes are represented
in a wide range of species [7,8], whereas others, such as
the mammalian kappa class [9], the insect epsilon class
[10] and the plant tau and phi clases [11] have a more
restricted distribution.

Most of these GST classes are encoded by multigene fam-
ilies. Alternative splicing [12,13] and the formation of
heterodimers [14], can add a further level of heterogeneity
to this enzyme family. With this level of diversity, assign-
ing physiological functions to individual GSTs is a com-
plex task, but progress towards this goal can be greatly
facilitated by the process of cataloguing the number of
genes within the supergene family. Armed with this infor-
mation, details of expression profiles, induction mecha-
nisms, tissue distribution etc. can be accurately obtained
enabling biologically important questions to be
addressed. Automatic annotation algorithms applied to
assembled eukaryotic genomes provide projections of the
sizes of gene families within a species. Using these tools
the numbers of GST genes is estimated at 10 in Saccharo-
myces cerevisiae, 57 in Caenorhabditis elegans, 43 in Dro-
sophila melanogaster, 37 in Anopheles gambiae, 46 in
Arabidopsis thaliana and 40 in Homo sapiens [15]. Careful
manual annotation is essential to confirm these predicted
numbers. This process has led to revised sizes of the GST
supergene family in A. thaliana and A. gambiae to 48 and
31 respectively [11,16]. (This gene count in A. gambiae
includes three genes encoding putative microsomal GSTs
but these will not be discussed further in this report).

To facilitate the functional characterization of insect GSTs,
we have studied the annotation of each member of this
supergene family in the mosquito A. gambiae. RT-PCR
experiments demonstrate that all but one of the predicted
GST genes are actively transcribed in adult mosquitoes
and that alternative splicing of two GST genes contributes
additional diversity. We compare this GST supergene fam-
ily with that of a second Diptera, D. melanogaster and iden-
tify classes of GSTs that are conserved between the species

and other classes that have undergone independent
radiation.

The majority of studies on insect GSTs have focused on
their role in conferring insecticide resistance (e.g. [17–
19]) and, more recently, in protecting against cellular
damage by oxidative stress [20,21]. Reactive oxygen spe-
cies can be produced in response to infection by patho-
gens, and this phenomenon has been implicated in the
defense mechanism of mosquitoes against malaria para-
sites [22]. A. gambiae, is therefore an ideal species in which
to study the role of GSTs in both of these biological proc-
esses. This species is the major vector of malaria in Africa
and as such is responsible for over 1 million deaths each
year [23]. Efforts to control the disease by targeting the
mosquito populations have relied on treatment of Anoph-
eles breeding and resting sites with insecticides. The orga-
nochlorine DDT was the insecticide of choice for malaria
control for much of the latter half of the 20th century and
is still employed in public health campaigns today but, in
many malarious regions, resistance has rendered DDT-
based control programmes ineffectual. In A. gambiae, DDT
resistance is associated with increased GST activity [24].
Genetic mapping using microsatellite markers has located
two loci associated with DDT resistance in A. gambiae
[25]. By aligning the cytogenetic position of these resist-
ance loci with the in situ position of physically mapped
GST genes we previously identified two candidate resist-
ance-associated GSTs [10]. Analysis of the draft genome
sequence of A. gambiae identified a further six GST genes
within this region of the genome [16]. We now report that
the expression of multiple members of this gene cluster is
elevated in DDT resistant insects.

Results and Discussion
Classification of A. gambiae GSTs
Twenty eight genes putatively encoding cytosolic GSTs
were identified in the A. gambiae genome (Table 1).
Nomenclature guidelines originally proposed for verte-
brate GSTs and later expanded to incorporate invertebrate
classes [26], were employed when classifying the A. gam-
biae genes. This led to the renaming of nine genes previ-
ously described in the literature (changes are shown in
Table 1).

The putative amino acid sequences of the A. gambiae GSTs
were aligned using ClustalW [27] and GST-1 from C. ele-
gans (Accession number CAA78471) as an outgroup (Fig-
ure 1). The alignment was manually truncated by the
removal of twenty positions at both the N-terminal and C-
terminal that contained excessive gaps and two small
internal regions of poor alignment, one consisting of six
residues in the linker region between the N and C
domains and the second consisting of 21 residues in the
C-terminal domain of which over 75% were gaps in the
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majority of sequences (Figure 1). This manually truncated
alignment, consisting of 218 residues, was used to deter-
mine the phylogenetic relationship between the A. gam-
biae GSTs by both distance and parsimony methods. Two
of the GST genes (GSTd1 and GSTs1) are alternatively
spliced to produce multiple transcripts with identical N-
termini but differing C-termini (see below). To avoid dis-
tortion of the phylogeny that may have resulted from
inclusion of conserved N-termini, a second alignment was
generated, in which a further 85 residues from the N-ter-
minal, were removed and this alignment was also sub-
jected to parsimony and distance methods. Although
several different optimal trees were generated from the
two alignments and two phylogenetic methods, their
topology was essentially the same, differing only in the
placement of four GSTs, GSTu1, GSTu2, GSTu3 and
GSTe8, discussed below. A representative distance tree,
derived from the N-terminal truncated alignment is
shown in Figure 2.

The two largest GST classes in A. gambiae are the insect
specific delta and epsilon classes with 12 and 8 members
respectively. Support for the monophyly of these two

classes is low in the tree shown although, when the 218
residue alignment is used, the bootstrap values are more
supportive (data not shown). Criteria for inclusion in a
particular class is based primarily on amino acid sequence
identity and phylogenetic relationship, but chromosomal
location and immunological properties, where known,
were taken into account. Thus GSTe8, although sharing
less than 29% amino acid identity with other members of
the epsilon class, is found immediately adjacent to the
seven epsilon GSTs on chromosome 3R, is immunologi-
cally related [28] and, in the majority of the trees, formed
a weakly supported monophyletic group with the seven
bona fide epsilon GSTs. Thus this GST was classified as the
eighth member of the epsilon class [28]. Three GSTs,
GSTu1, GSTu2 and GSTu3, are outliers from the major
delta GST clade (Figure 2). The phylogenetic relationship
of these GSTs to the remainder of the family was not con-
sistent between the different trees. Furthermore, these
GSTs share less than 37% amino acid identity with other
members of the A. gambiae delta GST class (pairwise
amino acid identities between the three tentative delta
class GSTs and the remainder of the class range from
22.1% between GSTd4 and GSTu2 to 36.3% identity

Table 1: Summary of the A. gambiae GST family. The length of the GSTd6 gene and putative translation are not known (N.K.).

Gene name Old name No. of transcripts 
detected

Length of putative 
protein(s)

Length of gene (bp) Genebank Accession 
number

GSTd1 GST1-1 4 219, 210, 217, 210 3780 AF071160
GSTd2 GST1-2 1 209 630 Z71480
GSTd3 1 218 701 AF513638
GSTd4 1 224 703 AF513635
GSTd5 1 216 720 AF513634
GSTd6 1 N.K. N.K. AF513636
GSTd7 GST1-7 1 218 2464 AF071161
GSTd8 GST1-8 1 211 749 AF316637
GSTd9 GST1-9 0 216 651 AY255857
GSTd10 1 211 731 AF515527
GSTd11 1 214 725 AF513637
GSTd12 GST1-10 1 211 715 AF316638
GSTu1 1 233 804 AF515521
GSTu2 1 222 832 AF515523
GSTu3 1 218 2329 AF515524
GSTe1 GST3-1 1 223 817 AF316635
GSTe2 GST3-2 1 226 830 AF316636
GSTe3 1 223 741 AY070234
GSTe4 1 225 743 AY070254
GSTe5 1 230 765 AY070255
GSTe6 1 226 774 AY070256
GSTe7 1 225 819 AF491816
GSTe8 1 217 789 AY070257
GSTo1 1 248 1473 AY255856
GSTs1 GST2-1 2 203, 203 3470 L07880, AF513639
GSTt1 1 229 862 AF515526
GSTt2 1 235 793 AF515525
GSTz1 1 223 14678 AF515522
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Alignment of A. gambiae GSTsFigure 1
Alignment of A. gambiae GSTs. ClustalW alignment of all putative subunits of A. gambiae cytosolic GSTs. Gaps introduced to 
maximise sequence similarity are shown by horizontal dashes. The regions of the alignment that were removed prior to phylo-
genetic analysis are shown in light grey. A vertical line demarks the putative end of the N-terminal domain. Residues to the left 
of this boundary were removed from the alignment in construction of the phylogenetic tree shown in Figure 2 (see text for 
further details).

GSTd1-4         -------------------MD--FYYLPGSAPVPCRPRLDGGPVGVE--LNLKLTDLMK-
GSTd1-6        -------------------MD--FYYLPGSAPVPCRPRLDGGPVGVE--LNLKLTDLMK-
GSTd1-5         -------------------MD--FYYLPGSAPVPCRPRLDGGPVGVE--LNLKLTDLMK-
GSTd1-3         -------------------MD--FYYLPGSAPVPCRPRLDGGPVGVE--LNLKLTDLMK-
GSTd2           ------------------MLD--FYYLPGSAPCRA-VQMVAEAVHVK--LNLKYLDLMA-
GSTd8           -------------------MD--FYYHPASPYCRS-VMLVAKALKLS--LNLQFVDLMK-
GSTd11          -------------------MD--FYHLPLSAPCQS-IRLLAKALGLH--LNLKEVDLLK-
GSTd7           -------------------MTPVLYYLPPSPPCRS-VLLLAKMIGVE--LELKALNVME-
GSTd5           -------------------ME--LYSDIVSPSCQN-VLLVAKKLGIA--LNIKKTNIMD-
GSTd10          -------------------ME--LYYNIVSPPCQS-VLLVGKKLGIT--FDLKEVNPHL-
GSTd4           -------------------MD--YYCNFVSPPSQS-VILVAKKLGIK--LNLRKMNIYD-
GSTd3           -------------------MD--YYYSLISPPCQS-AILVAKKLGIT--LNLKKTNVHD-
GSTd12          -------------------MD--LYYHIRSPPCQP-VVFLARHLGLE--FNHIVTSIYD-
GSTd9           -------------------MD--LYYNILSPPSRA-ILLLGEALQLK--FNLISLDVHR-
GSTd6           ----------------MPRLD--LYYNIISPPCRV-VLLFAKWLKLE--LNLIELDVLK-
GSTu2           ------------------MPAPTLYYFPMSPPARA-VLLLMKELELP--MNLKEVNPLA-
GSTu3           ------------------MAPLILYHFPGSPPSRS-ALLALRNLDLD--AEVKIVNLFA-
GSTu1           -------------------MK--LYAVSDGPPSLA-VRMALEALNIP--YEHVSVDYGK-
GSTe1           ------------------MPKPVLYTVHLSPPCRA-VELTAKALGLE--LERKLVNLLA-
GSTe2           ------------------MSNLVLYTLHLSPPCRA-VELTAKALGLE--LEQKTINLLT-
GSTe7           ----------------MEPSRLVLYTNRKSPPCRA-VKLTARALGIE--LVEKEMTLLR-
GSTe4           ------------------MPNIKLYTAKLSPPGRS-VELTAKALGLE--LDIVPINLLA-
GSTe5           ---------------MATNPIIKLYTAKLSPPGRA-VELTAKLLGLS--LDIVPINLLA-
GSTe3           ------------------MAPIVLYSTRRTPAGRA-VELTAKMIGIE--LDVQYIDLAK-
GSTe6           -----------------MSSKPVLYTHTISPAGRA-VELTVKALNLD--VDVREMNVFK-
GSTe8           ---------------------MILYYDEVSPPVRG-VLLAIAALGVKDRIKLEYIDLFK-
GSTt2           -----------------MSRSVKLYYDLMSQPSRA-LYIFLSTNKIP--FDRCPIALRK-
GSTt1           -----------------MSKNLKYYYDLMSQPSRA-LWIFLEKTKLP--YEKCLINLGK-
GSTs1-1         ------------------MPDYKVYYFNVKALGEP-LRFLLSYGNLP------FDDVRI-
GSTs1-2         ------------------MPDYKVYYFNVKALGEP-LRFLLSYGNLP------FDDVRI-
Cegst-1         -------------------MTLKLTYFDIHGLAEP-IRLLLADKQVA------YEDHRV-
GSTz1          -----------MANVDILPESQPILYSYWRSSCSWRVRIALNLKEIP--YDIKPISLIKS
GSTo1           MSNGKHLAKGSSPPSLPDDGKLRLYSMRFCPYAQR-VHLMLDAKKIP--YHAIYINLSE-

GSTd1-4        -GEHMKPEFLKINPQHC-IPTLVDNG---FALWESRAICTYLAEKYGK-----DDKLYPK
GSTd1-6         -GEHMKPEFLKLNPQHC-IPTLVDNG---FALWESRAIQIYLAEKYGK-----DDKLYPK
GSTd1-5         -GEHMKPEFLKLNPQHC-VATLVDSG---FALWESRAIMCYLVEKYGKPC--NNDSLYPT
GSTd1-3         -GEHMKPEFLKLNPQHC-IPTLVDEDG--FVLWESRAIQIYLVEKYCAHDPALAERLYPG
GSTd2           -GAHRSPQFTKLNPQRT-IPTLVDGS---LVLSESRAALIYLCDQYGDE----DNDWYPR
GSTd8           -DEQLRPTFTVLNPFHC-VPTLVDND---LTMWESRAILVYLVDKYGRT----NSRLYPK
GSTd11          -GEHLKPEFLKINPQHT-VPTLVDND---FVLWESRAILTYLCEKYGK-----NDGLYPK
GSTd7           -GEQLKPDFVELNPQHC-IPTLDDHG---LVLWESRVILAYLVSAYGK-----DENLYPK
GSTd5           -ATDVA-ELTKVNPQHL-IPTFVEDDG--HVIWESYAIAIYLVEKYGQ-----DDALYPK
GSTd10          -PEVRE-QLRKVNPQHT-IPTFIEDG---HVIWESYAIAIYLVEKYGNG----DDALYPR
GSTd4        -PVAMD-TLSKLNPHHI-LPMLVDNG---TVVFEPCAIVLYLVEMYAK-----NDALYPK
GSTd3           -PVERD-ALTKLNPQHT-IPTLVDNG---HVVWESYAIVTYLVEVYGK-----DDTLYPK
GSTd12          -PADFE-VLKKVNPQHT-IPTLVDNG---HILWESYAILIYLAEKYAL-----DDSLYPK
GSTd9           -KDYVNPAFKKINPQHT-VPTLVVDG---VAICEPGAILIYLAEQYAPAG----TTYYPP
GSTd6           -RDHYKPEFLKLNPQHY-IPTLVDADGD-VVVWESSAILIYLAERYGAAD---DDTLYPK
GSTu2           -GETRTEEFMRMNPEHT-IPTLDDNG---FYLGESRAILSYLIDAYRP-----GHTLYPN
GSTu3           -GEHLADEFVAINPDHT-VPTLVDED---YILWESKAIVTYLAEQYKP-----GCTLYPS
GSTu1           -AEHLTAEYEKMNPQKE-IPVLDDDG---FFLSESNAILQYLCEKYAP-----TSDLYPN
GSTe1           -GENLTPEFLKLNPKHT-IPVLDDNG---TIISESHAIMIYLVRKYGQGE--GKDALYPT
GSTe2           -GDHLKPEFVKLNPQHT-IPVLDDNG---TIITESHAIMIYLVTKYGK-----DDSLYPK
GSTe7      -GDKLMEEFLKVNPQQT-IPVLDDGG---IVITASHAITIYLVCKYGR-----DDGLYPS
GSTe4           -QEHLTEAFRKLNPQHT-IPLIDDNG---TIVWDSHAINVYLVSKYGKP---EGDSLYPS
GSTe5           -GDHRTDEFLRLNPQHT-IPVIDDGG---VIVRDSHAIIIYLVQKYGK----DGQTLYPE
GSTe3           -KENMTEEYLKMNPMHT-VPTVNDNG---VPLYDSHAIINYLVQKYAK-----DDTLYPA
GSTe6           -GQHMSDEFKKLNPVQT-IPTLDDNG---FVLWDSHAIMIYLARRYGA-----DSGLYTD
GSTe8           -GGHLSSDYLKINPLHT-VPVLRHGE---LTLTDSHAILVYLCDTFAPP----GHTLALP
GSTt2           -MQHKTDEYRRQVNRYGKVPCIVDG--S-FRLAESVAIYRYLCREFPT-----DGHWYPS
GSTt1           -GEHLTEEFK-AINRFQKVPCITDS--Q-IKLAESVAIFRYLCREYQVP-----DHWYPA
GSTs1-1         -TREEWPALKPTMPMRQ-MPVLEVDG---KRVHQSLAMCRYVAKQINLAGD---------
GSTs1-2         -TREEWPALKPTMPMGQ-MPVLEVDG---KKVHQSVAMSRYLANQVGLAGA---------
Cegst-1  -TYEQWADIKPKMIFGQ-VPCLLSGDE---EIVQSGAIIRHLARLNGLNG----------
GSTz1           GGEQHCNEYREVNPMEQ-VPALQIDG---HTLIESVSIMYYLEETRPQ------RPLMPQ
GSTo1           ----KPEWYLEKNPLGK-VPALEIPGKEGVTLYESLVLSDYIEEAYSAQQ----RKLYPA

GSTd1-4         -DPQKRAVVNQRMYFDMGTLYQRFANYYYPQIFAKQPAN-PENEQKMKDAVGFLNTFLDG
GSTd1-6         -DPQKRAVVNQRLYFDMGTLYQRFADYHYPQIFAKQPAN-PENEKKMKDAVGFLNTFLEG
GSTd1-5         -DPQKRAIVNQRLYFDMGTLYQRFGDYYYPQIFEGAPAN-EANFAKIGEALAFLDTFLEG
GSTd1-3         -DPRRRAVVHQRLFFDVAILYQRFAEYYYPQIFGKKVAGDPDRLRSMEQALEFLNTFLEG
GSTd2           -DTIQRAIVNQRLFFDACVLYPRFADFYHPQVFGNAAPD-GRKRLAFEKAVELLNIFLSE
GSTd8           -DAKTRAIINQRLFFDHGTLGTRLEDYYYPLYFEGATPG-GEKLEKLEEALAVLNGYLIN
GSTd11          -DPKKRAVVNQRLYFDMGTLYQRFSQAFYPVMMEGKELN-PELVVKLDEALEFLESFLDK
GSTd7 -DFRSRAIVDQRLHFDLGTLYQRVVDYYFPTIQLGAHLD-QTKKAKLAEALGWFEAMLKQ
GSTd5           -DPKVRSIVNQRLFFDIGTLYKNILANVDVLIEKQ-QPS-AELRGKLEQALDLTEKFVTE
GSTd10          -DPKVRSVVNQRLFFDNGLMFKSAIEYVECILKKKLEPT-EEMQQRLKKALGLLESFVKE
GSTd4           -DALVRCVVNQRLFFDVGTLYKQIYENVHVQMRNS-QPS-EKQVQRLQKAVDVLESFLYE
GSTd3           -DPKVRSVVNQRLFFDIGTLYKQIIDIIHLVVKKE-QPT-DEQMEKLKKAMDLLEHFLTE
GSTd12          -DVCERSIVHQRLFFDSGMFQNTTLQAVLSHLRNN-PIT-DEHLAKVKRGVEIVEMYLTD
GSTd9           -DPLRRAIVNQRLLFECGTLYKCIFVYYSPVVLERATPV-ETDRQKLIEAVAVLDGILQH
GSTd6           -DIALRAKVNQRLFYDIGTLMRSVTTYYHPILMGGEGKL-E-DFKKVQDAVGVLDSFLSA
GSTu2           -IPKEKALINRVLHHDLGSFYPKFFGTIGALFSGAATEISDEMKTTTQKALTDLEHYLTR
GSTu3           -EPKKRGLINHRLYFDSGTLFVALRNVLMTVLRSGETRIPQEKKDAVYKALEKLDSYLDG
GSTu1           -DPKDRALVNHRLCFNLAFLYPQISAYVMAPIFFDYERT-AIGLKKLHLALAAFETYLQR
GSTe1           -DIVEQARVNEALHFESGVLFARLRFITELVFFARKPEIPEDRIEYVRTAYRLLEDSLQS
GSTe2           -DPVKQARVNSALHFESGVLFARMRFNFERILFFGKSDIPEDRVEYVQKSYELLEDTLVD
GSTe7           -ELVRRARVHTALHLEAGVIFSRLSFLFEPVIYSGKSYFHSDRIEHIRKAYRLLEDSLVD
GSTe4           -DVVQRAKVNAALHFDSGVLFARFRFYLEPILYYGATETPQEKIDNLYRAYELLNDTLVD
GSTe5           -DPIARAKVNAGLHFDSGVLFSRLRFYFEPILYEGSAEVPQDKIDYMKKGYELLNDALVE
GSTe3           KDLVKQANINALLHFESGVLFARLRWILEPVFYWGQTEVPQEKIDSVHKAYDLLEATLKT
GSTe6           -EYEQQARINAALFFESSILFARLRFCTDNLTVLGKSAIPEENLQRALEGLQRLERMLQS
GSTe8           -DALTRAKVFNMLCFNNGCLFQRDAEVMRKIFS-GAITDPTQHLKPIEAAIDALEQFLQR
GSTt2           -DTVRQARVDEYLSWQHLNLRADVSLYFFHVWLNP-LLGKEPDAGKTERLRRRLDGVLNF
GSTt1           -DSRRQALVDEYLEWQHHNTRATCAIYFQYVWLRPRMFGTKVDPKQAEKYRGQMEGTLDF
GSTs1-1         -NPLEALQIDAIVDTINDFRLKIAIVAYEPDDMVKEKKMVTLNNEVIPFYLTKLNVIAKE
GSTs1-2         -DDWENLMIDTVVDTVNDFRLKIAVVSYEPDDEIKEKKLVTLNNEVIPFYLEKLDDIARD
Cegst-1         -SNETETTFIDMFYEGLRDLHTKYTTMIYRNYEDGKAPYIKDVLPGELARLEKLFHTYKN
GSTz1           -DVLKRAKVREICEVVIASGVQPLQNLIVLIHVGEEKKK-EWAQHWITRGFRAIEKLLST
GSTo1           -DPFSKAQDRILIERFAGSVIG-----PYYRILFAADGIPPGAITEFGAGLDIFEKELKA

GSTd1-4         H-----------KYVAG-----DSLTIADLSILATISTYDVAG-FDFAK--YQHVAAWYE
GSTd1-6         Q-----------EYAAG-----NDLTIADLSLAATIATYEVGG-FDFAP--YPNVAAWFA
GSTd1-5         E-----------RFVAGG----NGYSLADISLYATLTTFEVAG-YDFSA--YVNVLRWYK
GSTd1-3         E-----------RFVAGG----DDPTIADFSILASIATFDAAG-YDLRR--YENIHRWYE
GSTd2           H-----------EFVAG-----SKMTIADISLFATLATACTLG-FILRP--YVHVDRWYV
GSTd8           N-----------PYAAG-----PNITLADYSLVSTVTSLEVVQ-HDLSK--YPAISAWYE
GSTd11          T-----------PFAAG-----DKLTVADFSLLTSITTIDVTAGHDLSK--YANIQRWYS
GSTd7           Y-----------QWSAA-----NHFTIADIALCVTVSQIEAFQ-FDLHP--YPRVRAWLQ
GSTd5           C-----------RFVAA-----DHLTLADIFMLGSITALE-WFRYDLER--YPGIRGWVE
GSTd10          R-----------AFVAS-----DHLTIADICLLSSVTLLT-GIKYDLAT--FPGITAWVA
GSTd4           R-----------SYTAA-----DQLTVADICLLVTVNALTLWLGYELAP--YPRIRDWLG
GSTd3           R-----------SYAAA-----DHLTVADICLLGSVTALN-WLKYDLEP--FPHIKGWVA
GSTd12          S-----------PYVAG-----QKLTIADFSIFVSFCSLD-MMKYDLTA--YPNVQRWFA
GSTd9           S-----------AFVAG-----DCLTVADYSLVCTVSMLV-VLKFELAP--YVAVRRWYE
GSTd6           S-----------RWTAG-----DHITVADFAIAVTVAALDGLLNFDFSV--YPNVHRWYE
GSTu2           N-----------DYFAG-----ENLTIADLSLVPTIASAVHCG-LDLTN--YPRLNAWYE
GSTu3           C-----------DWIAG-----EECTLADLCALANVATLKEIG-VGMEG--YANVSGWYE
GSTu1           TG---------TRYAAG-----SGLTIADFPLVSSVMCLEAIGFGLGER--YPKVQAWYD
GSTe1           ------------DYVAG-----SRMTIADLSCISSVASMVGFIPMERSE--FPRVHGWIE
GSTe2           ------------DFVAG-----PTMTIADFSCISTISSIMGVVPLEQSK--HPRIYAWID
GSTe7           ------------QYMVG-----ESLTIADFSCISSIATLVGVVPLDESK--FPKSTAWMR
GSTe4           ------------EYIVG-----NEMTLADLSCIASIASMHAIFPIDAGK--YPRLAGWVK
GSTe5           ------------DYIAG-----SSLTLADVSCIATIATMEEFFPMDRSR--YPALVAWIE
GSTe3           SG---------TDYLVG-----GTITLADISVSTSLCTLNALFPADASK--YPLVLAYLK
GSTe6           ------------EYVAG-----DQLTIADLSCVSSVATLHLMLKPSAEE--FPKTFAWMD
GSTe8           S-----------RYTAH-----DQLSVADFAIVATLSTVAIFVPLPADR--WPRVCEWFA
GSTt2           FDQELLSAGSGQAFLAG-----DRISIADLSAACEIEQAKIAGYDPCEG--RPALASWLT
GSTt1           IEREYL--GSGARFIAG-----DEITVADLLAACEIEQPRMAGYDPCEG--RPNLTQWMA
GSTs1-1         NN----------GHLVL-----GKPTWADVYFAGILDYLNYLTKTNLLEN-FPNLQEVVQ
GSTs1-2         NN----------GYLAN-----SKLSWADIYFTAILDYLNYMTKSDLVAN-HPNLQRVVD
Cegst-1         GE----------HYVIG-----DKESYADYVLFEELDIHLILTPNALDG--VPALKKFHE
GSTz1           SAG---------KFCVG-----DEITLADCCLVPQVFNARRFH-VDLRP--YPIILRIDR
GSTo1           RG---------TPYFGGDKPGMIDYMIWPWCERVDLLKFALGDKYELDKERFGKLLQWRE

GSTd1-4         NIRKEAPG---AAINQAGIEEFKKYFEK--------------------
GSTd1-6         RCKANAPG---YALNQAGADEFKAKFLS--------------------
GSTd1-5         SMPELIPA---SDTNRSWAEAARPFFDKVKH-----------------
GSTd1-3         QTGNIVPA---ADKNLAGAKIFGLYFRQK-------------------
GSTd2           TMVASCPG---AQANVSGAKEFLTYK----------------------
GSTd8           GCKATMADF--QEINESGMQQYRLTSSLVPHLQLLHMPFAE-------
GSTd11          QLQESVAGH--QDICVEGAIQFRDSFNPINK-----------------
GSTd7           KCKDELQGHGYKEINETGAETLAGLFRSKLKQ----------------
GSTd5           RVTAQFPDY--SNFHKEIREATKQYVATHCPHLEY-------------
GSTd10          RVTGELPDY--GEFHKELYEKSMEYIKTL-------------------
GSTd4           RVVAEIPGC--AEFQREVEDATRAYVVNRKI-----------------
GSTd3           RVTGEIPDY--AEFRKDVEEATKAYVASKK------------------
GSTd12          KMGTHIPDL--EPTRKTIEEELRALLQSMNK-----------------
GSTd9           RCKEVIAGY--TDLTQRAVTMFQKWMEQENSKG---------------
GSTd6           QCKRELVGY--TDITKEAAQRTQAFLERFRAMR---------------
GSTu2           SCRVLKGFEDDQEAARQVGEYLRSKFPTGLEALN--------------
GSTu3           RCRELPGFDENEEGASFLGNAFKSKLEEQF------------------
GSTu4           GFKQAHPSL--WAIAAKGMEEIAEFEKNPPDLTGMVHPIHPIRKPAAK 
GSTe1           RMKQ-LPYYE--EINGAGATELAEFIVDMLAKNAKL------------
GSTe2           RLKQ-LPYYE--EANGGGGTDLGKFVLAKKEENAKA------------
GSTe7           RMQE-LPYYE--EANGTGALELAEFVLGKKEANASQFL----------
GSTe4           RLAK-LPYYE--ATNRAGAEELAQLYRAKLEQN--RTNAK--------
GSTe5           RLSRTLPEYD--QLNQEGAVEFAEICESLRLKNGASVAAK--------
GSTe3           RLEQTMPHYQ--EINTDRANDALQLYNQKLGKV---------------
GSTe6           RLSK-LPYYG--EVMGRGLKAAGELMQTLGSKNSGGGGDGN-------
GSTe8           VMEA-LPYYN--DQNRVGLDMLRKHLAGKIKL----------------
GSTt2           AVRERTNPYYDEAHKYVYRLSPDHIVTPVVAEDE--------------
GSTt1           RVRESTNPYYDQAHKLVNKFAQDTASKAKL------------------
GSTs1-1         KVLD--------------NENVKAYIAKRPITE---------------
GSTs1-2         NVTS--------------IESIRSWIDKRPKTEI--------------
Cegst-1         RFAERPNIK----AYLNKRAAINPPVNGNGKQ----------------
GSTz1           ELEGHPAFR---AAHPSNQPDCPPEAAK--------------------
GSTo1           LMEKDDAVKQSFISTEDHTKFLQSRKNGENNYDILA------------
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between GSTd11 and GSTu3) and are not physically clus-
tered with the majority of the delta class GSTs on chromo-
some 2L. Thus it is possible that these GSTs may belong to
an as yet unrecognised GST class (or classes) and in the
absence of clarifying immunological or biochemical data
these GSTs have been designated as unclassified (denoted
by a 'u').

Of the remaining, five A. gambiae GSTs, two belong to the
theta class, originally thought of as the progenitor class of
all GSTs [29]. The ubiquitous omega and zeta classes [7,8]
are each represented by a single gene in A. gambiae, and a
single sigma GST (alternatively spliced to produce two dif-
ferent transcripts (see below)) is also present. Support for

the classification of these five GSTs is provided by a phyl-
ogenetic comparison with their orthologous classes from
other organisms (Figure 3).

With the exception of the sigma class, all of the non-insect
specific classes are expanded in D. melanogaster relative to
A. gambiae. Neither species has any sequence related to the
mitochondrial kappa class found in mammals [9]. The
endogenous function of these mammalian GST classes in
insects has not been clearly resolved and therefore the sig-
nificance of the difference in size of these classes in the
two Diptera examined, is, at present, unknown.

Neighbour-joining tree and introns positions of A. gambiae GSTsFigure 2
Neighbour-joining tree and introns positions of A. gambiae GSTs. The putative amino acid sequences of all 32 GST subunits in 
A. gambiae were aligned with GST-1 from C. elegans (Accession number CAA78471) using ClustalW (see text for details). The 
tree was constructed by the neighbour-joining method from a similarity matrix of pairwise comparisons made using the Jukes-
Cantor algorithm. Nodes with distance bootstrap values (500 replicates) of > 70% are marked by *. The positions and phase of 
introns are shown on the right of the dendogram. Phase 0 introns are shown by a solid black line, phase 1 by dotted lines and 
phase 2 by grey solid lines.
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Amplification of A. gambiae cDNAs
Transcripts from 27 of the 28 A. gambiae GST genes were
detected in fourth instar larvae or one-day-old adults by
RT-PCR. Expression of GSTd9 was not detected in any life
stage and thus it is possible that this gene represents a
silent pseudogene, as suggested earlier [10]. A second
putative pseudogene is GSTd6. Utilisation of the first
inframe stop codon for this gene (as present in the
genome sequence database) would generate a transcript
with 885 bp of coding sequence (> 130 bp longer than
any of the other cytosolic GST genes in this species) and
the putative translation would encompass a string of 14
glutamine residues. We therefore sequenced the inter-
genic region between GSTd6 and the neighbouring gene,

GSTd11 to detect any possible frame shifts or sequencing
errors that may have masked the stop codon but none
were detected. A GSTd6 transcript of 666 bp was amplified
by RT-PCR but attempts at 3' RACE have so far failed to
detect the 3' end of this transcript.

Intron positions and sizes
The cDNA sequences of the A. gambiae GSTs were aligned
with the genomic DNA sequences retrieved from the
genome database and the position and sizes of the introns
noted. Intron size ranged from 64 bp in GSTe1 and GSTd4
to 13,937 bp in GSTz1 with the majority of introns rang-
ing from 50 to 100 bp (Figure 4). Only two of the GSTs are
intronless, GSTd2 and the putative pseudogene, GSTd9.

Neighbour-joining tree illustrating the relationship between representative insect and mammalian GST classesFigure 3
Neighbour-joining tree illustrating the relationship between representative insect and mammalian GST classes. GSTs from the 
non-insect specific classes from A. gambiae, D. melanogaster were aligned with representatives from mammalian classes using 
ClustalW. The tree was constructed by the neighbour-joining method from a similarity matrix of pairwise comparisons made 
using the Jukes-Cantor algorithm. Sequences shown in blue are from A. gambiae. Dm = D. melanogaster, Hs = Homo sapiens, Rn 
= Rattus norvegicus. Nodes with distance bootstrap values (500 replicates) of > 70% are marked by*.
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This contrasts with the situation in D. melanogaster where
20 of the 37 D. melanogaster GST genes are intronless
[10,30].

There are thirteen unique intron sites and 42 introns
within the A. gambiae GST supergene family. The majority
of the introns (28) are phase 0 introns, i.e. the intron does
not interrupt a codon. There is a considerable conserva-
tion of intron positions within the different GST classes
(Figure 2) and one intron is found in 17 GST genes span-
ning three different classes. Interestingly this conserved
intron, found approximately 50 amino acid residues from
the N-terminal, is also the splice site for the alternative
transcripts of GSTs1 and GSTd1 (see below). It has been
proposed, by proponents of the 'introns-early' hypothesis,
that different exons correspond to different domains in a
protein [31]. The highly conserved GST intron however,
splits the N-terminal domain (roughly residue 1–80). In

addition, the phase of this intron is not conserved
between the different classes, and thus the classification of
this as an ancient intron is not well supported.

Clustering of GST genes in the genome
The A. gambiae GST genes are located on all three of the
mosquito's chromosomes but two large, gene-specific
clusters exist (Figure 5). The eight members of the epsilon
GST class are clustered on chromosome 3R division 33B.
In D. melanogaster, a cluster of 10 epsilon GSTs are located
on chromosome 2R, division 55C [30] (Figure 6B). A
search of the D. melanogaster genome identified a further
four members of this family also present on chromosome
2R but at a distant location. These four singletons belong-
ing to the D. melanogaster epsilon GST class do not form a
monophyletic clade with the cluster of 10 DmGSTE genes
(Figure 6A). Instead, one of these Drosophila GSTs
(CG4688) is a probable ortholog of A. gambiae GSTe8.

Histogram showing the frequency of intron sizes in the A. gambiae GST supergene familyFigure 4
Histogram showing the frequency of intron sizes in the A. gambiae GST supergene family.
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Within the A. gambiae epsilon GST class there is evidence
of recent internal duplications within this gene cluster.
For example GSTe4 and GSTe5 have diverged recently and
are located next to each other within the cluster. Similarly
GSTe7, GSTe1 and GSTe2 are sequentially arranged and
phylogeneticaly closely related (Figure 6A and 6B).

The A. gambiae delta class GSTs are located in two closely
linked clusters of six genes on chromosome 2R divisions
18B and 19D (Figure 7B). Ten members of the D. mela-
nogaster delta class are sequentially arranged on chromo-
some 3R, division 87B. We have identified an eleventh
putative member of this class (CG17639) in D. mela-
nogaster that is a clear ortholog of A. gambiae GSTd7 [10]
(Figure 7B). A detailed analysis of the phylogenetic rela-
tionship between members of the A. gambiae delta GST
class, supports the suggestion by Holt et al [15] that the

two clusters of paralogous delta GSTs are partly a result of
segmental duplication. The clustering of GSTd8 with
GSTd11, GSTd6 with GSTd9 and GSTd5 with GSTd10 is
consistent with a duplication of a cluster of three paralo-
gous genes, with subsequent further local duplications in
one block to give rise to GSTd4 and GSTd3 (Figure 7A and
7B).

In both A. gambiae and D. melanogaster local duplications
in the epsilon and delta GST families have led to inde-
pendent expansions of these gene classes. Subsequent
diversification of these enzymes has presumably facili-
tated the adaptation of the two Diptera to their different
ecological niches.

Schematic diagram indicating the organisation of GST genes in the A. gambiae genomeFigure 5
Schematic diagram indicating the organisation of GST genes in the A. gambiae genome. The numbers represent polytene chro-
mosome divisions. Those genes marked with * are alternatively spliced to produce multiple transcripts.

GSTt1GSTt2
GSTu1

GSTd2
GSTd1 *

GSTd7

GSTd9
GSTd8

GSTd6
GSTd11

GSTs1*

GSTe1
GSTe2
GSTe3

GSTe5
GSTe6

GSTe4

GSTd3
GSTd4GSTd5

GSTd10
GSTd12

GSTu2

GSTu3

GSTo1

GSTz1

GSTe7

1 2 3 4 5 6

7 8 9 10 11 12 13 14 15 16 17 18 19

202122232425262728

29 30 3231 33 34 35 36 37

383940414243444546

X

2R

2L

3R

3L

GSTe8
Page 8 of 16
(page number not for citation purposes)



BMC Genomics 2003, 4 http://www.biomedcentral.com/1471-2164/4/35
Alternative Splicing
An A. gambiae delta class GST, GSTd1, that is alternatively
spliced to give four different mature transcripts each
encoding subunits with differing biochemical properties,
has already been described [12]. Here we report that a sec-
ond member of this supergene family belonging to the
sigma class, is also alternatively spliced in a similar man-
ner producing two distinct transcripts both of which have
been detected in adults by RT-PCR (Figure 8). As with
GSTd1 the two transcripts of GSTs1 share a common 5'
exon but differing 3' exons (64.3% identity at the amino
acid level). As the carboxyl region of the protein contains
the majority of the residues involved in substrate binding

(the H-site), the two subunits encoded by the sigma GST
gene in A. gambiae are likely to encode proteins with dif-
fering substrate specificities.

The sigma class in D. melanogaster is also represented by a
single gene, DmGSTs1. The Drosophila GST has an N-ter-
minal extension of 46 amino acid residues relative to the
Anopheles ortholog. This N-terminal extension is not
essential for catalytic activity and may play a role in
attaching the D. melanogaster protein to indirect flight
muscles [21]. The intron positions of DmGSTS1 and A
gambiae GSTs1-1 are conserved indicating a common

A: Neighbour-joining tree illustrating the relationship between A. gambiae and D. melanogaster epsilon class GSTsFigure 6
A: Neighbour-joining tree illustrating the relationship between A. gambiae and D. melanogaster epsilon class GSTs. ClustalW 
was used to align the putative amino acid sequences of the 8 epsilon class GST subunits in A. gambiae with the 14 putative epsi-
lon class GSTs from D. melanogaster and with GSTS1 from D. melanogaster (as an outgroup). The tree was constructed by the 
neighbour-joining method from a similarity matrix of pairwise comparisons made using the Jukes-Cantor algorithm. Nodes 
with distance bootstrap values (500 replicates) of >70% are marked by *. B, Epsilon class GST arrangement in A. gambiae and D. 
melanogaster. Arrows mark directions of transcription. The solid bars denote the genes and the vertical lines within these mark 
the approximate introns position.
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Neighbour-joining tree illustrating the relationship between A. gambiae and D. melanogaster delta class GSTsFigure 7
Neighbour-joining tree illustrating the relationship between A. gambiae and D. melanogaster delta class GSTs. ClustalW was 
used to align the putative amino acid sequences of the 18 delta GST subunits in A. gambiae with the 11 putative delta class GSTs 
from D. melanogaster and with GSTS1 from D. melanogaster (as an outgroup). The tree was constructed by the neighbour-join-
ing method from a similarity matrix of pairwise comparisons made using the Jukes-Cantor algorithm. Nodes with distance 
bootstrap values (500 replicates) of >70% are marked by *. B, Delta class GST arrangement in A. gambiae and D. melanogaster. 
Arrows mark directions of transcription. The solid rectangles denote the exons of the genes. Agcp2459 and agcp2052 are two 
putative genes, identified by the automatic analysis of the A. gambiae genome, that interrupt the delta GST cluster on chromo-
some 2R, division 18B.
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ancestor for these genes. Local duplication of the carboxyl
exons of the A. gambiae GSTs1 gene presumably occurred
subsequent to the speciation event separating the two
Diptera.

Alternative splicing as a means of increasing the level of
heterogeneity of GST subunits appears to be a rare phe-
nomenon outside of the genus Anopheles, having, as far as
we are aware, only been reported in a GST from the
nematode Onchocerca volvulus [13]. Two human cDNA
clones encoding alternative transcripts of a mu class GST
have been detected but both are incomplete and thus
unlikely to encode functional GSTs [32].

Expression profiling of epsilon GSTs
Our principal interest in insect GSTs stems from the role
that these enzymes play in insecticide resistance. GSTs
have been implicated in the conjugation, metabolism or
remediation of harmful effects of all major classes of
insecticides, but our studies have focused on the role of
these enzymes in the detoxification of DDT. From genetic
mapping studies [25] we know that a major DDT resist-
ance locus co-localises with the epsilon GST cluster on
chromosome 3R, division 33B. We have previously dem-
onstrated that expression of one member of this GST class,
GSTe2, is up-regulated in a DDT resistant strain [10] and
that a recombinant homodimer of GSTe2 is very efficient
at metabolising DDT [28]. In the present study we used
quantitative PCR to compare the expression levels of all
members of the epsilon class in DDT resistant and suscep-

Schematic diagram showing the organisation of the sigma GST genes in A. gambiae and D. melanogasterFigure 8
Schematic diagram showing the organisation of the sigma GST genes in A. gambiae and D. melanogaster. Each rectangle above 
the scale bar represents a different exon. The empty rectangles indicate 5'UTR regions whilst the rectangles in solid colours 
are coding sequence. The cDNAs produced by splicing of these genes are shown beneath the scale bar.
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tible strains. The results are shown in Figure 9A. Five of the
eight GSTs are expressed at a significantly higher levels in
the resistant strain. The difference in expression levels is
greatest for GSTe2 and GSTe7 (Table 2). Of the five GSTs
that are expressed at higher levels in the DDT resistant
strain, only GSTe2 has confirmed DDT dehydrochlorinase
activity. The ability of recombinant homodimers of
GSTe3 and GSTe7 to metabolise DDT has not yet been
determined. However, we have previously shown that nei-
ther GSTe1 or GSTe4 homodimers possess DDT dehydro-
chlorinase activity [28] and yet the expression of both of
these genes is upregulated in the DDT resistant strain
(Table 2). This result is most readily explained if it is
assumed that the expression of multiple genes in the epsi-
lon cluster is under the control of a common regulatory
element and that an alteration in this element accounts
for the increase in expression of the six epsilon GST genes.
Nonetheless other explanations, such as modifications in
the stability of the mRNA transcripts in the resistant strain
can not be eliminated at this stage.

There was a large variation in the number of transcripts
detected for each of the individual GSTs within both the
susceptible and resistant strains. For example, the normal-
ised copy number of GSTe2 transcripts was over 26-fold
greater than that of GSTe3 in the resistant strain (Table 2).
This indicates that the basal expression of individual GSTs
within a cluster is independently regulated. To confirm
this result, we repeated the qPCR for four of the GSTs
using gDNA as a template. If the differences seen with
cDNA reflect genuine differences in GST transcript copy
number as we hypothesised, then the genomic copy
number for each of the four GSTs would be approximately
the same. Figure 9 and Table 2 support our hypothesis.
Furthermore, as the genomic qPCR was carried out on
DNA extracted from both susceptible and resistant mos-
quitoes, the results shown in Figure 9B support our
unpublished data from Southern blots demonstrating
that the increases in GST transcript levels seen in the resist-
ant strain is not due to gene amplification (F. Ortelli,
unpublished data).

As a final test of the reliability of our qPCR results we cal-
culated the expected copy number of a single copy gene in
10.4 ng of A. gambiae genomic DNA (the starting amount
of gDNA template in the qPCR reactions with Kisumu
DNA). The theoretical copy number (33,120) was within
an order of magnitude of the range of values obtained
(11,993–17,205).

Conclusion
The insect GST supergene family encodes a diverse set of
proteins. The availability of the full genome sequence for
two insect species has enabled the full extent of this pro-
tein family in insects to be realised. Multiple members of

the epsilon class are upregulated in a DDT resistant strain
of A. gambiae and it is proposed that this class plays a
major role in the detoxification of xenobiotics. However,
little is known about the endogenous substrates of insect
GSTs. Functional genomics approaches will no doubt
contribute to our understanding of the role of individual
GSTs in insects and perhaps then the reason for the exten-
sive diversity of this enzyme family will become clear.

Methods
Mosquito Strains
The DDT resistant ZAN/U strain of Anopheles gambiae s.s.
originated from a field population collected from
Zanzibar, Tanzania, in 1982. Adults from this strain have
been maintained under regular selection pressure by
exposure to Whatmans no.1 filter papers impregnated
with 4% DDT according to standard WHO methods [33].
The Kisumu strain is susceptible to insecticides and origi-
nates from Kisumu in Western Kenya.

Annotation of A. gambiae GST genes
Members of the GST supergene family were identified in
the A. gambiae genome by BLAST searches [34] using mul-
tiple representative sequences from each GST class as
query sequences. The sequences retrieved from the
genome were manually annotated to predict transcription
initiation and termination sites and intron/exon bounda-
ries using BlastX comparisons of putative amino acid
translations [35]. Primers pairs were designed to amplify
the full length of the coding sequence of each gene from
A. gambiae cDNA.

cDNA synthesis
Total RNA was extracted from individual mosquitoes
using the TRI reagent (SIGMA), according to the
manufacturer's instructions. The RNA was treated with
DNase to remove any contaminating genomic DNA and
the mRNA was reverse transcribed into cDNA using super-
script II (GIBCO BRL) and an oligo (dT) adapter primer
(5'-GACTCGAGTCGACATCGA(dT)17-3'). The PCR condi-
tions for amplifying GST cDNAs were determined empiri-
cally for each GST. Products of the expected size were
subcloned into pGEM T-easy vectors (Promega) and used
as templates for sequencing. At least three independent
clones were sequenced for each GST. Sequencing reactions
were performed using Beckman chemistry and the result-
ant products analysed on a Beckman CEQ800 capillary
sequencer.

Quantitative PCR
Total RNA was extracted from pools of ten (five male and
five female) one-day old adult mosquitoes and the mRNA
was reverse transcribed into cDNA as described above.
Plasmids containing the gene of interest were diluted to
produce seven standard templates at concentrations
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Expression levels of the epsilon class GSTs in two strains of A. gambiaeFigure 9
Expression levels of the epsilon class GSTs in two strains of A. gambiae. A Transcript copy number determined by qPCR using 
cDNA as a template. Results represent the average of three independent cDNA samples. B gene copy number, determined by 
using three independent aliquots of mass homogenates of gDNA as a template. In both cases, copy numbers were normalised 
against the copy number of the S7 genes and error bars represent standard deviations. Statistically significant differences (*p < 
0.05, **p < 0.01) between ZAN/U and Kisumu are indicated. Kisumu is an insecticide susceptible strain, ZAN/U is resistant to 
DDT.

A

B
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ranging from 1 ng/µl to 1 fg/µl. The incorporation of the
fluorescent dye SYBR Green during PCR amplification of
these templates was detected using Roche LightCycler
technology and Quantitect SYBR Green chemistry (Qia-
gen). For each experiment two replicates of each of the
seven plasmid templates and two replicates of three cDNA
samples from both strains, all synthesised from independ-
ent RNA extractions, were used. The binding sites of the
primers used for template amplification were chosen to
avoid regions of allelic variation within the gene
sequences [28]. A control plasmid containing a partial
fragment of the S7 ribosomal protein gene [36] was used
to standardise the initial cDNA concentration in each
sample. Details of the primer sequences and PCR
conditions are given in Table 3. The samples were ana-
lysed using LightCycler Software V3 (Roche) and the

number of GST copies in the cDNA sample was deter-
mined as described previously [37].

The experiment was repeated on genomic DNA samples
extracted from approx 1 g of Kisumu or ZAN/U strains as
described previously [38]. For the GST genes for which the
initial primers spanned introns, new plasmids were con-
structed containing the genomic fragment of the gene.

Phylogenetic analysis
Putative amino acid sequences of the GSTs were aligned
using ClustalW [27]. The alignment was manually trun-
cated as described in the Results and Discussion section.
Evolutionary distances were calculated using the Jukes-
Cantor algorithm [39] and phylogenetic trees were
determined by the neighbor-joining method [40] with

Table 2: Quantitative PCR results of A. gambiae epsilon GST genes. The transcript copy number or gene copy number was determined 
using cDNA or gDNA respectively. The copy numbers were normalised for variations in initial template concentration by dividing each 
sample by the copy number of the ribosomal protein gene, S7. The final column shows the ratio of the transcript or gene copy number 
between the resistant ZAN/U and insecticide susceptible Kisumu strain. Statistically significant differences (*p < 0.05, **p < 0.01) 
between ZAN/U and Kisumu are indicated.

Gene Kisumu Strain Normalised cDNA copy 
number × 102(± S.D.)

ZAN/U Strain Normalised cDNA copy 
number × 102(± S.D.)

Ratio of Copy Number (ZAN/U:KISUMU)

GSTe1 1.50 ± 0.320 4.52 ± 1.054 3.0 **
GSTe2 1.66 ± 0.408 12.92 ± 4.125 7.8 **
GSTe3 0.15 ± 0.100 0.49 ± 0.133 3.3 *
GSTe4 1.13 ± 0.299 2.82 ± 0.795 2.5 *
GSTe5 0.08 ± 0.050 0.10 ± 0.065 1.3
GSTe6 0.58 ± 0.223 1.20 ± 0.551 2.1
GSTe7 0.03 ± 0.010 0.34 ± 0.152 11.0 **
GSTe8 0.48 ± 0.162 0.62 ± 0.541 1.3

Kisumu strain Normalised gDNA copy 
number. (± S.D.)

ZAN/U strain Normalised gDNA copy 
number. (± S.D.

Ration of Copy Number (ZAN/U:Kisumu)

GSTe1 0.29 ± 0.125 0.32 ± 0.092 1.1
GSTe3 0.32 ± 0.088 0.51 ± 0.144 1.6 **
GSTe5 0.22 ± 0.129 0.29 ± 0.073 1.3
GSTe7 0.28 ± 0.098 0.21 ± 0.081 0.75

Table 3: Primer sequences and PCR conditions for amplification of epsilon class GST genes by quantitative PCR.

Gene Forward Primer (5' to 3') Reverse Primer (5' to 3') cDNA amplicon 
(bp)

gDNA amplicon 
(bp)

Annealing/Detection 
Temp (°C)

GSTe1 GTCAATGAGCCACTGCACTTC GTGATCCGGCTACGTAATCG 175 253 57/84
GSTe2 ATCACCGAGAGCCACGCAATCAT GCCACCGTTCGCTTCCTCGTAGT 414 507 62/84
GSTe3 GAGCTGACGGCAAAGATGATCG CCTGCTTCACTAGATCCTTCGC 229 298 61/83
GSTe4 CGCCATTCAAACGACCATGCC GATGGCGTGGCTGTCCCACACG 229 229 62/85
GSTe5 ATGGCAACGAACCCCATCATC CACACCACCATCGTCAATCACC 198 198 62/85
GSTe6 GTACACGCACACGATTAGTCC GCTGACCCTTGAAGACGTTC 104 195 62/83
GSTe8 GCCATGATTCTGTACTACGACG GGTAAGCGTTAACTCACCGTG 198 267 63/83
GSTe7 GCAGATTGGTACTGTACACG CTCGGATAGAGACCGTCGTC 256 335 59/84
S7 GCACGTCGTGTTCATTGCCG GAACGTAACGTCACGGCCAGTCA 292 441 60/86
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TREECON [41] or by parsimony methods using MEGA2
[41].

Abbreviations
DDT: 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane,
GST: glutathione transferase
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