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Abstract
Background: Tumor necrosis factor α (TNF) is able to induce a variety of biological responses in
the nervous system including inflammation and neuroprotection. Human astrocytoma cells U373
have been widely used as a model for inflammatory cytokine actions in the nervous system. Here
we used cDNA microarrays to analyze the time course of the transcriptional response from 1 h
up to 12 h post TNF treatment in comparison to untreated U373 cells. TNF activated strongly the
NF-κB transcriptional pathway and is linked to other pathways via the NF-κB target genes JUNB
and IRF-1. Part of the TNF-induced gene expression could be inhibited by pharmacological
inhibition of NF-κB with pyrrolidine-dithiocarbamate (PDTC). NF-κB comprises a family of
transcription factors which are involved in the inducible expression of genes regulating neuronal
survival, inflammatory response, cancer and innate immunity.

Results: In this study we show that numerous genes responded to TNF (> 880 from 7500 tested)
with a more than two-fold induction rate. Several novel TNF-responsive genes (about 60% of the
genes regulated by a factor ≥ 3) were detected. A comparison of our TNF-induced gene expression
profiles of U373, with profiles from 3T3 and Hela cells revealed a striking cell-type specificity.
SCYA2 (MCP-1, CCL2, MCAF) was induced in U373 cells in a sustained manner and at the highest
level of all analyzed genes. MCP-1 protein expression, as monitored with immunofluorescence and
ELISA, correlated exactly with microarray data. Based on these data and on evidence from
literature we suggest a model for the potential neurodegenerative effect of NF-κB in astroglia:
Activation of NF-κB via TNF results in a strongly increased production of MCP-1. This leads to a
exacerbation of neurodegeneration in stoke or Multiple Sclerosis, presumably via infiltration of
macrophages.

Conclusions: The vast majority of genes regulated more than 3-fold were previously not linked
to tumor necrosis factor α as a search in published literature revealed. Striking co-regulation for
several functional groups such as proteasome and ribosomal proteins were detected.
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Background
TNF is a cytokine that is bound to membrane receptors
(TNF-Rs) which trimerize upon binding. This provides an
intracellular platform for the recruitment of adapter mol-
ecules which transmit downstream signals culminating in
a transcriptional response [1]. TNF is frequently involved
in neural inflammation. Conditions whereas increased
amounts of TNF contribute to brain inflammation
include infection (meningitis), neurodegenerative dis-
eases such as Alzheimer, Aids dementia complex or Mul-
tiple Sclerosis [2]. Moreover TNF itself is produced in glia
in response to pro-inflammatory cytokines in type of a
feed forward mechanism [3]. Target cells for TNF within
the nervous system include neurons and glia. Several
reports have described a neuroprotective action of TNF
[4]. One of the important signaling pathways triggered by
binding of TNF to TNF-receptors (p55 and p75) is the acti-
vation of NF-κB [1]. NF-κB is an ubiquitous transcription
factor with inducible activity. This factor is crucially
involved in regulation of genes relevant in neuronal sur-
vival, inflammatory response, cancer and innate immu-
nity [5-7]. NF-κB has been implicated in protective or
degenerative pathways, dependent on the stimulus con-
centration [8] or its nature [9]. The activation of NF-κB is
mainly controlled at the posttranscriptional level by com-
plex formation with the inhibitory subunit IκB in the
cytoplasm. Activating stimuli (such as TNF) activate a
kinase complex composed of two IκB-specific kinases
(IKKα and IKKβ) and a modulatory subunit (NEMO or
IKKγ). This leads to phosphorylation of the inhibitory
subunit, which is then ubiquitinilated and degraded via
the proteasome. This triggers translocation of NF-κB into
the nucleus, where it initiates transcription by binding to
regulatory DNA-sequences [1]. NF-κB is also frequently
found in different cells of the nervous system [5]. TNF
mediated activation of NF-κB in U373 cells was described
[10], a cell line frequently used as a model for inflamma-
tory responses e.g. in Alzheimer disease. Target genes of
NF-κB in glia include manganese superoxide dismutase,
IκB-α, ICAM-1 and TNF-α [11]. In neurons different target
genes such as cyclooxygenase 2 might be regulated by NF-
κB [12]. Thus far no systematic analysis of TNF mediated
gene expression over time in glia cells has been reported.
Here we analyzed the TNF mediated induction of gene
expression using microarrays containing 7500 probes for
human cDNAs. In order to identify potential NF-κB target
genes, we analyzed the influence of pharmacological NF-
κB inhibition on TNF mediated gene expression.

Results
TNF regulates IκB-α expression in U373 glioblastoma cells
In order to test the feasibility of our approach to induce
TNF-responsive genes in U373 cells and to inhibit NF-κB
target genes pharmacologically with PDTC, IκB-α expres-
sion was analyzed by Northern blotting. U373 cells were

treated for up to 12 h with TNF and RNA was isolated at
different time points. As expected from data with non-
neuronal cells [13], induction of the NF-κB target gene
IκB-α was readily detected after 1 h and peaked after 1 h
of TNF treatment (Fig. 1a). In accordance with the NF-κB
dependent upregulation of IκB-α expression, PDTC pre-
treatment blocked the TNF effect on IκB-α expression (Fig.
1B). Furthermore these data can be used as an independ-
ent validation of the microarray results.

Gene Expression Analysis using DNA microarrays
RNA from TNF-treated or control U373 cells, respectively
was isolated. After cDNA synthesis and Cy3 and Cy5 labe-
ling the probes were hybridized on the microarray. Three
biological replicas were analyzed for each time point
(medians of replicas were used for further analysis). In
response to TNF 881 genes exhibited altered RNA levels by
a factor of two or more in at least one of the tested time
points (Fig. 2). Hierarchical clustering [14] was used to
visualize patterns of coregulated genes (Fig. 2). In order to
screen for potential NF-κB target genes, cells were pre-
treated with PDTC. These data were compared to the TNF
induction.

TNF induced gene expression profiles cluster in different 
time dependent groups
The Eisen matrix primarily visualized an upregulation of
genes after TNF treatment (red shades in Fig. 2). Since it is

Northern Blot analysis of IκB-α in U373 cells after TNF treatment (A) or PDTC and TNF cotreatment (B)Figure 1
Northern Blot analysis of IκB-α in U373 cells after TNF 
treatment (A) or PDTC and TNF cotreatment (B). U373 
cells were stimulated with 10 ng/ml TNF-α for the time indi-
cated. RNA was blotted onto a nylon membrane after gel 
electrophoresis. Hybridization was done with probes for 
IκB-α and GAPDH as a loading control. Note that the induc-
tion of IκB-α by TNF is blocked by cotreatment with PDTC.
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Hierarchical cluster analysis of gene expression in U373 cells after TNF treatmentFigure 2
Hierarchical cluster analysis of gene expression in U373 cells after TNF treatment. The Gene expression matrix for the cluster 
algorithm contains the log-transformed medians of normalized ratios. Upregulated genes are depicted in shades of red, down-
regulated genes in shades of green. Each row represents the color coded expression of one gene at indicated time points after 
TNF treatment (columns). Genes with similar expression patterns are clustered together (dendrogram on the right). Clusters 
selected for further analysis are color coded in the dendrogram on the right. Fold changes, annotation and data used for clus-
tering are presented in supplementary table 1 (supp_table1_cluster).

fold induction
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not possible to describe all of the observed changes, a sup-
plementary table (supp_table_1_cluster) is included for
further analysis. Clusters containing genes that peaked rel-
atively early were identified (Fig. 2 orange cluster and
supp_table_1_cluster). To visualize the composition of
different clusters concerning to their cellular role, we used
an annotation by functional groups as previously
described [15]. Based on this annotation, the orange clus-
ter contains a high number of genes encoding ligands and
genes involved in metabolism or protein synthesis (Fig.
3). The highest expression within this cluster depicts genes
for the eukaryotic translation initiation factor 3 (EIF3S4
and EIF3S5), followed by the gene for TNF-converting
enzyme ADAM17. In addition, this cluster contains cell
surface receptors such as the chemokine receptor CCR6
and the Lewis X receptor (SELP), which is an important

mediator of cell adhesion in the nervous system. Several
secreted receptor ligands, which include known target
genes of NF-κB, were also detected. It has been previously
reported that TNF induces the expression of the proin-
flammatory cytokine IL-6 in U373 cells [16]. The brain
derived neurotrophic factor (BDNF) was likewise
detected. The second cluster we identified contains genes
which are induced over a longer time frame (Fig. 2, tur-
quoise cluster). This cluster is dominated by genes
involved in intracellular signaling and genes encoding lig-
ands or transcription factors (Fig. 3). Within this cluster
are some of the well-known TNF target genes, e.g. constit-
uents of transcription factors: IκB-α and IRF-1 (NFKBIA,
IRF1). The data obtained with these two genes can also be
used as an independent quality assessment of the repro-
ducibility of the multiple hybridizations. Two independ-

Percentage of functional groups in clustersFigure 3
Percentage of functional groups in clusters. Genes in clusters were annotated to functional groups. Percentage of the three 
most abundant groups within genes with annotated functions are depicted. Same color coding is used as in clusters of Fig. 2. 
Several clusters could be discriminated on the basis of the functional groups.
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ent measurements on the same microarray were available
for both genes. The probes for NFKBIA and IRF1 detected
nearly identical expression levels throughout the experi-
ments (supp_table_1_cluster, turquoise cluster). This
cluster also contains many genes already known to be TNF
regulated, such as tumor necrosis factor induced protein 2
(TNFAIP2, B94) [17], IκB-α [13] or VCAM-1 [18]. The lat-
ter NF-κB target genes provide an independent validation
of our system. Several genes show an early onset of expres-
sion, which is maintained during the whole time course.
These include the tumor necrosis factor α induced protein
2 (B94), a secreted protein with no homology to other
known protein domains, the cell surface protein VCAM-1,
and the cytokine MCP-1 (MCAF, SCYA2, CCL2). In addi-
tion, several genes not previously described in this con-
text, e.g. phospholamban (PLN) and phosphodiesterase
8a (PDE8A), were detected. Few enzymes involved in
metabolism such as the sulfotransferase or carboxypepti-
dase appeared in this cluster of immediate early genes.
Surprisingly few genes directly linked with apoptosis were
induced, e.g. the anti-apoptotic cIAP2 BIRC3 (>18x),
immediate early response gene 3 (IER3), and the apopto-
sis antagonizing transcription factor (AATF). Several cal-
cium binding proteins were highly induced, calsequestrin
(CASQ2) for example, was induced more than 8-fold.
Very high induction rates were detected with probes for
ICAM-1 (> 67x) and VCAM (> 48x). Surprisingly the
kinetics of the induction of these bona fide NF-κB target
genes was slower than expected (peak induction after 4 h).

Cluster 3 (pink) predominantly contains genes that show
peak induction after 4 h of TNF treatment. Functional
annotation of genes of which the function is known sug-
gest that this cluster is dominated by genes involved in
intracellular signaling, metabolism and cell surface recep-
tors (Fig. 3). Most genes within this cluster show a peak of
induction at 4 h after TNF treatment. The cluster includes
two caspases (CASP4 and CASP7). Other gene products
involved in protein processing, such as proteasome medi-
ated degradation, were included in this cluster. Beta-arres-
tin and numerous genes involved in metabolism such as
enzymes (transferases, hydrolases) were grouped in this
cluster.

Cluster 4 (yellow) contains genes which show a delayed
induction (12 h after initiation of TNF treatment). Func-
tional clustering (Fig. 3) suggests that this cluster is dom-
inated by genes involved in protein synthesis and
oxydative phosphorylation, such as NADH dehydroge-
nase. Similarly many ribosomal proteins such as S3; L27;
S30 (FAU) were upregulated. A further important func-
tional group is constituted by gene products involved in
protein degradation via the proteasome, such as proteas-
ome subunits 1, 2, 3, 5 and 10. The upregulation of the

SUMO activating enzyme may also be relevant in this
regard.

Cluster 5 (red) contains many genes whose expression
show a biphasic time course. For example the cytokines
CCL7 and CCL13 show peaks of induction at 2 h and 12
h. The TNF receptor 10c shows a similar induction pat-
tern, which appears to be a decoy receptor without an
intracellular domain. Numerous genes within this cluster
encode for proteins responsible for intracellular signaling,
protein synthesis and traffic (Fig. 3).

Cluster 6 (green) contains downregulated genes (depicted
in shades of green). Functional annotation of genes in this
cluster is given in figure 3. Downregulation of genes by a
factor of two or more (clusters 6 and 7) was rarer than
upregulation (clusters 1–5). Examples of such downregu-
lated genes detected after 1 h of treatment are the intracel-
lular TNF receptor interactor TRADD and the cGMP
regulated protein kinase 1 (PRKG1). The observed down-
regulation was not persistent, and levels around 1 were
usually reached within two hours of treatment. Cluster 7
(blue) contains genes which were downregulated after 12
h. The strongest downregulation (nearly ten-fold reduc-
tion) was observed with a probe for the cannabinoid
receptor 1. Another interesting observation is the down-
regulation of glucocorticoid receptor expression. This
cluster contains a high amount of genes encoding
cytoskeletal proteins and genes involved in intracellular
signaling (Fig. 3).

Because the expression of the chemokine monocyte che-
moattractant protein 1 (MCP-1) was earlier and more
rapid than other chemokines or cytokines (Fig. 4). We
analyzed the MCP-1 expression on the protein level.
Immunofluorescence analysis of U373 cells treated with
TNF revealed a striking upregulation of intracellular MCP-
1 (Fig. 5). As expected, strong expression of MCP-1 pro-
tein was later (beginning from 4 h after TNF treatment)
than observed with the RNA expression. Next we investi-
gated wether MCP-1 secretion in U373 cells is also stimu-
lated by TNF. Analysis of U373 culture supernatants using
ELISA revealed an increase of MCP-1 (1360 pg/ml) after 4
h post TNF (Fig. 6), and in higher amounts after 6 h (4720
pg/ml), and after 8 h (4160 pg/ml). MCP-1 levels of con-
trol cultures and cultures cotreated with TNF and PDTC
were below the detection limit (<15 pg/ml). Thus we con-
clude that the microarray data can give a valid picture of
the protein data. In addition, the inhibiting effects of
PDTC on MCP-1 protein secretion were preceded by inhi-
bition of MCP-1 RNA expression as measured on microar-
rays (see below).

In order to gain further insight in the signaling cascades
involved in TNF-induced transcription a pharmacological
Page 5 of 12
(page number not for citation purposes)



BMC Genomics 2003, 4 http://www.biomedcentral.com/1471-2164/4/46
inhibition of NF-κB was performed with PDTC. The sys-
tem was verified initially with Northern blotting (Fig. 1).
As expected from the Northern blot data (Fig. 1), microar-
rays also detected an inhibition by PDTC of TNF induced
IκB upregulation. Repressed genes are listed in a supple-
mantary table (sub_table_3). The expression of MCP-1,
IRF1, JunB and IκB-α were inhibited by PDTC after one
hour Since these genes are known NF-κB target genes, this
is an independent evaluation of our experimental design.
Summarily we detected the following known NF-κB target
genes in U373 cells: MCP-1, IRF1, NFKBIA, GSTA4,
BIRC3, MMP3, TNFRSF10B, DAD1. This specificity of
PDTC to known NF-κB target genes might suggest that the
other inhibited genes may be novel NF-κB target genes.
Surprisingly the expression of the eukaryotic translation
initiation factor 3, subunit 4 was also repressed. Further-

more ADAM17 (TACE), the TNF-converting enzyme, glu-
tathione S transferase and importin β3 were also repressed
by PDTC after 1 h.

MCP-1, IRF-1, B94, a well known TNF induced gene, and
the small inducible cytokine A14 were repressed after 2 h
TNF/PDTC treatment. The known NF-κB target gene
cIAP2 is also repressed. Several transcription factors are
also repressed by PDTC, such as the hypoxia inducible fac-
tor HIF-2 (EPAS-1) and the nuclear orphan hormone
receptor (NOR-1).

Discussion
Tumor necrosis factor has pleiotropic effects on different
cell types. One of the crucial questions regarding the role
of tumor necrosis factor in the nervous system is its

Time course of MCP-1 expression and other chemokines in U373 cells after TNF exposure at indicated time points (x-axis)Figure 4
Time course of MCP-1 expression and other chemokines in U373 cells after TNF exposure at indicated time points (x-axis). 
Data are shown as medians (fold change) of normalized ratios of three biological replicas (y-axis). Note the sustained MCP-1 
expression.
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neuroprotective or neurodegenerative action. We and oth-
ers have proposed that a neurodegenerative action of TNF
might be linked with the expression of NF-κB target genes
in glia [19]. For a better understanding of the TNF actions
in glia we used microarrays containing more than 7500
known human genes to analyze the time course of a TNF
induced gene expression response. We identified more
than 800 genes, the expression of which was up- or down-
regulated by a factor of two or more. More genes are
upregulated than downregulated. We wanted to know
which of these genes were already published as TNF-regu-
lated. Two strategies were used to explore this notion. First
PubGene queries were made to test for association with
TNF (Fig. 7). As a second strategy we compared the results

of two microarray studies using TNF treated 3T3 cells [20]
and Hela cells [21] with our results. We used the gene
symbols of 200 genes that were more than 3-fold regu-
lated to query PubGene [22]. PubGene is a database
derived from PubMed; in this database all gene names
abbreviations and aliases of a given gene were linked to
one gene symbol. This allows an exhaustive literature
search using the gene symbol only. The vast majority of all
genes which could be queried in the PubGene database
showed no previous association with TNF (Fig. 7). This
suggests that we have identifed a high degree of new or
novel genes induced by TNF. We are aware that this
approach might be somewhat limited by the fact that the
database omits publications where the gene of study is not
mentioned clearly in the abstract. Therefore we addition-
ally compared our data obtained in U373 cells after four
hours of TNF induction to published data of 4 h TNF treat-
ment of 3T3 cells [20] and Hela cells [21]. A Venn diagram
(Fig. 8) visualizes a surprisingly short list of common
TNF-induced genes (Table 1).

One of the genes which displays a striking high level of
induction throughout the treatment with TNF is the small
inducible cytokine A2 (CCL2), also called monocyte che-
moattracting protein (MCP-1) or monocytochemotactic
and activating factor. MCP-1 was detected after 1 h of TNF
treatment and remained highly induced for up to 12 h.
On the other hand induction of MCP-1 by TNF was heav-
ily blunted by treatment with PDTC. This notion
prompted us to regard MCP-1 as a potential NF-κB target
gene. Indeed MCP-1 was already described as NF-κB target
gene in non-neuronal cells [23]. Interestingly a recent
study showed a constitutive expression of functional
MCP-1 receptor CCR2 on neurons and glia [24]. On the
other hand, it was shown that TNF could also induce
MCP-1 expression in human and simian astocytes [25].
An important physiological role of MCP-1 can be deduced
from the observation that MCP-1 -/- animals show a
reduced lesion in an ischemic brain paradigm. Since
MCP-1 is in our analysis the chemokine with the highest
and longest lasting expression (Fig. 2 and Fig. 4) we pro-
pose that MCP-1 expression is one of the main reasons for
glial NF-κB dependent neurodegeneration. NF-κB activa-
tion might be disease exacerbating in the following
models: experimental autoimmune encephalomyelitis
(EAE) and brain ischemia. We and others have shown that
in EAE NF-κB is activated in glia [26,27]. NF-κB is acti-
vated in Multiple Sclerosis also, for which EAE is an exper-
imental animal model [28]. Recently it was shown that
NF-κB inhibition with PDTC ameliorates EAE [29]. There
is also compelling evidence that MCP-1 is responsible for
inflammatory infiltration in MS. Upregulation of MCP-1
was detected in hypertrophic astrocytes of MS lesions
[30]. Similarly NF-κB is activated during brain ischemia
and its partial repression improves the damage [31]. MCP-

Detection of intracellular MCP-1 protein in U373 cellsFigure 5
Detection of intracellular MCP-1 protein in U373 cells. Cells 
were treated with TNF for 0 h (A, B), 2 h (C, D), 4 h (E, F) 
and 24 h (G, H). Left panels show immunoreactivity of anti-
MCP-1 antibody in red. Right panels show nuclear DAPI 
images. White bar depicts a size of 50 µm.
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1 is highly upregulated during ischemia and upregulation
persists for several days [32]. Interestingly the knock out
of the NF-κB target gene MCP-1 also ameliorates ischemic
damage [33]. Since induced MCP-1 expression is mainly
observed in glia and macrophages, a potential neuropro-
tective strategy involving repression of NF-κB activation
might lead to the inhibition of MCP-1 expression. On the
other hand MCP-1 might play a role as a signal to induce
stem cell homing to the site of injury.

Why have we used PDTC as a NF-κB inhibitor? PDTC was
already characterized as a NF-κB inhibitor in U373 cells
[16]. PDTC could be used to ameliorate neurological dis-
eases such as EAE (see above). PDTC is currently the only
drug for which it was shown that the PDTC induced phe-

notype corresponds with that of a genetic ablation of NF-
κB activation [34].

What might be the reason for a cell type specific TNF
response? There are several striking observations where
our data can be seen to support the hypothesis of the com-
binatory nature of gene expression. TNF induced the
expression of several transcription factors. IRF1, a known
NF-κB target gene, is highly upregulated and is responsi-
ble for the cross-coupling of an interferon response with
the TNF receptor mediated responses [35]. Another tran-
cription factor with striking regulation is JunD. In non-
neuronal cells it was shown that JunD is a NF-κB target
gene [36]. The activation of these additional transcription
regulators might be responsible for cell type specific

MCP-1 ELISA analysis of supernatants of U373 cellsFigure 6
MCP-1 ELISA analysis of supernatants of U373 cells. Supernatants of cultured U373 cells treated as indicated were analyzed 
with ELISA (Chemicon). Data are shown as mean + SEM of four replicates. Detection limit was 15 pg/ml human MCP-1. As 
compared with untreated cells (control) TNF stimulation resulted in high amounts of secreted MCP-1. PDTC blocks this 
induction of MCP-1 to a level below the detection limit of the assay (<15 pg/ml).
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differences. In U373 cells we detected some known NF-κB
target genes, e.g.: CCL2, IRF1, NFKBIA, GSTA4, BIRC3,
MMP3, TNFRSF10B, DAD1 and glutathione S-transferase.
Data summarized in the supplemantary table
(supp_table_1_cluster) suggest that there are many more.
Many ribosomal genes appear to be coordinately
coregulated by TNF in U373 cells. Two subunits of initia-
tion factor EIf are also induced. Perhaps these are rescue
responses since it is known especially from work with
muscle cells that TNF inhibits protein biosynthesis. The
physiological outcome of such a suppression of protein
synthesis by TNF is seen in cachexia, where muscle protein
is degraded due to TNF mediated signal transduction [37].

Conclusion
TNF induces many genes, and expression profiles from
different cell types treated with TNF are different. Pharma-
cological inhibition of NF-κB suggests many novel target
genes in glia. MCP-1 expression might a disease exacerbat-
ing factor controlled by NF-κB in glia.

Methods
Cell Culture
Human U373 glioblastoma cells (American Type Culture
Collection, Rockville, MD, USA) were grown as described
[16] in Earle's minimal essential medium (EMEM) con-
taining 10% fetal calf serum, 2% penicillin/streptomycin,
2 mM L-Glutamine, 1% non-essential amino acids and 1
mM sodium-pyruvate. Cultivation was at 37°C and 5%
CO2. Treatment was performed on subconfluent plates
(ca. 2 × 106 cells per 100 mm tissue culture plate).

Medium change was done 24 h before treatment. Cells
were treated with TNF-α (Alexis Biochemicals, Grünberg,
Germany) at a final concentration of 10 ng/ml for 1 h, 2
h, 4 h, 8 h, 24 h, or left untreated. 24 h before stimulation
medium was changed. Pyrrolidine-dithiocarbamate
(PDTC, Sigma, Deisenhofen, Germany) was added at a
concentration of 0.5 mM 15 min before TNF treatment.
Control cultures were treated only with PDTC. RNA was
prepared using the Qiagen RNeasy system (Qiagen,
Hilden, Germany) according to the manufacturer's proto-
cols. Experimental set-up was as described in [35].

Microarray Procedures
DNA microarray production and analysis of gene expres-
sion was performed as established by Pat Brown and co-
workers ([38] and [39]). Sequence verified human cDNA
clones were annotated using SOURCE [40], and are avail-
able from the resource center [41]. The linking of the gene
bank accession number to hugo gene names for further
annotation was done using the Dragon database [42,43].
Purified PCR products were generated from cDNA clones
and spotted onto poly-L-lysine-coated microscopic slides
using a custom-made robotic arrayer [44]. The arrayer was
equipped with a print head holding 16 quill-type pins
(Majer Precision, Tempe, AZ). Printing and post-process-
ing were done as described in the public domain [38].
Briefly, RNA was isolated using the Qiagen RNeasy system
(Qiagen, Hilden, Germany). After digestion with DNAse I
(RNAse free, Pharmacia, Freiburg, Germany) RNA was
converted to cDNA in 25 µl with 3 µl oligo-dT primer (0.5
µg/µl) and 1 µl of a mix of 10 mM aadUTP, 15 mM dTTP,

Degree of association with TNF in current literatureFigure 7
Degree of association with TNF in current literature. Gene 
symbols were used to query PubGene http://www.Pub 
Gene.org. 200 more than 3-fold regulated genes were used 
(100%).
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associated with
TNF-alpha

not determined

Venn diagram of TNF-induced gene expression in three dif-ferent cell linesFigure 8
Venn diagram of TNF-induced gene expression in three dif-
ferent cell lines. Data obtained after 4 h of TNF treatment 
were obtained from U373 cells (this study) from 3T3 [20] 
and Hela [21].
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26 mM dCTP, 25 mM dGTP, 25 mM dATP. Dye coupling
and hybridization were done as described [38].

Data Analysis
Data from scanned arrays were obtained using the Gene-
Pix software package (Axon Instruments, Union City, CA).
The ratios of medians generated by the GenePix software
for each gene (spot) were intensity dependent normal-
ized. We used the following criteria to filter the data: spot
size ≥ 60 µm, Flag (as in GenePix) = 0, signal to noise ratio
in at least one channel ≥ 2.5. The filtered data are provided
as a table for further analysis on the author's web page:
http://notesweb.uni-wh.de/wg/biowiss/wgbiowiss.nsf/
name/kaltschmidt_home-EN.

The gene expression matrix for hierarchical clustering
were generated by using a custom database [45,46] (filter:
more than two-fold changes in at least one of the tested
time points). Prior to clustering, the filtered data were log
base 10 transformed. Average linkage hierarchical
clustering was applied using the algorithm Cluster, and
the results were visualized using a TreeView algorithm
[14].

Microarray studies are confronted with issues of multiple
statistical testing of large numbers of genes (in the 1000s)
in much smaller number of samples (e.g. three per time
point). We used two ways to analyze our data set: 1.) An
empirically setting of statistical thresholds for fold
changes between samples, which is most widely used in
published studies (we assumed more than two fold up- or
downregulation as significant). 2.) We used as the Null
hypothesis the assumption that all genes are not

differentially expressed. Thus a normal distribution of log
ratios is assumed. After calculation of the mean and stand-
ard deviation of ratios a p-value was computed for each
ratio. Calculations were performed using Microsoft Excel.
P-values are included in the tables.

Immunocytochemistry
U373 cells were cultivated on coverslips. After fixation in
3.7% formaldehyde for 5 min, cells were blocked in 5%
goat serum. For immunofluorescence cells were incubated
with the primary antibody diluted 1:50 (α-human-MCP-
1, Chemicon, Hofheim, Germany). Bound antibodies
were detected with an anti-rabbit IgG antibody coupled
with FITC (1:1000, Dianova, Hamburg, Germany). Nuclei
were stained with DAPI (4',6-Diamidine-2'phenylindole
dihydrochloride, Roche, Germany). Microphotographs
were taken with a Zeiss Axioskop equipped with epifluo-
rescence. Mounting of colour plates was done on an Apple
PowerPC with Adobe Photoshop.

ELISA
MCP-1 was dected by ELISA (Chemicon, Hofheim, Ger-
many). These ELISAs could detect concentrations of MCP-
1 as low as 15 pg/ml. Protein concentration was deter-
mined by comparison to a standard curve, run in dupli-
cate with each assay.
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Table 1: Genes induced by TNF in different cell lines

U373 AND 3T3 AND Hela U373 AND 3T3 U373 AND Hela

PSMB8 proteasome (prosome, macropain) subunit, 
beta type, 8 (large multifunctional protease 7)

BCL3 B-cell leukemia/lymphoma 3 TNFAIP2 tumor necrosis factor, alpha-induced 
protein 2

CCL2 chemokine (C-C motif) ligand 2 BIRC3 baculoviral IAP repeat-containing 3
NFKBIA nuclear factor of kappa light polypeptide gene 
enhancer in B-cells inhibitor, alpha

CCL7 chemokine (C-C motif) ligand 7

TNIP1 TNFAIP3 interacting protein 1 CHST2 carbohydrate sulfotransferase 2
NFKB1 nuclear factor of kappa light polypeptide gene 
enhancer in B-cells 1 (p105)

CSF1 colony stimulating factor 1 (macrophage)

CXCL10 chemokine (C-X-C motif) ligand 10
CYP1B1 cytochrome P450, 1b1, benz [a]anthracene inducible
EMP1 epithelial membrane protein 1
IRF1 interferon regulatory factor 1
LPL lipoprotein lipase
MMP3 matrix metalloproteinase 3
MX1 myxovirus (influenza virus) resistance 1
OSMR oncostatin receptor
PSMB10 proteasome (prosome, macropain) subunit, beta 
type 10
SLC1A4 solute carrier family 1 (glutamate/neutral amino acid 
transporter), member 4
TNFRSF6 tumor necrosis factor receptor superfamily, 
member 6
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