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Abstract
Background: Isolation of low-abundance transcripts expressed in a genome remains a serious
challenge in transcriptome studies. The sensitivity of the methods used for analysis has a direct
impact on the efficiency of the detection. We compared the EST method and the SAGE method to
determine which one is more sensitive and to what extent the sensitivity is great for the detection
of low-abundance transcripts.

Results: Using the same low-abundance transcripts detected by both methods as the targeted
sequences, we observed that the SAGE method is 26 times more sensitive than the EST method
for the detection of low-abundance transcripts.

Conclusions: The SAGE method is more efficient than the EST method in detecting the low-
abundance transcripts.

Background
Identification of a complete set of transcripts expressed in
a genome is one of the ultimate goals of transcriptome
studies. Such information is essential for genome annota-
tion and for further study of the function of each gene. It
is well known that three classes of transcripts are
expressed from a genome, including high-abundance,
intermediate-abundance and low-abundance transcripts
[1]. Whereas most of the high- and intermediate-abun-
dance transcripts have been identified, it remains a serious
challenge to identify fully the low-abundance transcripts
[2-4].

Since the beginning of human genome studies, transcript
identification has been performed mainly by the use of
EST (expressed sequence tag)-based methods [5]. For
identification of low-abundance transcripts, extensive
subtraction and normalization have been performed in
these EST efforts [4,6]. The number of novel transcripts
identified in humans through the EST-based approaches
has reached a plateau [2,7]. Recently, the SAGE (series
analysis of gene expression) method has been applied for
transcriptome analyses, with the collection of large num-
bers of 10-base SAGE tags from different species [8-10].
Although both the EST and the SAGE method are applied
to transcriptome study, they use different approaches. The
process of the EST method is that of single transcript-sin-
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gle clone-single sequencing; thus, each sequence repre-
sents a single transcript. In contrast, the process of SAGE
follows the approach of multiple transcripts-multiple
tags-single clone-single sequencing; thus, each SAGE
sequence represents multiple transcripts. Using the same
scale of sequence collection, SAGE should detect far more
transcripts than does EST; therefore, SAGE might identify
more low-abundance transcripts than does EST. Indeed, it
is frequently observed that many SAGE tags have no
match among the existing ESTs, and most of these SAGE
tags have low copy numbers [11-13]. Our previous analy-
ses indicated that the majority of these unmatched SAGE
tags are derived from low-abundance transcripts [7]. To
determine whether SAGE is indeed more sensitive than
the EST method and, if so, to what extent for the detection
of low-abundance transcripts, we used existing EST and
SAGE data for analysis, and we report our observations.

Results and Discussion
Because a SAGE tag is located at the 3' part of a transcript
[8], we used 3' ESTs for comparison. We collected 3' ESTs
representing low-abundance transcripts by searching Uni-
Gene clusters which contained only a single 3' EST (ftp://
ftp.ncbi.nih.gov/repository/UniGene/ Hs.seq.all.gz, Uni-
Gene Build #161). We identified 42,500 such UniGene
clusters and obtained the same number of 3' ESTs. For
comparison with SAGE tags, we extracted virtual tags from
these ESTs. We identified 32,587 from the 42,500 3' ESTs
that have CATG site(s), a pre-condition for release of a
SAGE tag from a transcript, and we extracted 32,587 vir-
tual SAGE tags (10 bases downstream of the last CATG)
from the 32,587 sequences. We removed virtual tags that
were shared by more than one 3' EST. This resulted in a
final set of 22,243 virtual tags from 22,243 3' ESTs repre-
senting low-abundance transcripts.

To obtain the experimental SAGE tags for the comparison,
we downloaded 477,261 SAGE tags containing 6,847,555
copies collected from 154 SAGE libraries http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL4.
Comparison of the 22,243 virtual SAGE tags with the
experimental SAGE tag set identified 20,575 tags that were
present in both sets. By matching the 20,575 tags in the
SAGEmap database (http://www.ncbi.nlm.nih.gov/
SAGE/), we identified 2,278 tags that represented the
same 3' ESTs detected by both the EST method and the
SAGE method. We used the 2,278 tags as the final set for
quantitative comparison. Whereas each of the 2,278 vir-
tual tags represents a transcript detected only once by the
EST method, the copy number in each of the 2,278 exper-
imental SAGE tags represents the frequency of a transcript
detected by SAGE. We observed that the total copy
number for the 2,278 experimental SAGE tags appeared
59,754 times; 1,424 (63%) of these SAGE tags appeared
between two and more than 100 times. On average, SAGE

was 26 times more sensitive than the EST method in
detecting these transcripts (Table 1). The data clearly show
that the SAGE method is much more sensitive than the
EST method for the detection of low-abundance
transcripts.

What could be the explanations for the difference between
the EST and SAGE methods for detecting the low abun-
dant transcripts?

It is unlikely that the difference is due to the depth of
sequence collection. The current number of human ESTs
reaches to 4.5 millions including 131,229 mRNAs and
1,470,982 3' ESTs, whereas the total human SAGE tags has
about 8 millions. Considering that over 20 tags can be
detected by a single SAGE sequence, the number of
sequences collected from SAGE is far less than that from
ESTs. In our previous studies [2], we observed the "loss"
effect on EST collection due to the non-specific polydA/dT
hybridization during subtraction / normalization widely
used in EST library construction [6], as evidenced by the
quantitative loss of a group of targeted transcripts,
although it will be difficult to give an absolute rate of loss
at the whole genome level due to the complexity of the
transcriptome. Such a phenomenon can explain in part
but other possibilities may also exist for the loss, such as
the limitation of cloning efficiency when ligating cDNAs
into vector during cDNA library construction, and clonal
loss during library transformation etc. In the SAGE proc-
ess, there is no subtraction / normalization step, and all
the cDNA fragments at each step during SAGE library con-
struction have nearly the same length with the same ends
till being cloned into vector. Therefore, the repertoire of
the total transcripts is well preserved in SAGE libraries for
the detection.

It is true that SAGE method has many limitations for tran-
script detection. For example, a 14-base SAGE tag contains
less sequence information for the detected transcript com-
paring with an EST that has hundred bases; the specificity
of a SAGE tag representing a unique transcript is also
lower than that of EST, particularly for SAGE tags at higher
copies [14-16]; and SAGE can't detect CATG-negative
transcripts, although this number is low as shown that
only 151 (7.8%) among the 19,399 full-length human
cDNAs in the Refseq (NM) database are CATG-negative.
Another issue is related with the error SAGE tags. A SAGE
tag has 10 bases. In theory, any base within a single tag
could be sequencing error leading to the generation of 4 ×
4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 = 410 mutated tags. How-
ever, such event doesn't happen in the real world [7]. We
have converted thousand SAGE tags into their 3' cDNA
experimentally using the GLGI method. From these stud-
ies, we clearly see that over 70% of the low-copy SAGE
tags represent the real transcripts expressed at low level
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(these are experimentally confirmed. The real rate may be
higher considering the limitation of the experimental sen-
sitivity). Although there are certainly error SAGE tags,
these error SAGE tags cannot be a significant portion in
the total SAGE tag collection, particularly for the SAGE
tags with low copies. Regardless these limitations, SAGE
does have unique features for transcriptome study.
Among these is that the presence of a SAGE tag implies in
large the presence of a transcript.

It is worth to indicate that we only focused on the known
low-abundance transcripts for the analysis. For the
unknown low-abundance transcripts, many of them may
not be present in EST libraries therefore not detectable as
novel ESTs. However, these unknown low-abundance
transcripts may be well preserved in SAGE libraries there-
fore readily detectable as novel SAGE tags.

Conclusions
The high sensitivity of the SAGE method for transcript
detection becomes valuable for the isolation of low-abun-
dance transcripts. Coupling amplification-based high-
throughput methods such as the GLGI (generation of
longer 3'cDNA from SAGE tag for gene identification)
methods [17] for converting SAGE tags into the original
transcripts provides an efficient way for isolating low-
abundance transcripts.

Methods
Sequences used for the analysis
The ESTs were downloaded from UniGene database
(Build #161) (ftp://ftp.ncbi.nih.gov/repository/UniGene/
Hs.seq.all.gz). The UniGene clusters containing CATG+ 3'
ESTs were identified. Virtual SAGE tags were extracted
from these 3' ESTs after their last CATG sites. The virtual
SAGE tags were pooled and tags with the same sequences

were then combined to generate the final virtual SAGE tag
list from the 3' ESTs with quantitative information for
each tag.

The experimental SAGE tags were downloaded from GEO
database that contained 154 SAGE libraries http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL4. The
SAGE tags from different libraries were pooled. The same
SAGE tags in the pool were combined with the copy
number to generate the final SAGE tags with quantitative
information for each SAGE tags.

Computational process
Computational programs were designed using java lan-
guage for the extraction of virtual SAGE tags from the 3'
ESTs, and for the comparison between the experimental
SAGE tags and EST-derived virtual SAGE tags. The pro-
grams are available upon request.

List of abbreviations
EST – expressed sequence tag

SAGE – serial analysis of gene expression

GLGI – generation of longer 3'cDNA from SAGE tag for
gene identification
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Table 1: Comparison between EST and SAGE methods for the detection of low-abundance transcripts

Frequency of detection Virtual tags from 3' EST Experimental SAGE tags

Tags Copies

1 2,278 854 854
2 482 964
3 313 939
4 190 760
5 97 485

6 to 10 217 1,578
11 to 20 86 1,234
21 to 100 37 1,279

>100 2 51,661

Total 2,278 2,278 59,754
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