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Abstract
Background: Gene expression is regulated mainly by transcription factors (TFs) that interact with
regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer
searching can predict TF binding sites (TFBS) using position weight matrices (PWMs) that represent
positional base frequencies of collected experimentally determined TFBS. A disadvantage of this
approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is
to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency
for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is
the identification of TFs that have TFBS concentrated in promoters and to what level this occurs.
This study hopes to answer some of these questions.

Results: We developed the cluster score measure to evaluate the correlation between predicted
TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a
control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS
clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which
TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the
199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect
of CpG islands (CGI) against the clusters using partial correlation coefficients among three
properties (promoter, CGI and predicted TFBS cluster), we identified two PWM groups including
those strongly correlated with CGI and those not correlated with CGI.

Conclusion: Not all PWMs predict TFBS correlated with human promoter sequences. Two main
PWM groups were identified: (1) those that show TFBS clustered in promoters associated with
CGI, and (2) those that show TFBS clustered in promoters independent of CGI. Assessment of
PWM matches will allow more positive interpretation of TFBS in regulatory regions.

Background
Understanding the regulation of gene expression is a cru-
cial issue in molecular biology. Since gene expression is
mainly regulated by transcription factors (TFs), the eluci-

dation of relationships among TFs, their binding sites
(TFBS) and their controlling genes, is of great importance.
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Although TFBS can be predicted by computer searches on
DNA sequences, false positives (FP) are often produced.
Several computer programs use position weight matrices
(PWMs) [1] to predict TFBS in silico, including MatInspec-
tor [2], MATCH [3], and TFBS perl modules [4]. PWMs
represent positional base preferences or frequencies con-
structed by a set of experimentally determined TFBS, and
typically correspond to a single TF. The transcription fac-
tor database, known as TRANSFAC, is a widely used col-
lection of PWMs [5]. TRANSFAC provides several PWMs
for single TFs with different quality levels. Computer pro-
grams predict TFBS from DNA sequences, which are the
same or similar to known TFBS. The low information con-
tents in the matrices leads to many false positives, due to
the weak preference or shortness of the site length (6–30
bp). Various strategies have been proposed to allow cor-
rect identification of true positives (TPs) from predicted
TFBS. One approach is to employ information from con-
served regions in DNA sequences between different spe-
cies, known as phylogenetic footprinting. Bayes block
aligner (BBA) is a tool used to extract conserved regions
from an alignment of two DNA sequences [6]. It was dem-
onstrated that it could identify binding sites of muscle-
specific transcription factors [6]. Another approach is to
identify multiple TFBS that form a structural cluster on a
DNA sequence coordinate. This seems a reasonable tech-
nique because the density of predicted TFBS in promoter
sequences is reported to be higher than non-promoter
sequences, especially in the region 300 bp upstream from
the transcription start site [7]. Genes are regulated by
interactions with multiple functional TFs in metazoans
[8]. Therefore, many promoter prediction programs, such
as promoterscan [9], TSSG, and TSSW [10], have been
developed based on the density of TFBS. The identifica-
tion of genuine TFBS by searching clusters of predicted
TFBS has been successful; however, these studies were
evaluated with only specific genes and TF sets, such as
those found in Yeast[11], Drosophila (early developmental
enhancer) [12-14], liver [15], LSF and muscle specific reg-
ulatory regions [16,17]. It is unknown whether this
method is applicable to other species, or genes. Although
many vertebrate promoter sequences have CpG islands
(CGI), the relationship between clusters of predicted TFBS
and CGI is often underestimated [18]. Another strategy
for the identification of putative TFBS includes a combi-
natorial approach that uses both phylogenetic footprint-
ing and cluster analysis [12,15,19]. The program rVISTA
utilizes information from conserved regions between
human and mouse, in addition to clusters of TFBS pre-
dicted by the MATCH (BIOBASE) program [19]. This
approach was evaluated using several known TFs (AP-1,
NFAT, and GATA-3) and genes from the cytokine gene
cluster. It remains unclear whether the properties used for
clusters of TFBS are general and can be applied to other
TFs or regulatory regions. Several reports have described

methods for determining the statistical significance of pre-
dicted TFBS [11,12,17,20-22]. These studies assume the
use of appropriate PWMs to identify clustered TFBS. To
determine if a particular cluster is genuinely related to the
promoter, it is important to assess clusters of predicted
TFBS for each individual PWM. This is done using real
non-promoter sequences for the appropriate selection of
the PWM and for the interpretation of clusters of pre-
dicted TFBS. Most of these studies use specific sets of
coregulated genes to identify common predicted TFBS
clusters, and therefore cannot be applied directly to the
study of general properties of promoters.

In this study, we developed a measure that evaluates the
degree of concentration of predicted TFBS to clarify
whether predicted TFBS have a tendency to cluster in
human promoter sequences rather than in non-promoter
sequences for each PWM. We identified some PWMs in
which predicted TFBS clusters occur more significantly in
promoter than non-promoter sequences and vice versa.
Using partial correlations among three properties (pro-
moters, CGI and clusters of predicted TFBS), we identified
two PWM groups, (1) those in which TFBS cluster in pro-
moters as a result of the presence of CpG islands, and (2)
those in which TFBS cluster in promoters independent of
CpG islands. We show that transcription factors corre-
sponding to the latter PWM group tend to be tissue-spe-
cific. In summary, this analysis is useful for the
interpretation of predicted TFBS in regulatory regions.

Results
Divergent preferences of TFBS for promoter sequences
We determined whether predicted TFBS formed clusters in
human promoter sequences or in non-promoter
sequences for each PWM using the cluster score described
in the Method section. The higher the cluster score
(derived from a logarithm of the p-value), the stronger the
cluster of predicted TFBS is related to the promoter
sequence. The threshold T, used to determine whether a
cluster of predicted TFBS is found on a sequence, was cal-
culated simultaneously. Since a prediction for the pres-
ence of a TFBS was performed for each PWM, an
assessment for TFBS clusters was performed using the
cluster score for each PWM. As a result, a number of PWMs
do not tend to have clusters of TFBS in the promoter
sequence. We observed a divergence of cluster scores. Of
the 199 vertebrate PWMs in TRANSFAC, 94 (47%) PWMs
had significantly high cluster scores, while 22 (11%)
PWMs had significantly low cluster scores. The remaining
83 (42%) PWMs did not show significant cluster scores. A
p-value of 1.0% was used to identify the above PWM set
with Bonferroni correction for multiple testing ([23] Sec-
tion 3.8). Figure 1 shows a histogram of cluster scores.
Although these results were derived from genes on chro-
mosome 20, the results from other chromosomes were
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similar as described in the following subsection. PWMs
with high cluster scores are shown in Table 1. Some of the
PWMs have thresholds T (of accumulated score C) equal

to or less than 1.0. This indicates that the occurrence of
single predicted TFBS is more discriminative than clusters.
Sequence logo [24] of the top three PWMs are depicted in

Table 1: Top 50 PWMs for chromosome 20 sorted by cluster score S in descending order. Each column represents rank number, 
accession number in TRANSFAC, identifier in TRANSFAC, cluster score, and threshold.

Rank ACCESSION ID S T

1 M00736 E2F1DP1_01 189.3 2.75
2 M00332 WHN_B 176.0 1.90
3 M00652 NRF1_Q6 122.0 0.93
4 M00649 MAZ_Q6 117.2 4.35
5 M00491 MAZR_01 111.4 1.78
6 M00739 E2F4DP2_01 103.8 0.93
7 M00737 E2F1DP2_01 103.6 0.94
8 M00108 NRF2_01 81.4 0.92
9 M00665 SP3_Q3 72.1 2.39

10 M00706 TFIII_Q6 61.4 4.23
11 M00740 E2F1DP1RB_01 58.4 0.90
12 M00324 MINI20_B 58.2 1.61
13 M00032 CETS1P54_01 57.3 3.70
14 M00743 CETS168_Q6 51.1 1.75
15 M00341 GABP_B 48.6 0.88
16 M00055 NMYC_01 41.1 0.90
17 M00329 PAX9_B 39.2 0.73
18 M00243 EGR1_01 37.3 0.87
19 M00072 CP2_01 36.5 1.66
20 M00054 NFKAPPAB_01 35.5 0.85
21 M00056 MYOGNF1_01 35.1 1.34
22 M00694 E4F1_Q6 35.0 0.86
23 M00738 E2F4DP1_01 34.9 0.91
24 M00143 PAX5_01 34.7 0.84
25 M00235 AHRARNT_01 34.6 0.92
26 M00698 HEB_Q6 33.6 0.91
27 M00039 CREB_01 33.6 1.00
28 M00514 ATF4_Q2 33.1 1.71
29 M00650 MTF1_Q4 31.4 0.88
30 M00194 NFKB_Q6 30.8 0.82
31 M00007 ELK1_01 30.0 0.85
32 M00733 SMAD4_Q6 29.7 0.81
33 M00261 OLF1_01 28.8 0.84
34 M00017 ATF_01 26.7 0.98
35 M00053 CREL_01 25.6 0.81
36 M00691 ATF1_Q6 25.5 0.89
37 M00244 NGFIC_01 25.2 0.88
38 M00041 CREBP1CJUN_01 24.9 1.00
39 M00086 IK1_01 24.2 0.90
40 M00287 NFY_01 24.0 1.95
41 M00466 HIF1_Q5 22.7 0.90
42 M00634 GCM_Q2 22.6 0.84
43 M00273 R_01 21.8 0.85
44 M00373 PAX4_01 21.7 2.57
45 M00097 PAX6_01 21.5 1.15
46 M00134 HNF4_01 21.1 0.64
47 M00670 TCF1P_Q6 21.1 0.80
48 M00057 COMP1_01 21.1 0.59
49 M00035 VMAF_01 21.0 1.32
50 M00222 HAND1E47_01 20.3 0.81
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Fig. 2-(a). See additional file 1 'PWMs sorted by cluster
score' for the entire PWM list.

Cluster scores for different datasets
To assess the robustness of the cluster score we compared
cluster scores for different datasets from chromosomes 20,
21 and 22, respectively. Fig. 3 shows the correlation of
cluster scores between chromosomes 20 and 21 (a), and
between chromosomes 20 and 22 (b). Some PWMs, the
matches of which were detected on less than 50 subse-
quences, are not shown. The correlation coefficient points
were 0.91 (a) and 0.93 (b).

Correlations among promoter sequences, CpG islands, and 
clusters
About half of the human coding genes have a composi-
tional bias for CGI over transcription start sites [25]. It is
possible that some of the predicted TFBS clusters might be
the consequence of the existence of a CGI. To investigate
this possibility, we computed partial correlation coeffi-
cients of three categories of promoters, CGI and predicted
TFBS clusters. In general, a partial correlation coefficient
measures the correlation between any pair of variables
when other, specified variables, have been held constant.
For example, a partial correlation coefficient rIC.P is the
correlation between I and C while controlling for P, where
I denotes CGI, C denotes accumulated score (strength of
predicted TFBS clusters, see Methods) and P denotes pro-
moters. If we calculate simple correlation coefficients, rPI
= 0.69, rIC ranged from -0.25 to 0.57 for various PWMs,
and rPC ranged from -0.24 to 0.53 for various PWMs.
These correlation coefficients are apparent ones. The par-
tial correlation coefficients provide essential information
and pure correlations, without the effect of the third

variable. Fig. 4 shows a plot of rIC.P against rPC.I for various
PWMs. For most of the PWMs, rPC.I is positive, although
not particularly high (<0.3). This implies a correlation
between clusters of these PWM matches and promoter
sequences, separate to the effect of CGI. For the PWMs in
the right circle in Fig. 4, rPC.I is high and rIC.P is approxi-
mately zero, where the cluster is more correlated with the
promoter than the CGI. Some PWMs have a negative rPC.I,
implying the absence of promoter sequences for these
PWM matches. For the PWMs in the top circle in Fig. 4,
rIC.P is high and rPC.I is approximately zero, suggesting that
the correlation between promoters and clusters for these
PWM matches is attributable to the presence of the CGI.
While these promoters and clusters do not correlate
directly, they appear to correlate because both are associ-
ated with CGI. 

Using these two values, we identified two PWM sets, (1) a
CGI-related set (37 PWMs, Table 2) in which TFBS clusters
are correlated with CGI (independent of promoter), and
(2) a CGI-independent set (54 PWMs, Table 3) in which
clusters of TFBS are correlated with promoters (independ-
ent of CGI). These sets were used for the following
analysis.

Correlation between clusters of predicted TFBS and gene 
expression
Since all widely expressed, or housekeeping, genes have
CGI [25], it is possible that clusters of PWM matches for
CGI-independent sets are associated with tissue specific
promoters. For this reason we examined the relationship
between clusters of PWM matches and the tissue specifi-
city of the associated genes using published gene expres-
sion data ([26,27]). The two resources used for this
analysis are not consistent. Some genes annotated as
housekeeping genes in one resource are referred to as tis-
sue specific in another resource. We refer to these genes as
mixed annotated genes. Genes with associated expression
data were analysed and of these 72 were identified among
the gene set covering the three chromosomes used in this
study. They included 12 housekeeping genes, 9 mixed
annotated genes, and 51 tissue specific genes. With the
CGI-independent PWM sets we detected promoters with
clusters of PWM matches. These clusters have significantly
high Z-scores (see Methods) based on the accumulated
score C in randomly generated DNA sequences (as con-
trol) with the same dinucleotide frequency of each pro-
moter sequence. Table 4 shows the 40 genes detected, the
DCC score (described below), their tissue specificity and
start_p score. These genes are sorted according to the DCC
score indicating the extent of association with CGI-inde-
pendent PWMs over CGI-related PWMs. Results show that
tissue specific genes tend to have high DCC scores and
that transcription factors corresponding to CGI-independ-
ent PWMs are related to tissue specific genes. If we extract

A histogram of cluster scores for PWMsFigure 1
A histogram of cluster scores for PWMs.Each number 
of X-axis indicates the maximum score of PWMs in the bin.
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20 genes which have DCC scores equal to or higher than -
0.03, 18 (90%) of these are tissue specific genes. The 72
genes with known gene expressions data included 51 tis-
sue specific genes (71%). The p-value of the event of
extraction was 0.04 under cumulative hypergeometric dis-
tribution. The p-value of the ranking of the two groups
(11 housekeeping and 29 tissue-specific) in Table 4 was
0.01 by Wilcoxon rank test. Note that DCC is not corre-
lated with the CGI score (start_p).

Discussion
Clusters of TFBS are an important property of regulatory
regions [7,8,19,28]. To determine if this is a general ten-
dency for PWM matches and all protein coding genes, we
have developed a measure that evaluates the correlation
between predicted TFBS concentrations and promoter
sequences. We then examined the correlation for individ-
ual PWMs using an unbiased sequence set. Our results
show that not all TFBS are clustered in promoter

Sequence logosFigure 2
Sequence logos. (a) Top three PWMs from Table 1, (b) representative PWMs from Table 2, (c) representative PWMs from 
Table 3.

(a) (b) (c)
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sequences. We found that TFBS clusters corresponding to
47% of PWMs are positively correlated with promoter
sequences, and that TFBS clusters corresponding to
around 11% of PWMs are negatively correlated with pro-
moter sequences. 

It is important to ascertain the relationship between clus-
ter scores of PWMs and CGI, because CGI are a prominent
feature of promoter sequences. The consensus sequences
of the top-ranked PWMs (Table 1) are, 'ANNGACGCTNN'
(WHN_B), 'TTTCSCGC' (E2F1DP1_Q6),
'NSGGGGGGGGMCN' (MAZR_01), and 'GGGGAGGG'
(MAZ_Q6), where S represents C or G, M represents A or
C, and N represents any bases. The sequence logos of the
PWMs are depicted in Fig. 2-(a). The G+C % of base
composition of each matrix is 70%, 56%, 91%, and 86%,
respectively. The sequences with high cluster scores

appear to be GC-rich. Larsen et al found that 57% of
human genes are associated with CGI, that all housekeep-
ing genes have CGI covering transcription start sites (TSS),
and that 40% of tissue specific genes have CGI [25].
Therefore, the association of PWM-PCP with CGI may be
significant, and CGI-related PWMs may play important
roles in housekeeping regulation. 

To evaluate the relationship between PWM-PCP and CGI,
we calculated the partial correlation coefficient for each
PWM. In general, if a correlation coefficient rXY is not
small and rXY.Z (defined in Methods) ≈ 0, the probable
hypotheses concerning cause and effect will be either 1)
the correlation of X and Y is a consequence of Z, or 2) Z
intervenes between X and Y. For the PWMs in the top cir-
cle in Fig. 4, rIC.P is high and rPC.I is approximately zero.
This suggests that the correlation between promoters and
TFBS clusters is attributable to the presence of the CGI and
that while they do not directly correlate they appear to
because both independently correlate with CGI. The char-
acteristic PWMs in Table 2 are NMYC_01 (M00055:0.25),
AHRARNT_01 (M00235:0.23), and HIF1_Q5
(M00466:0.22), where parentheses include the accession
number referred to in TRANSFAC and the recorded rIC.P
(Y-value in Fig. 4). Sequence logos are depicted in Fig. 2-
(b). The PWMs in the middle right circle in Fig. 4 have an
rIC.P of approximately zero and a high rPC.I  rPC.I value
showing that the cluster is correlated with promoters
independent of CGI. The predicted TFBS clusters corre-
sponding to these PWMs could not be explained by the
presence of CGI. Some of these PWMs have thresholds T
less than 1.0 indicating that even the single occurrence of
a predicted TFBS is more discriminative than clusters. Par-
ticular examples with high recorded rPC.I values and values
for rIC.P < 0.1 are TFIII_Q6 (M000706), MYOGNF1_01
(M00056) and CREL_01 (M00053). Sequence logos are
depicted in Fig. 2-(c). TFIII_Q6 is a matrix associated with
a general transcription factor II-I with the consensus
sequence RGAGGKAGG, where the K represents G or T.
The matrix TFIII_Q6 contains many 'G', and 'C' is allowed
only the fourth position with low frequency.
MYOGNF1_01 is a matrix associated with myogenin,
nuclear factor 1 or related factors, and is therefore
involved in the regulation of differentiation. CREL_01 is a
matrix associated with the C-Rel proto-oncogene protein
(C-Rel protein). An understanding of the function of these
factors is important to this study. The PWM groups
described above may be involved in tissue-specific gene
regulation. If all housekeeping genes have CGI [25] then
genes without CGI can be assumed to be tissue-specific or
rarely expressed. Thus, genes with a cluster of predicted
TFBS not associated with CGI might be associated with tis-
sue-specific regulation. Further analysis of extractions of
tissue specific genes, shown in Results, supports the
hypothesis.

Title: Correlation of cluster scores (a) between chromo-somes 20 and 21, (b) chromosomes 20 and 22Figure 3
Title: Correlation of cluster scores (a) between chro-
mosomes 20 and 21, (b) chromosomes 20 and 22. 
Each dot represents a distinct PWM (defined by the TRANS-
FAC matrix). The correlation coefficients were (a) 0.91 and 
(b) 0.93.
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Results from this analysis provide a solution to the pro-
moter prediction problem. Hannenhalli et al. used addi-
tional information, including profiles of TF binding sites,
for promoter prediction based on CGI [29], with no
significant improvement to prediction performance. The
report using 7 manually selected PWMs confirmed that
CGI are the most dominant feature. Our results show that
Sp1 and ATF have a strong correlation with CGI; a result
consistent with their result that information including
both PWM did not improve prediction accuracy. This
observation is consistent with other PWMs. More strin-
gent selection of PWMs is required for an improved accu-
racy of promoter prediction. One strategy is to utilise the
CGI-independent PWMs identified in this study. Another
problem is exemplified by the under-representation of
Oct-1 (M00138) in the (-600:600) region of the human
promoter and the absence of positional preferences [29].

This under-representation was not expected but is
observed in 10% of known PWMs. OCT1_04 (M00138) is
not in the high quality list of TRANSFAC, OCT1_01
(M00135) and OCT1_C (M00210) was found to have
minus cluster scores (-0.63 and -2.89) in our table (addi-
tional file 1).

It is noteworthy that Fig. 5 shows TFBS (AP2_Q6) in non-
promoters to occur randomly under a certain distribution.
This distribution can be modelled by a binomial proba-
bility distribution. A model of Poisson distribution,
which is an approximation of binomial probability distri-
bution for a certain condition, was proposed in [11] as the
probability distribution of TFBS density. Although we
have not tested the goodness-of-fit, our observation does
not contradict the Poisson distribution model. 

Title: Plot of rIC.P against rPC.I for various PWMsFigure 4
Title: Plot of rIC.P against rPC.I for various PWMs. The top circle is the area where rPC.I is around zero and rIC.P is high. The 
right circle is the area where rIC.P is around zero and rPC.I is high. The two circles were drawn manually. Ideal CGI-related and 
CGI-independent PWMs are to be plotted in the top and right circles, respectively.
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To assess the robustness of the cluster score, we compared
cluster scores for different datasets from chromosomes 20,
21 and 22 (Fig. 3). The correlation coefficients were 0.91
(a) and 0.93 (b), proving that the significance would be
similar if we utilized the whole human genome dataset in
the analysis. The scale of the figures between the Y-axis
and X-axis are different because of the different number of
sequences taken from each chromosome.

Conclusions
We have developed a measure that statistically evaluates
the degree of concentration of predicted TFBS in promoter
sequences. Using this strategy to analyse various PWMs we
have determined that predicted TFBS tend to cluster in
human promoter sequences rather than in non-promoter
sequences. Our results show that local concentrations of
predicted TFBS in human promoter sequences are not a
general characteristic of PWMs. Only a portion of identi-
fied PWM matches corresponded to TFBS occurring in
clusters in promoter sequences. By computing partial cor-
relation coefficients, we identified PWM sets associated
with CGI and others that are independent of CGI. Tran-
scription factors and binding sites associated with CGI-
independent PWMs are likely to be involved in tissue-spe-
cific gene regulation. Indeed, using the CGI-related/

dependent PWM sets, we extracted tissue-specific genes
with high accuracy by detecting clusters of predicted TFBS.
These results will be useful to interpret predicted tran-
scription factor binding sites and to further understand
the role of their formation into clusters. Ultimately, these
findings will further elucidate the various functions of
promoters, genes and transcription factors.

Methods
Data
DNA sequences from the fully sequenced chromosomes
(chromosomes 20, 21 and 22) were taken from the
November, 2002 GenBank freeze (build 31) and assem-
bled by NCBI, in accordance with the annotation of the
UCSC genome browser [30]. RefSeq [31] genes were used
as they have been reviewed by NCBI staff, are well studied,
and are unlikely to be spurious. Some genes in the human
genome have alternative promoters [32], complicating
our analysis. For this reason, overlapping genes identified
using the UCSC annotation were discarded. This check of
RefSeq genes reduced the number of genes in the analysis
from 527 to 373 for chromosome 20, 224 to 142 for chro-
mosome 21, and 449 to 294 for chromosome 22. The
resultant gene set U consists of 809 genes. 

Title: Distribution of accumulated score C for promoters and non-promoters for AP2_Q6Figure 5
Title: Distribution of accumulated score C for promoters and non-promoters for AP2_Q6
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To increase the accuracy of the annotation of transcrip-
tional start sites, we modified the annotation of RefSeq
according to DBTSS (version 2, Mar 2002) [33], a data-
base of transcriptional start sites for 5' end mRNA
sequences. Suzuki et al. reported that a certain portion of
sequences in DBTSS were longer (extended) toward 5' end
of mRNA sequences than those in RefSeq [33]. We
describe how the modification improved the first gene set
U. Fig. 6 shows the composition of different gene collec-
tions. The RefSeq database is updated daily by increasing
the number of entries and correcting others. For illustra-
tion purpose, two versions of RefSeq are shown in Fig. 6.
The old RefSeq is the version analysed by Suzuki et al. The
new RefSeq is the current version used in this study. Of the

217,402 sequences contained in DBTSS 7,889 correspond
to sequences in RefSeq and are referred to as cloned Ref-
Seq sequences. The extension rate, defined as the rate of
extension of mRNAs sequences from cloned RefSeq by
DBTSS, was 0.34. Therefore, |{D,G}| (the number of gene
set {D,G}) = 7,889 genes, |{Dex,Gex}| = 2,683 genes and
|{Dex,Gex}|/|{D,G}| = 0.34. The ftp site of DBTSS pro-
vides the set of extended mRNA sequences (Iftp =
{Dex,Gex}). The gene set from chromosomes 20, 21 and

22 is a partial set U = {Cu, Eu, Fu, , } from New Ref-

Seq. We can identify the genes in set  as the conjunc-

tion of Iftp and U. The number of  was counted (273

Table 2: CGI-related PWMs in descending order of rIC.P = Y. The columns are: rank number, accession number, Identifier in TRANSFAC, 
rPC.I (=X), rIC.P (=Y), cluster score and threshold.

Rank ACCESSION ID X Y S T

1 M00332 WHN_B 0.09 0.43 158.4 1.9
2 M00736 E2F1DP1_01 0.06 0.39 151.8 2.6
3 M00739 E2F4DP2_01 0.09 0.29 91.4 0.9
4 M00737 E2F1DP2_01 0.06 0.27 81.9 0.9
5 M00108 NRF2_01 0.09 0.25 72.6 0.9
6 M00055 NMYC_01 0.05 0.25 34.6 0.9
7 M00235 AHRARNT_01 0.02 0.23 26.8 0.9
8 M00740 E2F1DP1RB_01 0.04 0.23 48.1 0.9
9 M00652 NRF1_Q6 0.05 0.22 105.3 0.9

10 M00466 HIF1_Q5 0.01 0.22 19.7 0.9
11 M00341 GABP_B 0.1 0.19 46.6 0.9
12 M00738 E2F4DP1_01 0.02 0.19 28.6 0.9
13 M00538 HTF_01 0 0.16 9.7 0.8
14 M00694 E4F1_Q6 0.03 0.16 23.6 0.9
15 M00743 CETS168_Q6 0.13 0.14 47.1 1
16 M00650 MTF1_Q4 0.04 0.14 22.6 0.9
17 M00243 EGR1_01 0.07 0.12 32.4 0.9
18 M00251 XBP1_01 0.01 0.12 7.8 0.9
19 M00691 ATF1_Q6 0.07 0.12 17.3 0.9
20 M00236 ARNT_01 0.02 0.11 6.5 1
21 M00143 PAX5_01 0.09 0.11 25.7 0.8
22 M00273 R_01 0.06 0.11 23.8 0.8
23 M00244 NGFIC_01 0.06 0.1 23 0.9
24 M00280 RFX1_01 0.06 0.1 11.1 0.9
25 M00121 USF_01 0.03 0.1 7.6 1
26 M00287 NFY_01 0.04 0.1 21.3 1.9
27 M00039 CREB_01 0.04 0.09 23.2 1
28 M00309 ACAAT_B 0.04 0.09 6.8 0.9
29 M00651 NFMUE1_Q6 0.03 0.09 13 1.8
30 M00017 ATF_01 0.06 0.08 19.2 1
31 M00481 AR_01 0.05 0.08 7.5 0.8
32 M00041 CREBP1CJUN_01 0.04 0.08 20.4 1
33 M00040 CREBP1_01 0.03 0.08 4.7 0.9
34 M00114 TAXCREB_01 0.02 0.06 7.3 0.9
35 M00279 MIF1_01 0.02 0.06 10.9 1.8
36 M00246 EGR2_01 0.04 0.06 9.7 0.9
37 M00085 ZID_01 0.05 0.06 8 0.8

Gn
u Gex

u

Gex
u

Gex
u

Page 9 of 17
(page number not for citation purposes)



BMC Genomics 2004, 5 http://www.biomedcentral.com/1471-2164/5/16
Table 3: CGI-independent PWMs in descending order of rPC.I (=X). The columns are: rank number, accession number, Identifier in 
TRANSFAC, rPC.I (=X), rIC.P (=Y), cluster score and threshold.

Rank ACCESSION ID X Y S T

1 M00491 MAZR_01 0.27 0.15 117.4 1.8
2 M00706 TFIII_Q6 0.24 0.06 52.7 3.5
3 M00324 MINI20_B 0.22 0.1 53.2 0.8
4 M00056 MYOGNF1_01 0.22 0 31.6 1.3
5 M00649 MAZ_Q6 0.21 0.19 114.4 3.7
6 M00665 SP3_Q3 0.2 0.14 67.7 1.7
7 M00032 CETS1P54_01 0.19 0.1 47.7 1.8
8 M00053 CREL_01 0.19 0.04 26.9 0.8
9 M00054 NFKAPPAB_01 0.19 0.06 33.5 0.9

10 M00632 GATA4_Q3 0.19 0.04 25.1 0.6
11 M00373 PAX4_01 0.19 0.05 26.1 0.6
12 M00072 CP2_01 0.19 0.08 32 0.9
13 M00733 SMAD4_Q6 0.18 0.05 26.3 0.8
14 M00134 HNF4_01 0.18 0.06 25.7 0.6
15 M00194 NFKB_Q6 0.18 0.02 28.5 0.8
16 M00445 XVENT1_01 0.17 0.01 19.9 0.7
17 M00057 COMP1_01 0.17 0.05 24.1 0.5
18 M00097 PAX6_01 0.17 0.06 24.1 0.5
19 M00104 CDPCR1_01 0.17 0.03 21.3 0.6
20 M00222 HAND1E47_01 0.17 0.02 20.4 0.8
21 M00626 EFC_Q6 0.17 0.05 22.6 0.6
22 M00745 LEF1_Q6 0.16 -0.02 15.9 0.8
23 M00707 TFIIA_Q6 0.16 0.03 20.2 0.7
24 M00086 IK1_01 0.16 0.06 24.1 0.9
25 M00329 PAX9_B 0.16 0.1 33.7 0.7
26 M00478 CDC5_01 0.15 0.03 19 0.6
27 M00670 TCF1P_Q6 0.15 0.06 22.7 0.8
28 M00257 RREB1_01 0.15 -0.02 15.8 0.8
29 M00007 ELK1_01 0.15 0.08 31 0.8
30 M00698 HEB_Q6 0.15 0.08 28.7 0.9
31 M00052 NFKAPPAB65_01 0.14 -0.05 9.4 0.9
32 M00514 ATF4_Q2 0.14 0.05 21.8 1.7
33 M00191 ER_Q6 0.14 -0.03 11 0.8
34 M00003 VMYB_01 0.14 0.05 18 0.8
35 M00261 OLF1_01 0.14 0.07 24.6 0.8
36 M00490 BACH2_01 0.13 -0.03 9.3 0.7
37 M00001 MYOD_01 0.13 -0.03 10.4 0.9
38 M00634 GCM_Q2 0.12 0.05 19.8 0.8
39 M00035 VMAF_01 0.12 0.06 17.5 0.7
40 M00340 ETS2_B 0.12 -0.08 5 0.8
41 M00005 AP4_01 0.12 0.01 14.1 0.8
42 M00701 SMAD3_Q6 0.11 0.03 11.4 0.8
43 M00531 NERF_Q2 0.1 -0.08 4.8 0.9
44 M00339 ETS1_B 0.1 -0.07 5.7 0.9
45 M00657 PTF1BETA_Q6 0.1 0 7.5 0.9
46 M00254 CAAT_01 0.1 -0.01 6.6 0.9
47 M00118 MYCMAX_01 0.09 -0.02 6.2 0.9
48 M00693 E12_Q6 0.09 -0.01 6.5 0.9
49 M00004 CMYB_01 0.08 0 7.1 0.9
50 M00238 BARBIE_01 0.08 0.02 9.4 0.9
51 M00648 MAF_Q6 0.07 0.01 5.8 0.8
52 M00002 E47_01 0.06 0.02 5.3 0.9
53 M00262 STAF_01 0.05 0 9.2 0.9
54 M00119 MAX_01 0.05 0.03 4.9 1
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genes). If the extension rate of mRNAs sequences for { ,

} is also 0.34, then |{ }|/|{ , }| = 0.34.

Therefore, {| , }| is estimated to be 802.9 genes. As

|U| = 809, the number of genes in V = {Cu,Eu,Fu} is esti-
mated to be 6.1 genes. If all human genes are cloned by
the cap-targeted selection method called oligo-capping, a
greater number will have extended 5' ends. If this were the
case then 34% (or 2.1 genes) of V would have extended 5'
ends. Thus, any further correction of TSS for our gene set
is expected to be quite small.

We identified the conjunction set  (273 genes) of the

above collected 809 RefSeq genes and 2,683 genes in

DBTSS. The set  was examined to determine if

extended sequences existed on human genome sequences
and if they are registered in the new RefSeq. Of this set, the
BLAT program[34] identified 30 genes in which the 5' end
sequences could not be detected. Due to the uncertainty
of TSS these genes were not used in this study. Forty-one

DBTSS mRNA sequences from  were shorter than cor-

responding sequences in the new RefSeq with regard to 5'
end sequences. It is assumed that these RefSeq sequences

Table 4: The gene list sorted by DCC score. The genes, in which clusters of TFBS are found on promoters using CpG-related/
independent PWMs, and tissue specificity, have been previously identified. HK denotes housekeeping. Tissue specific genes can be 
selected independent of CpG islands (start_p) using DCC score.

1 NM006272 0.43 brain 0
2 NM007341 0.4 muscle 0
3 NM002592 0.37 brain 0.86
4 NM001819 0.27 brain 0.68
5 NM004414 0.23 kidney 0.89
6 NM002999 0.19 kidney 0.73
7 NM003195 0.16 brain 0.73
8 NM002591 0.14 liver 0
9 NM000454 0.11 HK.liver 0.87

10 NM003312 0.1 liver 0.72
11 NM004339 0.09 brain 0.9
12 NM020708 0.08 brain 0.64
13 NM006870 0.05 HK 0.7
14 NM003277 0.04 lung 0.74
15 NM005194 0.04 brain 0.86
16 NM003610 0.01 brain 0.76
17 NM000355 -0.03 kidney 0
18 NM002430 -0.03 muscle 0.75
19 NM006767 -0.03 brain 0.74
20 NM005137 -0.03 muscle 0.76
21 NM003279 -0.05 muscle 0
22 NM004535 -0.05 brain 0
23 NM007019 -0.05 HK 0.72
24 NM013236 -0.07 HK 0.69
25 NM004175 -0.07 brain 0.72
26 NM001958 -0.07 muscle 0
27 NM001338 -0.13 vulva 0.84
28 NM002676 -0.14 HK 0.63
29 NM003098 -0.16 muscle 0.71
30 NM002854 -0.17 brain 0
31 NM002305 -0.23 HK 0
32 NM005080 -0.25 HK 0.84
33 NM001024 -0.25 HK 0.76
34 NM021974 -0.26 HK 0.63
35 NM014876 -0.3 HK 0.95
36 NM001098 -0.34 muscle 0.65
37 NM000071 -0.37 liver 0.8
38 NM006198 -0.37 brain 0
39 NM001675 -0.39 HK.muscle 0.8
40 NM005423 -0.68 brain 0
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u
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u
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were corrected following the old RefSeq release independ-
ent of DBTSS and were used as they were. Finally, we mod-
ified the exon annotation of 202 genes according to
DBTSS. 

We extracted promoter sequences at relative positions (-
600:-1) from the TSS, and intron subsequences 600 bp in

length from genome sequences. Only intron sequences
were used for the non-promoter sequence data sets as
exon sequences are known to have preferences in their oli-
gomer statistics, such as G+C % and codon bias [35]. The
first intron was not included in the data set as although
regulatory elements are rare in introns, intron 1 occasion-
ally contains regulatory elements such as enhancers. We

A Venn diagram of three gene sets (DBTSS, old RefSeq, and new RefSeq)Figure 6
A Venn diagram of three gene sets (DBTSS, old RefSeq, and new RefSeq). Gene sets from A to G (Bold alphabet) 
consist of genes in the regions bounded by the thick lines. D consists of Dn (genes whose 5' end sequences were not extended 
from the old RefSeq sequences with DBTSS data) and Dex (genes whose 5' end sequences were extended). G consists of Gn 
(genes whose 5' end sequences were not extended from the old RefSeq sequences with DBTSS data) and Gex (genes whose 5' 
end sequences were extended). Namely D  = {Dn,Dex} and G = {Gn,Gex}. Genes in chromosomes 20, 21, 22 were denoted by 

U = {Cu, Eu, Fu, , }. Gene sets Cu, Eu,Fu,  and  are parts of C, E, F, Gn and Gex, respectively. Some of the num-

bers of the sets are given in [33], that is, |{D,G}| = 7889, |{Dex,Gex}| = 2683 and |{Dex,Gex}| / |{D,G}| = 0.34, where |{D,G}|  
denotes the number of genes in set {D,G}.
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investigated the frequency of enhancers in human introns
by searching NCBI PubMed [36] with the keywords
'human', 'first intron', and 'enhancer'. This search yielded
194 papers. Replacing the keyword 'first intron' with 'sec-
ond', 'third', 'fourth intron', 'fifth' or 'last intron' yielded
40, 15, 1, 1 and 6 papers, respectively. Replacing
'enhancer' with 'silencer' resulted in 281, 6, 3, 0, 0 and 0
papers, respectively. Removal of intron 1 from the data set
greatly reduces the overall occurrence of regulatory ele-
ments in human intron sequences and allows our statisti-
cal analysis to be performed without significant
interference from intronic regulatory sequences. Inter-
genic sequences are left out of the non-promoter dataset
due the unknown occurrence of regulatory sequences.

Prediction of TFBS
Each promoter or non-promoter sequence was scanned by
the MATCH program using 423 matrices in TRNASFAC
version 6.3 (a transcription factor database) with options
including 'vertebrate', 'minimize false negatives' (in cut-
off selection) and 'use high quality matrices only'. As Kel
et al. described, the cut-off was determined so that the
false negative rate is 10% [3]. The option 'use high quality
matrices only' uses approximately 70% of matrice [3]. Any
PWM in the 'high quality' PWMs meet the criteria; When
the PWM is used with a cut-off value which allows a false
negative rate of 50%, then the match rate dropped below
1 match/kb in exon2 sequences [3]. If more than one
matrix was matched to same transcription factor (prefix of
"Identifier"), we selected a representative matrix with the
highest quality and smallest suffix number according to
the TRANSFAC definition. After scanning the sequences
by MATCH, we set consecutive sampling windows (600
bp) in introns and promoter sequences, and then
recorded corresponding TFBS predictions. To prevent
double counting of palindromic binding sites, two
matches for the same matrix at the same position was
regarded as a single match and the match with the higher
score was taken. Before MATCH ran, repeat sequences
were masked to 'N' according to the annotation by Repeat-
Masker in the UCSC genome browser. From the above
analysis we extracted 361, 129, and 278 promoter
sequences from chromosomes 20, 21 and 22, respectively.
The promoter sequences identified contained repeat
sequences (e.g. ALU, L1) and simple repeats with low

complexity, as observed in intron sequences. These
sequences account for about 20% of all bases. To balance
the rate of repeats between promoters and introns, we dis-
carded intron sequences with high rates of repeats, so that
the average rate of repeats in the intron samples was at the
same level as in promoter sequences. The number of 600
bp intron sequences included in the analysis was 6,589
(chromosome 20), 4,324 (chromosome 21) and 4,531
(chromosome 22).

Accumulated scores of TFBS
When predicted TFBS occur many times in a sequence
there is a high probability that it contains functional reg-
ulatory regions or promoters [7,8,19,28]. We tested this
hypothesis for individual PWMs. The degree of concentra-
tion of predicted TFBS in a sequence was defined as the
accumulated score C, which is a summation of the
MATCH score for PWMs in the subsequence and is calcu-
lated for each PMW and corresponding sequence. C is
assumed to be almost proportional to the frequency of
predicted TFBS for the corresponding PWM. Many
sequences generate different C values although some are
identical. We then generated a series of Cj (j = 1 ... n) val-
ues for a PWM, where n is the number of different C val-
ues. Fig. 5 shows the histogram of C for promoters and
non-promoters respectively, using the TRANSFAC matrix
of identifier 'AP2_Q6' as an example. Since C reflects the
number of predicted TFBS found in a sequence, the figure
shows the density of predicted TFBS in a sequence. This
result is similar to the density plot described by Pestridge
and Burks [7], although our figure (Fig. 5) is not a plot of
predicted TFBS density for mixed PWMs, but instead is a
plot of predicted TFBS density for individual PWMs. Also,
the X-axis in our plot does not indicate the number of
predicted TFBS but instead indicates the accumulated
score C. The Y-axis is smoothed by averaging for the width
of 5 in C value.

Cluster score and statistical significance for a PWM
Significance values for an individual PWM from a series of
Cj can be determined from a contingency table. Table 5
shows a contingency table for the number of promoters
and non-promoters above and below the threshold Cj for
a given PWM. From this table, χ2 value for a given Cj is
defined as 

Table 5: A contingency table when predicted TFBS and a threshold T are given.

Sequences where TFBS clusters found Sequences where TFBS clusters not found Sum

# of promoter A1 A2 A
# of non-promoter B1 B2 B
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where

described in [37]. From the χ2 value, we computed the
probability P that the χ2 value or greater is obtained by
chance. The probability P was calculated from the χ2.
Since P is calculated for many PWMs, we must deal with
the problem of multiple testing. Using the Bonferroni
correction [23], Pn was calculated using the formula 1 - Pn
= (1 - P)n, approximately Pn = P × n for small P × n. The n
is the number of PWMs. When we determine the set of sig-
nificant PWMs, Pn were compared with the significance
level (i.e. 0.01). We also defined the statistical significance
Qj as Qj = -log10(Pn) if Rprom >Rnonprom and Qj = +
log10(Pn) otherwise, where Rprom = A1/A (a rate of
sequences in promoters where clusters found), Rnonprom
= B1/B (a rate of sequences in non-promoters where clus-
ters found). Although the P is an indicator of the differ-

ence between the occurrence of promoters and non-
promoters, the probability P itself does not represent the
preferences of PWMs for promoters. To represent the pref-
erence of predicted TFBS for or against promoters, we add
signs for statistical significance Qj. Positive Qj indicates
that predicted TFBS tend to appear frequently in promot-
ers, while negative Qj indicates that predicted TFBS tend to
avoid promoters. 

We studied how statistical significance Qj varies with the
threshold of C j. Fig. 7 shows the presence of a peak of Qj
when we change the threshold. We define the cluster score
S of a PWM in such a way that the significance is the max-
imum, namely

We simultaneously define a unique threshold T of the
PWM by

Title: significant score Qj of matrix AP2_Q6 for different thresholdsFigure 7
Title: significant score Qj of matrix AP2_Q6 for different thresholds.
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For the all-vertebrate TRANSFAC PWMs, we determined
thresholds T and calculated significance scores (or cluster
scores) S. The highest scoring PWMs are listed in Table 1.

Correlations among promoter sequences, CpG islands, and 
clusters
For every 600 bp sequence, three numerical features (pro-
moter, CGI, and clusters) were annotated. CGI were iden-
tified using the CpGProD program [38] for original long
sequences (not for short sequences of 600 bp). Regions
larger than 500 bp with a G+C % equal to or greater than
50% and 'observed CpG / expected CpG' equal to or
greater than 0.60 were classified as CGI [38,39]. The CpG-
ProD program outputs 'start_p' scores for the predicted
CGI. This score indicates the probability that the region is
a CGI located over a transcription start site (start CGI).
Short 600 bp sequences sampled from long sequences
containing CGI were annotated as CGI if the overlapping
CGI region was longer than 300 bp. The accumulated
score C was used for cluster annotation. From sequences
with feature annotation, the correlation coefficients
between every two of the three features were computed for
each PWM by the statistical language R [40]. We use P to
denote whether the sequences is promoter or not, namely
P = {1,0}, and I to the denote 'start_p' score for CGI cal-
culated using the CpGProD program [38]. A partial corre-
lation coefficient for each PWM was calculated using the
subsequences. For example, a partial correlation
coefficient rPC.I is the correlation between P and C while
controlling for I, defined by 

where rPI is a correlation coefficient between variable P
and I, rPC is a correlation coefficient between variable P
and C and rCI is a correlation coefficient between variable
C and I. A partial correlation coefficient differs from a cor-
relation coefficient. If the correlation between P and C
depends entirely on the common cause I, then when I is
constant, the correlation between P and C should be zero.
The partial correlation rPC.I expresses such a relationship.
Even when I varies, rPC.I is expected to be zero in such a sit-
uation, while the correlation coefficient rPC may not be
zero. See chapter 16.4 in [41] for details. 

Fig. 4 shows a plot of rIC.P against rPC.I for various PWMs.
Using these two values, we identified two PWM sets
including, (1) a CGI-related set consisting of 37 PWMs in
which the clusters are correlated with CGI independent of
promoters, and (2) a CGI-independent set consisting of
54 PWMs, in which the clusters are correlated with pro-
moters independent of CGI. The CGI-related set requires
that rIC.P >rPC.I and that the partial correlation coefficient
(PCC) rIC.P is significantly high (p < 0.01) under the

hypothesis that rIC.P is zero (see below). The CGI-inde-
pendent set requires that rIC.P <rPC.I and that rPC.I is likewise
significantly high. To calculate the statistical significance
of PCC, a PCC r was subjected to z-transformation
defined as

The values of z are supposed to be normally distributed
and the expected variance is 

where n is the sample size [41]. The CGI-related PWMs
and CGI-independent PWMs are listed in Tables 2 and 3.

Gene expression data
To examine the relationship between clusters of predicted
TFBS and the tissue specificity of the genes where clusters
were found, we generated a list of genes with expression
data. This list includes 535 housekeeping or maintenance
genes expressed in 11 human adult and foetal tissues from
[26], and 451 housekeeping or maintenance genes availa-
ble at HugeIndex database http://www.hugein
dex.org[27]. We then identified 581 non-redundant
housekeeping genes and 'tissue-selective' genes, which are
predominantly, but not exclusively, expressed in one tis-
sue type. Tissue-selective genes were expressed in brain
(589 genes), kidney (129 genes), liver (271 genes), lung
(68 genes), muscle (302 genes), prostate (45 genes) and
vulva (95 genes) [27]. These genes corresponded to 2,069
RefSeq entries. Seventy-two of these genes were identified
in our gene set covering chromosome 20, 21 and 22 and
were used for further analysis.

Tissue specific gene detection based on clusters of 
predicted TFBS
Using the two PWM sets described above, we searched
clusters of predicted TFBS in promoter sequences. We cal-
culated C and statistical significance of C as follows. For
each promoter sequence, 30 random 600 bp sequences
were generated under the first order Markov model, which
is based on dinucleotide frequency and can identify pro-
moter CpG bias and G+C%. The MATCH program was
run with given matrix thresholds. The accumulated score
C of PWMs was computed in every random sequence. A

mean  and a variance  of C for each PWM were

estimated from the random sequences. Then, for the given
promoter sequence Sp and the PWM (M), we can run
MATCH and calculate C and its significance score (Z-
score), namely 
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If the Z-score value was above three, the promoter
sequence was taken and considered together with the
PWM. Table 4 lists genes identified with clusters of pre-
dicted TFBS with significant C values for the CGI-related/
dependent PWM set. The computation of p-value of
cumulative hypergeometric distribution was performed
using the AS R77 algorithm [42]. 
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