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Abstract
Background: N-terminal myristoylation plays a vital role in membrane targeting and signal
transduction in plant responses to environmental stress. Although N-myristoyltransferase
enzymatic function is conserved across plant, animal, and fungal kingdoms, exact substrate
specificities vary, making it difficult to predict protein myristoylation accurately within specific
taxonomic groups.

Results: A new method for predicting N-terminal myristoylation sites specifically in plants has
been developed and statistically tested for sensitivity, specificity, and robustness. Compared to
previously available methods, the new model is both more sensitive in detecting known positives,
and more selective in avoiding false positives. Scores of myristoylated and non-myristoylated
proteins are more widely separated than with other methods, greatly reducing ambiguity and the
number of sequences giving intermediate, uninformative results. The prediction model is available
at http://plantsp.sdsc.edu/myrist.html.

Conclusion: Superior performance of the new model is due to the selection of a plant-specific
training set, covering 266 unique sequence examples from 40 different species, the use of a
probability-based hidden Markov model to obtain predictive scores, and a threshold cutoff value
chosen to provide maximum positive-negative discrimination. The new model has been used to
predict 589 plant proteins likely to contain N-terminal myristoylation signals, and to analyze the
functional families in which these proteins occur.

Background
Myristoylation is an irreversible, post-translational pro-
tein modification found in fungi, higher eukaryotes, and
viruses, in which myristic acid is covalently attached via
an amide bond to the alpha-amino group of an N-termi-
nal glycine residue. The modification is catalyzed by the
enzyme N-myristoyltransferase (EC 2.3.1.97), and occurs
most commonly on glycine residues exposed during co-
translational N-terminal methionine removal. Myris-
toylation also occurs post-translationally, for example

when previously internal glycine residues become
exposed by caspase cleavage during apoptosis [1].

Myristoylation can influence the conformational stability
of individual proteins, as well as their ability to interact
with membranes or the hydrophobic domains of other
proteins [2-4]. If an attached myristic acid is exposed on a
protein's exterior surface, it can loosely tether the modi-
fied protein to the plasma membrane, endoplasmic retic-
ulum, mitochondrion, or other membrane system,
providing enhanced opportunities to interact with other
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proteins localized nearby. Accessibility of the myristoyl
moiety may be altered by ligand binding [5], changes in
pH [6] phosphorylation [7], or proteolysis [8], reversing
membrane localization.

Myristoylation plays a critical role in many cellular path-
ways, especially in the areas of signal transduction, apop-
tosis, and extracellular export of proteins. Animal proteins
known to be myristoylated include protein kinases and
phosphatases, calcium binding EF-hand containing pro-
teins, guanine nucleotide-binding proteins, and mem-
brane- and cytoskeletally-bound structural proteins [3].
Plant myristoylation has been directly measured in fewer
cases, but is confirmed for proteins involved in growth
regulation, disease resistance, salt tolerance and endocyto-
sis. Examples of myristoylated plant proteins include a
Rab GTPase required for endosomal sterol transport
[9,10], a calcium binding protein required for salt toler-
ance [11], and calcium-dependent protein kinases from
Arabidopsis thaliana, Oryza sativa, Lycopersicon esculentum,
Cucurbita pepo, and Solanum tuberosum [12-16]. Additional
plant functional families containing myristoylation sites
have been identified biochemically from in vitro peptide
studies [17,18]. These include guanine nucleotide binding
proteins, innate immunity proteins, thioredoxins, com-
ponents of the protein degradation pathway, transcrip-
tion factors, and fructose-2,6-bisphosphatase, a regulatory
enzyme of glycolysis.

The ability to reliably predict myristoylation from
sequence data alone is extremely useful in determining
subcellular localization and function in cases where direct
biochemical measurements are unavailable. Currently,
four different prediction algorithms are available, but all
have drawbacks which make them sub-optimal for pre-
dicting myristoylation in plant proteins.

The PS00008 myristoylation signature provided by
PROSITE [19] was the first publicly available prediction
algorithm. This method is still widely used, despite the
fact that the myristoylation signature has not been
updated since 1989, and is known to give a large number
of false positive, as well as false negative predictions. One
reason for the inaccuracy of these predictions is the small
number of myristoylated sequences used to construct the
signature. A second problem is that the amino acid
choices available at each position are quite broad; as a
result, only three of the six positions described are actually
restrictive. Finally, more recent information indicates that
amino acids downstream from the initial six included in
the signature can also influence myristoylation site suita-
bility [20].

A number of the PROSITE signature's deficiencies have
been addressed by the "NMT Predictor" program [20-23].

This program distinguishes between myristoylation sites
for fungi and higher eukaryotes, which have been shown
to have similar, but distinct specificities. The length of the
prediction motif has been extended from 6 to 17 residues,
and the number of higher eukaryotic sequences used for
amino acid profile training expanded to 389. To improve
specificity, structural data on the binding pockets of N-
myristoyltransferases from fungal and mammalian spe-
cies have been incorporated via a series of heuristic adjust-
ment factors, which are subtracted from position specific
scoring matrix (PSSM) results to obtain the final scores.

While these innovations improve accuracy for fungal and
animal sequences, myristoylation prediction for plant
sequences is still problematic. The scoring system recom-
mended by Maurer-Stroh et al for the NMT Predictor [20]
categorizes a large number of plant sequences (including
some where myristoylation has been biochemically veri-
fied) into an ambiguous "twilight zone", where the algo-
rithm is unable to distinguish positives from negatives.
Perhaps this result is not surprising, since only 9 out of
389 training sequences and none of the enzymes used to
analyze structural properties were derived from plants.

Recent work measuring activity of cloned Arabidopsis and
yeast N-myristoyltransferases against synthetic peptide
substrates has provided the opportunity to construct an
improved, plant-specific myristoylation prediction algo-
rithm. In this work, Boisson, Giglione, and Meinnel pro-
pose a model that attempts to correct plant-specific
deficiencies in the NMT Predictor [17]. Surprisingly, their
algorithm changes only the position specific heuristic
adjustment factors from the NMT Predictor model, leav-
ing the original, animal-biased amino acid PSSM intact.
Although this strategy increases scores for biochemically
verified plant positives, it also boosts scores for examples
where myristoylation is highly unlikely, and the problem
of many proteins giving ambiguous results remains
unsolved.

Most recently, yet another myristoylation prediction
method has been developed using the same positive train-
ing set as the NMT and BGM algorithms. The method pro-
posed by Bologna et al [24,25] uses average responses
from an ensemble of 25 neural networks to model the
data. Although this system separates positive from nega-
tive examples by a much wider margin than the NMT or
BGM algorithms, it also assigns very high confidence lev-
els to false negative misclassifications of plant sequences
biochemically proven to be myristoylated, for example
calcium dependent protein kinases from Cucurbita pepo
[15] and Arabidopsis thaliana [12].

The current work describes the construction of a new,
probabilistic model for myristoylation sites, based
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exclusively on plant-specific training examples. Plant pro-
teins from 22 different species were selected based on four
criteria: direct evidence for myristoylation, activity of pep-
tide sequences as substrates for plant N-
myristoyltransferase enzymes, subcellular localization,
and N-terminal sequence conservation. The resulting
model was tested and refined using statistical methods
based on negative, as well as positive examples, to
improve discrimination. Final model performance was
compared with previously established prediction meth-
ods using a consistent set of quantitative statistical met-
rics. The model was then applied to both the Arabidopsis
proteome and the entire set of available plant sequences
from Genbank, to predict new plant proteins and func-
tional families that contain myristoylation sites. The pre-
diction model has been made available at http://
plantsp.sdsc.edu/myrist.html.

Results and Discussion
Positive and negative data sets
The 80 plant sequences chosen as an initial positive train-
ing set are shown in Supplementary Table 1 [see Addi-
tional file 1]. Each sequence is 25 residues long, including
the N-terminal methionine (which eventually will be
cleaved in vivo). Although the majority of sequences are
derived from Arabidopsis thaliana, the set also contains
examples from 21 other plant species.

Plant proteins chosen for the negative test set appear in
Supplementary Table 2 [see Additional file 1]. This set
contains 185 N-terminal 25-mers, each of which has a gly-
cine at position 2. The reason the set was limited to
sequences with a glycine at position two is that all current
models of N-myristoylation in plants, animals, and fungi
stipulate that this residue is required for activity as a myr-
istoylation substrate. Sequences lacking a glycine at posi-
tion two would be classified as negative by all algorithms,
and therefore uninformative in studies designed to com-
pare performance. The negative examples chosen include
nine proteins with N-terminal peptide sequences shown
to be inactive as myristoylation substrates by in vitro
experiments [17]. The remaining sequences have not been
biochemically confirmed as non-myristoylated, but their
annotated functions and subcellular locations make myr-
istoylation highly unlikely.

Using the plant sequences from supplementary Tables 1
and 2 [see Additional file 1], scores for the NMT predictor
("NMT") the method of Boisson, Giglione, and Meinnel
("BGM"), and the Expasy Myristoylator ("Expasy") were
obtained and plotted as frequency distributions. These
distributions are compared to the scores obtained using a
Hidden Markov Model (HMM) that was constructed
entirely from plant sequences (Fig. 1). The plant-specific
model HMM (HMM80) provides greater separation

between positives and negatives than either the NMT or
BGM method. Although the Expasy neural net provides
even wider group separation than HMM80, a substantial
number of sequences that should be positive have scores
that appear highly negative, indicating a problem with
classification accuracy.

Selecting a cutoff score for optimum sensitivity and 
selectivity
Once a scoring procedure has been established, a thresh-
old cutoff value must be chosen in order to classify new
examples. Overlap between known positive and known
negative examples makes the process of choosing a cutoff
difficult, often requiring some statistical compromises.
The relative weight given to overall accuracy, versus the
cost assigned to false positives and false negatives, can
have a large influence on algorithm performance. "Opti-
mal" weighting may vary for different user applications.

Cutoff values chosen for the NMT and BGM algorithm
scores by their original authors do not provide maximum
discrimination between positive and negative plant exam-
ples, as shown in Table 1. To allow for a more fair and
consistent comparison between prediction methods,
threshold values for NMT and BGM scores were re-evalu-
ated using the Holte 1R algorithm [26], which guarantees
the highest possible number of correct classifications in
overall discrimination tests. This is the same algorithm
that was used to set cutoff values for plant-specific HMMs.
By adjusting the cutoff value downward from 0.0 to -2.75,
overall accuracy of the NMT algorithm for plant sequences
was improved from 87.9% to 95.1%, decreasing both
false positives and false negatives. Accuracy of the BGM
algorithm was improved from 89.1% to 93.6% when its
cutoff value was adjusted upward from 0.0 to 1.85. How-
ever, for the BGM algorithm this improvement in overall
accuracy could not be achieved without decreased sensi-
tivity, reducing the detection of true positives.

Authors of the Expasy neural net algorithm have suggested
using a cutoff value of 0.85 for "high confidence" and a
value of 0.49 for "medium confidence" in predicting myr-
istoylation. The Holte 1R algorithm indicates that 0.89 is
a slightly more accurate cutoff value for discriminating
between the positive and negative plant test sets analyzed
here.

Adjusted cutoff values for the NMT BGM, and Expasy
methods all gave higher accuracies than the PROSITE pre-
dictor, but none of these methods performed as well as
HMM80, which gave 100% accuracy and 100% coverage
when evaluated using the same test set. The coverage
results for HMM80 are not surprising, since this algorithm
was trained on the same positive set used for testing, but
superior discrimination against false positives could not
Page 3 of 15
(page number not for citation purposes)

http://plantsp.sdsc.edu/myrist.html
http://plantsp.sdsc.edu/myrist.html


BMC Genomics 2004, 5 http://www.biomedcentral.com/1471-2164/5/37
have been predicted a priori. The three variations on
HMM80 listed in Table 1 were constructed using identical
training sequences but differing weighting schemes, to
determine whether decreasing biased sequence represen-
tation might change the outcome. The results indicate that
weighting method was unimportant in this context.

Over-representation of some sequence families (e.g. cal-
cium dependent protein kinases) relative to others in the
sequence sets used for algorithm testing could potentially
lead to biased measurements of model performance. To
eliminate this possibility, test sets were filtered to remove
redundant sequences, then used to re-evaluate algorithm
accuracy (Fig. 2). Positive and negative sets were filtered as

a single unit, so that no pair of sequences with greater
than the indicated level of similarity remained. The results
of these experiments indicate that accuracy measurements
for the Prosite, NMT, BGM, Expasy, and plant HMM mod-
els are stable and consistent as the original test set is pro-
gressively pruned to remove redundancy. Even at test
sequence similarity levels of 40% or less, relative perform-
ance of the algorithms remains unchanged, with the
HMM80 model clearly superior to the others.

ROC analysis [27,28], an independent measurement of
positive/negative discrimination, was applied to the NMT,
BGM, Expasy, and plant-specific HMM prediction algo-
rithms, with similar results (Fig. 3). HMM80 had a total

Distribution of myristoylation prediction scoresFigure 1
Distribution of myristoylation prediction scores. Scores for positive plant sequences are indicated by solid lines, and 
negative sequences by dotted lines. A, NMT algorithm. B, BGM algorithm. C, HMM80, D, Expasy algorithm. Scores have been 
pooled in histogram bins that are 5 score units wide for the NMT, BGM, and HMM data, and 0.1 score unit wide for the Expasy 
data.
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Table 1: Quantitative performance comparisons for myristoylation prediction algorithms. Each model was evaluated using the same 
test set, consisting of 80 positive and 185 negative plant sequences. For the Expasy algorithm, only 183 negative sequences could be 
analyzed because two contained "X" characters (denoting ambiguous amino acids), which the program was unable to process. 
Abbreviations: TP, true positives; FN, false negatives; FP, false positives; TN, true negatives. Names in parentheses after each HMM 
indicate the sequence weighting scheme used to build the model.

Model Name Threshold 
Cutoff

Number 
Correct

TP FN FP TN Accuracy (TP+TN)/
TOTAL

Coverage TP/
(TP+FN)

Prosite (nominal) 238 64 16 11 174 89.8% 80.0%
NMT -2.75 252 70 10 3 182 95.1% 87.5%
NMT 0.00 233 51 29 3 182 87.9% 63.8%
BGM 1.85 248 77 3 14 171 93.6% 96.3%
BGM 0.00 236 79 1 28 157 89.1% 98.8%
Expasy 0.89 244 62 18 1 182 92.8% 77.5%
Expasy 0.85 241 62 18 4 179 91.6% 77.5%
Expasy 0.40 220 66 14 29 154 83.7% 82.5%
HMM80 (Gerstein) 2.05 265 80 0 0 185 100.0% 100.0%
HMM80H (Henikoff) 1.55 265 80 0 0 185 100.0% 100.0%
HMM80V (Voronoi) 1.75 265 80 0 0 185 100.0% 100.0%

Effect of test set pruning on algorithm performance measurementsFigure 2
Effect of test set pruning on algorithm performance 
measurements. Accuracy scores (number correctly classi-
fied/total number of examples tested) were determined for 
the following algorithms: HMM80 (closed circles), NMT (open 
squares), BGM (closed triangles) Expasy (closed squares), and 
Prosite (open circles). Test set similarity refers to the maxi-
mum number of amino acid matches permitted between any 
two sequences in the set. Number of sequences tested were 
a) 80 positive, 185 negative (original, unfiltered test set, 96% 
maximum similarity), b) 63 positive, 128 negative (80% maxi-
mum similarity), c) 55 positive, 102 negative (60% maximum 
similarity), and d) 44 positive, 94 negative (40% maximum 
similarity).
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Receiver operating characteristic (ROC) analysisFigure 3
Receiver operating characteristic (ROC) analysis. 
Receiver Operating Characteristic (ROC) curves were 
determined using a plant-specific test set of 80 positive and 
185 negative sequences. Prediction models tested are distin-
guished by line type: HMM80, solid black; NMT, solid grey; 
BGM, dotted black, Expasy open circles. Areas under the 
curves, an indication of model performance, were: HMM80, 
0.969; NMT, 0.892; BGM, 0.874, Expasy 0.811. Higher num-
bers indicate better performance.
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area under the curve (ROC value) of 0.969, compared to
0.892 for NMT 0.874 for BGM, and 0.811 for Expasy. The
higher ROC value observed for HMM80 confirms its supe-
rior ability to discriminate between positive and negative
plant examples. Based on the set of test sequences used in
this analysis, the probability that a negative sequence
might receive a higher score than a positive one is greater
than 10% for the NMT, BGM and Expasy prediction meth-
ods, but only about 3% for HMM80.

Maximizing algorithm robustness
Although the initial HMM constructed from plant specific
sequences performed well in test set discrimination, jack-
knife testing by leave-one-out cross validation suggested
that this model might have difficulty generalizing to a
broader data set. In order to improve robustness and
reduce the possibility of over-fitting, a second generation
of HMMs were constructed by adding extra training
sequences to the original set, as a form of bootstrapping.
These sequences, shown in supplementary Table 3 [see
Additional file 1], were drawn from 348 previously
unclassified plant examples, all of which gave scores
greater than 2.05 when tested with HMM80. Several differ-
ent subsets of the supplementary sequences were used for
algorithm construction, progressively increasing cutoff
threshold values to reduce the likelihood of introducing
false positives.

In selecting a final, "best" HMM model, several different
criteria were considered, as shown in Table 2. HMMs
broadened by adding sequences with a cutoff score that
was too lenient (e.g. 2.0) caused a significant decline in
predictive accuracy. Choosing a very restrictive cutoff
score for additional sequences (e.g. 12.5) reduced the
total number of sequences available, and gave lower

robustness in the jack-knife test. HMM266, the model
finally chosen for best ability to generalize, with mini-
mum sacrifice of sensitivity, was trained using 186 boot-
strapped sequences with a cutoff value of 5.8 combined
with the original 80 sequences used in HMM80.

The cutoff value for HMM266 was further analyzed using a
P-value statistic, to estimate the probability that a random
plant sequence might score higher than this threshold.
The results of this calculation, (Fig. 4), give a P-value (log
probability) of 1.46 at a score of 0.55, suggesting the
probability of obtaining a false positive purely due to ran-
dom sampling would be about 0.0341.

Cross validation
HMM266 was cross validated by building a new model
(HMM186B) using its 186 bootstrap component sequences
for training and reserving the original 80 positive
sequences (from HMM80) for testing. These results are
shown in the first row of Table 3. To eliminate the possi-
bility of artifacts due to sequence selection bias, addi-
tional cross-validations were performed by pooling the
bootstrap, positive, and negative sets, and filtering to
remove redundant sequences at sequence match levels of
80%, 60%, or 40% using the CD-hit program [29]. The fil-
tered sequence pools were then re-divided into non-over-
lapping training, positive, and negative test sets, based on
original sequence derivation, and used to build additional
HMMs. These additional cross-validation models are
identified by a subscripted "B" in their model names
(Table 3). The results indicate that models built on boot-
strapped sequences alone can consistently detect true pos-
itives and reject false positives with accuracies better than
96%, even when test and training sequences have been
pruned to share no more than 40% amino acid similarity.

Table 2: Selection of bootstrap cutoff values for plant-specific HMM training sets. Each row shows the results of building a new HMM 
using 80 initial training sequences plus the number of supplementary bootstrap sequences shown. "Inclusion threshold" indicates 
minimum score of the bootstrap sequences using HMM80. Accuracy and coverage were determined using the same positive and 
negative test set for each HMM. Jack-knife (leave-one-out) testing for each HMM was performed against the same training set used in 
model construction.

Model Name Threshold 
Cutoff

Pattern 
length

Number 
Bootstrap 
Sequences

Inclusion 
Threshold

Accuracy 
(TP+TN)/
TOTAL

Coverage TP/
(TP+FN)

ROC area Jack-knife 
Detection

HMM80 2.05 22 0 - 100.0% 100.0% 0.969 82.5%
HMM109 0.85 21 29 > 12.5 100.0% 100.0% 0.969 92.7%
HMM166 0.65 21 86 > 9.6 100.0% 100.0% 0.968 96.4%
HMM185 1.40 20 105 > 8.8 100.0% 100.0% 0.969 96.2%
HMM266 0.55 19 186 > 5.8 100.0% 100.0% 0.973 98.5%
HMM319 1.35 20 239 > 4.4 99.6% 98.8% 0.969 97.5%
HMM366 2.80 18 286 > 3.1 99.2% 97.5% 0.969 91.0%
HMM428 0.50 17 348 > 2.0 98.5% 98.8% 0.968 97.0%
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Minimizing algorithm ambiguity
One criticism of previously available methods for predict-
ing plant myristoylation has been that a large number of
database sequences fall in a "twilight" zone, where their
scores are intermediate between positive and negative,
making them difficult to classify. Table 4 shows an exper-
iment comparing previously available algorithms with
HMM266 for ambiguity in classifying unknown sequences.
Testing all 7230 currently available plant sequences from
Genbank that have a glycine at position 2, only 73
sequences (1%) had potentially ambiguous scores when
tested with HMM266. In contrast, 1684 sequences (23.3%)
were ambiguous with the NMT algorithm, and 1564
(21.6%) with the BGM method.

Predicted myristoylation sites
When HMM266 was used to analyze the amino terminal
residues of 257,027 plant sequences from Genbank, 319
sequences from Arabidopsis and 268 sequences from other
plant species were identified as potential myristoylation
substrates (supplementary Tables 4 and 5 [see Additional
file 1]). The 319 Arabidopsis sites represent 1.1% of the
total proteome, a number somewhat higher than previ-
ously predicted by the NMT algorithm (198), but lower
than the BGM method (437).

P-value determination for plant-specific HMM scoresFigure 4
P-value determination for plant-specific HMM scores. 
The highest scoring match was determined for each pre-
dicted protein in the Arabidopsis thaliana genome. P-values 
(log probabilities) were calculated based on score frequen-
cies by plotting the logarithm of observed probability 
(expressed as rank divided by number of sequences) against 
HMM266score.
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Table 3: Effect of sequence redundancy on algorithm cross-validation performance. HMM models were constructed using the 186 
bootstrap sequences used to train HMM266, then tested for accuracy and coverage against non-overlapping positive and negative test 
sets. "Max. sequence similarity" refers to the maximum number of amino acid position matches allowed for the sequences in a given 
row, either within or between test and training sets. Jack-knife (leave-one-out) testing for each row was performed against the training 
set described in that row.

Model Name Max. sequence 
similarity

Number 
train seqs.

Number 
positive test 

seqs.

Number 
negative test 

seqs.

Accuracy 
(TP+TN)/
TOTAL

Coverage 
TP/(TP+FN)

Jack-knife 
Detection

HMM186B 24/25 residues (96%) 186 80 185 96.6% 96.3% 98.4%
HMM162B 20/25 residues (80%) 162 53 128 96.1% 92.5% 96.9%
HMM151B 15/25 residues (60%) 151 42 102 98.6% 95.2% 96.7%
HMM127B 10/25 residues (40%) 127 25 94 97.5% 96.0% 96.1%

Table 4: Ambiguity resolution for plant sequences with N-terminal sequence "MG". Each prediction model was used to score the same 
7230 unclassified plant sequences containing a glycine at position 2. Highest negative and lowest positive scores were determined using 
the 265 plant-specific classified examples described in Table 1.

Model Name Highest Negative Score Lowest Positive Score Number Between Percent Between

NMT 0.9 -6.1 1684 23.3%
BGM 8.6 -0.8 1564 21.6%
HMM266 0.1 1.0 73 1.0%
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The distribution of functional families containing pre-
dicted N-terminal myristoylation sites in Arabidopsis thal-
iana is summarized in Table 5. Although more than a
third of the sequences are found in proteins whose func-
tion has not yet been determined, a very high proportion
of the rest are closely associated with signal transduction.
Seventy-six of the sequences are protein kinases, including
28 of 34 known calcium-dependent protein kinases
(CPK) and all eight known CPK-related protein kinases
(CRK). The most common groups among the rest of the
protein kinases were APK1 related, cyclin dependent, and
cdc2 related. Also included was an Arabidopsis homolog of
the Pto gene product, a serine/threonine protein kinase
that confers disease resistance in tomato [30].

Twelve Arabidopsis proteins predicted to be myristoylated
are protein phosphatase catalytic subunits, including 11
of the PP2C class. Of the non-PP2C phosphatases, one is
fructose-2,6-bisphosphatase, a key enzyme in regulation
of glycolysis. Homologs of this enzyme in spinach (Spina-
cia oleracea) and mangrove (Bruguiera gymnorrhiza) were
also predicted to be myristoylated. The other Arabidopsis
phosphatase is of type PTEN, a dual specificity enzyme
that can act on either the lipid phosphatidylinositol
(3,4,5)-triphosphate, or phosphotyrosine residues in pro-
teins. In Arabidopsis, the expression of this enzyme is pol-
len-specific and essential for pollen development [31].

Fifteen of the Arabidopsis proteins containing predicted N-
terminal myristoylation sites are GTP binding proteins,
including 13 ADP-ribosylases, one Rab-type GTPase
involved in endosomal regulation, and a G protein alpha
subunit. This result is consistent with the well known myr-

istoylation of ADP ribosylation factors and G-protein
alpha subunits in animal species.

Ten calcium binding proteins were predicted to be myris-
toylated in Arabidopsis, including five members of the
copine family and five calcineurin B-like proteins, at least
one of which (SOS3) has been shown to activate an SnRK
family kinase [11]. Additional calcium-binding proteins
with predicted N-terminal myristoylation sites were iden-
tified in other plant species. StubGAL83, a calcium bind-
ing protein from potato, interacts with SNF1, another
SnRK family kinase, which controls expression of glucose-
repressible genes and regulates histone kinase activity in
yeast [32,33]. PGPS/D3, a calcium binding protein
required for pollen germination in Petunia, is similar to
the myristoylated mammalian protein neuromodulin
[34]. Pectate lyase, a calcium-binding enzyme essential for
cell wall elongation and fruit ripening, was predicted to
contain an N-terminal myristoylation site in sequences in
both Arabidopsis and rice. Several homologs of the DEM
(defective embryo and meristems) gene product of
tomato were also observed.

Disease resistance pathways also contain a high number
proteins with N-terminal myristoylation sites. In addition
to the copine family members [35], and the Pto kinase,
predicted myristoylation positives in Arabidopsis included
18 disease resistance proteins of the NBS-LRR type (nucle-
otide binding site-leucine rich repeat). The six
oxidoreductases from Arabidopsis, including four thiore-
doxins and two glutathione peroxidases, could also repre-
sent proteins involved in disease resistance responses, via
production of an oxidative burst [36]. Thioredoxins with
predicted N-terminal myristoylation sites seem to be
highly conserved, and were also found in 10 other plant
species (Oryza sativa, Pisum sativum, Zea Mays, Leymus chin-
ensis, Hordeum bulbosum, Hordeum vulgare, Phalaris coeru-
lescens, Ipomoea batatas, Triticum aestivum and Brassica
rapa). An Arabidopsis cytochrome P450 related protein
identified as myristoylated could be involved de-activat-
ing the products of this pathway via oxidative degrada-
tion, for example through fatty acid hydroperoxide lyase
activity [37].

Several Arabidopsis transcription factors were identified as
having N-terminal myristoylation sites, including four
from the basic leucine zipper family, three from the myb
family and, one of the WRKY type. Although these pro-
teins may ultimately need nuclear localization to fulfill
their functional roles, they could reside temporarily in
cytosolic locations that require myristoylation. Light
dependent changes in DNA binding activity of several
plant bZIP transcription factors have been shown to
involve both phosphorylation and subcellular transloca-
tion from cytoplasm to nucleus [38].

Table 5: Functional families of proteins predicted to be 
myristoylated in Arabidopsis thaliana. HMM266 scores were 
determined for the N-terminal 25 residues for all predicted 
proteins in the Arabidopsis thaliana genome. Proteins with scores 
above the threshold cutoff value for positive classification (0.55) 
were grouped according to annotated protein function.

Function Number

Unknown 132
Kinases 77
Miscellaneous 29
Disease Resistance Proteins 18
GTP-Binding Proteins 15
Phosphatases 13
Calcium Binding Proteins 10
Transcription Factors 10
Proteasome components 9
Peroxidases 6
TOTAL 319
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A number of Arabidopsis proteins in the ubiquitin-depend-
ent protein degradation pathway also had predicted myr-
istoylation scores slightly above threshold cutoff values.
These sequences included six F-box proteins, two ubiqui-
tin proteases, and 26S proteasome regulatory subunit IV.
The 26S proteasome regulatory subunit IV was also iden-
tified as myristoylated in the moss Tortula ruralis. These
results are consistent with recent biochemical evidence
verifying N-terminal myristoylation in the Rpt2 subunit of
the 26S proteasome of yeast [39].

It is possible that not all predictions of the current algo-
rithm are correct. Three Arabidopsis proteins with domains
suggesting exclusively nuclear functions were also
predicted to be myristoylated: a DEAD/DEAH box heli-
case, a putative Dhp1 exoribonuclease, and DNA mis-
match repair protein MSH3. These examples may
represent false positive predictions, consistent with the
error rate of around 3 per 100 sequences predicted by
both the ROC curve and P-value statistics for HMM266.

Cryptic internal myristoylation sites
In addition to the 319 N-terminal sequences, HMM266
found 301 potential myristoylation sites in the Arabidopsis
proteome beginning at internal rather than amino termi-

nal positions, which are listed in supplementary Table 6
[see Additional file 1]. The internal sites would not nor-
mally be myristoylated in vivo unless post-translational
cleavage occurs, unmasking a new N-terminal glycine.
However, some predicted internal myristoylation sites
could be indicative of gene prediction errors, for example
choosing the wrong methionine residue as a start site, or
fusing two distinct proteins into a single predicted gene
product.

The distribution of all predicted plant myristoylation sites
for Arabidopsis thaliana is plotted according to score and

Sequence positions of predicted myristoylation sites in Arabi-dopsis thaliana proteinsFigure 5
Sequence positions of predicted myristoylation sites 
in Arabidopsis thaliana proteins. HMM266 scores were 
determined for all predicted proteins in the Arabidopsis thal-
iana genome. All scores above the threshold cutoff value for 
positive classification (0.55) are shown plotted against start 
position of the matching pattern.
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start position in Fig. 5. After peaking at position 1, both
numbers and scores of predicted positives generally
decline with increasing distance from the amino termi-
nus. The reliability of the internal site predictions remains
somewhat uncertain; a third of the proteins identified are
either hypothetical or of unknown function, and neither
protease cleavage sites nor database errors can currently be
verified without additional experimental data.

The total number of potential internal myristoylation sites
in the Arabidopsis proteome predicted by HMM266 is more

than 50 fold lower than the number predicted by the
PROSITE myristoylation signature (162,183). It was not
feasible to determine the total number of internal Arabi-
dopsis sites for the NMT algorithm, because the NMT Pre-
dictor website accepts only one sequence at a time for
analysis. Information on the total number of internal sites
was also unavailable for the BGM model, which requires
NMT profile scores as a prerequisite to making final
calculations.

Table 6: N-terminal amino acid frequencies Amino acid frequencies were calculated based on 247 non-plant proteins classified as 
myristoylated by the NMT model [49], and 587 plant proteins predicted to be myristoylated by HMM266. Bold values indicate relative 
frequencies for myristoylated plant proteins, italic values for myristoylated animal proteins.

Position Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A 0.0 0.0 18.5 9.1 11.9 4.5 7.4 4.9 4.1 4.9 9.5 11.9 9.5 5.3 8.6 3.7 0.8 4.5 15.2 3.3 4.5 5.8
0.0 0.0 9.1 11.1 8.7 6.5 3.6 8.2 10.6 9.1 9.6 6.7 8.2 14.4 9.1 7.7 7.5 7.5 8.2 10.3 7.4 9.4

C 0.0 0.0 17.7 1.2 2.5 3.3 0.8 0.4 0.4 0.8 0.8 2.1 0.8 0.0 0.8 0.4 0.4 1.2 0.0 1.2 1.2 0.0
0.0 0.0 18.5 27.5 14.9 3.9 5.6 0.7 1.7 0.3 4.3 2.1 1.2 0.3 1.2 0.3 3.2 0.9 0.5 0.3 1.7 0.5

D 0.0 0.0 0.0 1.2 0.0 0.4 0.0 3.3 6.6 9.1 2.9 4.1 0.8 9.1 7.8 4.5 3.7 11.9 6.2 4.9 4.5 4.5
0.0 0.0 0.0 0.2 0.5 1.0 0.9 3.2 7.2 6.8 6.2 10.6 7.9 10.8 6.7 5.1 6.8 5.8 4.1 4.3 3.8 4.4

E 0.0 0.0 0.0 2.1 1.2 0.4 0.0 13.2 6.2 6.2 12.8 9.1 6.6 18.1 6.6 8.6 23.0 17.3 7.0 9.9 9.1 4.1
0.0 0.0 0.2 0.5 0.5 0.5 0.5 7.0 4.1 2.9 6.7 7.2 7.9 5.3 5.5 6.2 12.0 7.5 5.6 8.2 5.5 6.5

F 0.0 0.0 0.0 1.2 7.4 0.8 0.8 0.8 9.1 0.0 0.4 2.1 9.9 1.6 1.6 0.4 1.2 2.1 1.6 0.0 1.6 3.7
0.0 0.0 1.0 5.3 13.0 0.9 0.3 2.9 6.7 1.7 0.7 4.4 6.0 3.9 4.1 2.4 2.2 3.8 0.9 1.2 1.2 2.1

G 0.0 100.0 12.8 6.6 2.1 2.1 2.5 2.1 1.6 8.2 23.0 13.2 3.7 14.0 3.3 5.3 2.5 1.2 1.6 5.8 7.0 8.2
0.0 100.0 13.5 7.7 7.4 13.3 8.5 8.7 5.1 9.9 6.2 7.9 9.2 9.9 8.2 10.9 8.4 9.9 11.3 8.4 8.2 6.8

H 0.0 0.0 0.0 1.2 1.2 0.0 0.8 2.1 1.2 2.5 3.3 2.9 8.6 2.1 7.0 0.4 0.8 2.5 1.6 0.8 2.1 1.2
0.0 0.0 2.1 0.2 3.8 0.0 1.7 4.4 1.7 1.4 2.4 1.4 1.2 2.2 3.8 2.4 2.4 2.7 2.1 2.1 1.7 2.9

I 0.0 0.0 0.4 4.9 6.2 0.4 2.5 2.9 0.0 3.3 0.8 2.1 1.6 3.3 0.4 6.2 2.1 1.2 13.2 14.8 1.2 4.1
0.0 0.0 3.6 2.2 2.6 0.2 1.2 3.6 2.9 1.9 2.9 4.3 3.1 0.7 1.9 3.1 2.2 2.7 1.9 5.3 2.4 2.6

K 0.0 0.0 5.3 11.5 9.1 0.0 44.0 8.6 16.9 14.8 9.1 7.8 5.3 1.6 14.8 9.9 11.9 9.9 3.7 6.2 8.6 11.1
0.0 0.0 0.7 2.9 0.7 0.3 29.4 4.4 8.9 10.3 6.0 5.3 6.0 3.9 9.6 9.9 5.1 7.7 6.3 5.1 7.4 4.3

L 0.0 0.0 8.2 3.3 11.1 0.0 0.4 18.9 12.3 1.6 8.6 10.3 17.3 8.6 1.6 10.7 7.8 4.5 8.2 8.6 22.2 4.5
0.0 0.0 9.1 6.3 9.9 0.7 5.1 9.6 6.0 3.2 4.3 6.7 3.4 3.1 4.8 5.3 2.9 3.4 3.1 4.4 9.7 5.6

M 100.0 0.0 0.8 1.2 5.3 0.0 0.8 0.8 0.8 2.1 1.6 1.2 1.6 2.5 0.0 0.0 0.8 11.9 1.6 5.8 0.0 10.3
100.0 0.0 0.3 0.3 2.1 0.3 0.3 0.9 0.0 0.3 0.7 1.4 1.2 0.3 0.3 0.3 0.5 3.4 0.0 0.2 0.7 4.1

N 0.0 0.0 14.4 2.5 4.9 0.0 2.1 2.1 2.5 1.6 3.3 0.0 3.7 0.4 7.0 4.5 6.2 2.5 1.6 5.3 4.1 9.1
0.0 0.0 20.2 2.1 2.6 0.3 1.9 5.3 3.1 4.1 3.2 4.8 6.8 5.0 5.8 4.8 7.2 3.8 6.3 3.4 3.8 5.0

P 0.0 0.0 0.4 0.0 1.6 0.0 0.0 14.0 2.1 6.6 4.1 4.1 3.7 7.4 2.5 1.2 1.2 1.2 2.5 4.5 2.9 2.1
0.0 0.0 0.2 0.3 1.2 0.3 0.7 14.7 4.1 4.6 6.0 5.3 7.2 8.0 6.0 6.3 9.9 6.0 8.7 8.0 8.7 8.2

Q 0.0 0.0 11.5 14.8 4.5 0.0 2.9 10.3 5.8 1.6 0.8 1.6 4.5 4.1 2.1 2.5 4.1 7.8 2.1 3.3 2.5 5.3
0.0 0.0 2.9 0.7 2.9 0.2 0.9 3.1 0.7 2.6 2.4 3.8 4.1 3.2 3.8 3.6 5.1 2.9 2.2 3.6 3.4 2.9

R 0.0 0.0 0.0 7.8 2.1 0.0 3.3 5.3 7.8 6.6 6.2 2.5 1.6 6.6 14.4 6.6 15.6 9.5 19.3 7.8 15.6 15.6
0.0 0.0 1.4 4.1 1.7 5.3 13.2 2.2 9.7 11.6 8.4 5.8 6.8 6.8 8.5 7.9 6.7 8.5 10.8 9.7 10.8 6.5

S 0.0 0.0 9.1 9.1 3.7 77.4 5.3 8.2 16.0 17.3 5.3 7.8 6.2 7.8 6.6 11.1 5.8 4.9 3.3 5.8 5.3 2.9
0.0 0.0 11.6 14.5 9.4 57.6 13.5 13.8 15.9 18.3 16.9 10.6 10.6 10.8 9.6 13.5 9.1 12.1 15.4 12.5 11.8 11.5

T 0.0 0.0 0.4 13.6 2.1 10.3 17.3 1.2 2.1 6.6 1.2 8.6 1.6 3.3 11.5 2.9 2.1 0.8 1.6 8.2 4.1 4.9
0.0 0.0 3.1 5.6 5.3 3.1 7.2 2.4 4.6 5.8 6.8 5.3 4.6 2.7 4.1 5.0 2.2 4.6 5.1 5.0 3.8 5.1

V 0.0 0.0 0.4 7.8 14.4 0.4 6.2 0.4 2.9 5.8 5.3 5.3 2.9 3.3 3.3 8.6 2.9 3.3 9.1 1.6 1.6 0.8
0.0 0.0 2.1 7.0 8.7 5.5 4.6 4.4 5.3 4.6 4.3 5.6 2.9 7.5 5.8 3.9 4.3 4.1 5.0 4.1 6.8 7.0

W 0.0 0.0 0.0 0.0 8.6 0.0 0.8 0.0 0.4 0.0 0.4 1.6 9.1 0.0 0.0 9.5 3.3 0.8 0.0 0.0 1.2 0.4
0.0 0.0 0.2 0.3 0.5 0.0 0.3 0.2 1.0 0.3 0.0 0.2 0.7 0.2 0.7 0.5 0.9 0.5 0.9 0.5 0.2 0.7

Y 0.0 0.0 0.0 0.8 0.0 0.0 2.1 0.4 1.2 0.4 0.4 1.6 0.8 0.8 0.0 2.9 3.7 0.8 0.4 2.1 0.4 1.2
0.0 0.0 0.5 1.0 3.8 0.0 0.5 0.2 0.7 0.2 2.2 0.9 1.0 0.9 0.7 0.9 1.4 2.1 1.7 3.4 1.2 3.9
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Comparison of plant and animal substrate specificity
In building a substrate specificity model for evolutionarily
conserved enzymes like N-myristoyltransferase, a choice
must be made as to the breadth or narrowness of the spe-
cies range used for training sequences. Limiting taxo-
nomic breadth is likely to improve algorithm
performance on closely related organisms, but may make
the resulting model less suitable for more distant species,
as shown in Fig. 6. The NMT BGM, and Expasy algorithms
are built on the same underlying amino acid profile, heav-
ily weighted towards animal examples. This profile gives
scores that are consistently lower for plants than animals.
Conversely HMM266, built exclusively from plant exam-
ples, gives lower scores for animal protein sequences than
for plants. This suggests that plant and animal N-myris-
toyl transferases do, in fact, have differing target
specificities.

N-myristoyltransferase substrate specificity for plants and
animals can also be compared by observing position
specific amino acid frequencies, listed in Table 6. Differ-
ences between these frequencies are shown as Kullback-
Leibler distances (relative entropies) in Fig. 7. Structural
studies have indicated that amino acid residues 2–6 fit
within the binding pocket of N-myristoyltransferase,
while subsequent positions act as a linker region [21].

The greatest differences between the amino acid distribu-
tions for plant and animal myristoylation substrates occur
at positions four and five, where many of the plant
sequences, but few animal proteins contain a cysteine res-
idue. The presence of a cysteine group near the N-termi-
nus in myristoylated proteins has been shown to be
associated with subsequent palmitoylation, a post-trans-
lational modification that increases the stability of mem-
brane association [3]. Approximately half of the plant
proteins identified as myristoylated contained a cysteine
at positions three, four, or five, in both Arabidopsis (171/
319) and non-Arabidopsis examples (140/268). These
results suggest that either myristoyltransferase specificity
differs at these positions, or that the combination of myr-
istoylation with palmitoylation may occur more fre-
quently in plants than animals.

Less significant amino acid frequency differences occur
between plants and animals at positions 6, 7, 13, 17, and
19. Serine and threonine are the most common amino
acids at position 6 in both plants and animals, but are
somewhat less frequent in plants. This is consistent with a
role for this position in stabilizing the enzyme-substrate
complex via hydrogen bonding, as has been demon-
strated in yeast. Perhaps hydrogen bonding in this posi-
tion is less critical for plant myristoylation sequences,
which may use glycine instead. At position 7, basic amino
acids predominate for both plants and animals, but plants

can use arginine here as well as lysine, suggesting a larger
or more flexible enzyme cavity space in plants. This result
is consistent with the observation that a cloned N-myris-
toyltransferase from Arabidopsis thaliana is active against
peptide substrates with a much wider range of amino
acids at position 7 than the corresponding cloned enzyme
from Saccharomyces cerevisiae [17]. Differences between
plant and animal sequences at positions 13, 17, and 19
are more complex, with no one single type of amino acid
side chain predominating.

Conclusions
The plant specific N-myristoylation prediction method
HMM266 has been used to predict 319 myristoylation sub-
strates in the Arabidopsis thaliana proteome, along with
268 additional examples in other plants. The functional
families where these proteins occur are highly
representative of signal transduction pathways, especially
those involving protein kinases, protein phosphatases,
small GTP-binding proteins, and calcium binding
proteins. Plant specific physiological functions that
depend on proteins predicted to be myristoylated include
responses to stresses such as wounding salt, drought, and
pathogen exposure, as well as developmental events

Kullback-Leibler distance (relative entropy) between N-ter-minal amino acid sequences of myristoylated plant and animal proteinsFigure 7
Kullback-Leibler distance (relative entropy) between 
N-terminal amino acid sequences of myristoylated 
plant and animal proteins. Amino acid frequencies used 
to calculate relative entropies were obtained from 247 non-
plant proteins classified as myristoylated by the NMT model 
[49], and 587 plant proteins predicted to be myristoylated by 
HMM266. Position 1 in this figure refers to the N-terminal 
methionine (for consistency with sequence database number-
ing), even though this residue must be removed in vivo for 
myristoylation to occur.
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related to pollen tube extension, meristem formation, cell
wall extension, and fruit ripening.

HMM266 is more sensitive in detecting known positives
and more selective in avoiding false positives than previ-
ously available alternatives, including the PROSITE
myristoylation motif, the NMT Predictor [20,21] the BGM
modified NMT algorithm [17], and the Expasy Myristoyla-
tor [24] The use of several independent statistical methods
for algorithm validation, including Receiver Operating
Characteristic, P-value, and jack-knife testing, adds confi-
dence to the predictions. The new algorithm gives much
wider separation between positive and negative scores
than the NMT and BGM methods, allowing more than 20-
fold reduction in the number of unclassified sequences
giving ambiguous, uninformative results.

Superior performance of HMM266 is due to the selection of
a plant-specific training set, covering 266 unique
sequence examples from 40 different species. Previously
available methods rely strategically on pre-selection by a
relatively unrestrictive amino acid profile, followed by
subtraction of heuristic adjustment factors to remove false
positives. Because adjustment heuristics are based on a
relatively small number of negative examples, they may
be unable to generalize, and insufficiently restrictive,
causing overestimation of negative scores. In addition to
overestimating negative scores, the NMT and BGM predic-
tion methods tend to underestimate scores for positive
plant sequences because the underlying training set used
to determine the profile is highly biased against plants.

The use of a probability based HMM to obtain predictive
scores has effectively extracted the most relevant amino
acid structural information for each individual position
from the statistical relatedness of the training set, making
additional heuristic adjustments unnecessary to achieve
classification accuracy. As new biochemical information
becomes available, the machine learning approach to
model building used here should be easier to update than
a heuristic approach. The same set of objective, quantita-
tive validation tests used in the current study can then be
readily applied to the evaluation of future models.

Methods
Selection of plant-specific positive and negative sequence 
sets
Myristoylation positive sequences were initially obtained
by searching the scientific literature for plant proteins
with N-terminal myristoylation documented by biochem-
ical experiments. This group was supplemented with N-
terminal sequences that matched peptides identified in
vitro as active myristoylation substrates [17,18]. The posi-
tive set was further supplemented with proteins whose N-
terminal amino acids sequences matched the seven initial

amino acids of biochemically verified examples (from
either plants or animals), having the same subcellular
location and biochemical activity. All positive sequences
were truncated at a length of 25 amino acids, to reduce
computational complexity.

For model testing, a complete set of predicted proteins for
Arabidopsis thaliana was obtained from the 4/17/2003
release of the TIGR Arabidopsis thaliana Genome Annota-
tion Database [40]. A set of myristoylated non-plant
sequences was also assembled, in order to assess whether
the prediction algorithms showed any taxonomic bias.
This set was obtained by selecting all 247 unique, non-
plant examples from the list of higher eukaryote training
sequences used by Maurer-Stroh et al [21], then extending
sequence length (originally 17 amino acids) to 25 resi-
dues, based on full sequence data from the SwissProt
database.

Negative sequences, used to assess algorithm specificity,
were chosen based on an examination of sequence
annotation suggesting that myristoylation was highly
unlikely. Only sequences with a glycine residue at posi-
tion two were selected. These functional negative candi-
dates were initially selected using the annotation
keywords DNA polymerase, helicase, ribonucleoprotein,
polymerase, ribosomal, and histone. The set was then
manually curated to remove any potentially ambiguous
candidates, for example transcription factors containing a
basic leucine zipper motif (previously shown to contain a
peptide sequence with high activity as a myristoylation
substrate activity), as well as proteins related to c-Myb,
known to be highly acetylated at leucine residues [41].
The final negative set contained 185 sequences (Supple-
mentary Table 2 [see Additional file 1]).

Sequence filtering
For some experiments, sequence sets were filtered to
remove redundancy using the clustering program CD-hit
[29,42]. This program creates clusters using a greedy algo-
rithm, first selecting seed sequences by length, then
finding sequences with identities to a particular seed at
greater than or equal to a specified threshold value (for
example 60%). The program then constructs a filtered
output set containing one sequence from each cluster.

Generation of models
Profile Hidden Markov Models (HMMs) were generated
using the hmmbuild function of software package
HMMER 2.3.1 [43,44] from input sequences 25 amino
acids in length, aligned without gaps. Sequence weighting
was performed using both the program's default
algorithm [45] and two alternate methods, Henikoff [46]
and Voronoi [47]. Test sequences were evaluated for
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model fit on the basis of bit score values generated by the
hmmpfam function of the HMMER software.

In some experiments, broader, more generalized HMMs
were constructed by supplementing the original set of
plant-specific positives with high scoring hits from a first
round of HMM testing against unclassified plant
sequences from Genbank. Second generation HMMs were
built using training sets supplemented with between 29
and 348 additional sequences, bootstrapped from initial
results by including all sequences above a specified
threshold.

Models were tested for sensitivity and specificity by evalu-
ation against classified positive and negative sequences, as
described below. The robustness of each HMM was tested
by leave one out cross-validation (jack-knife test), where a
new HMM was generated by leaving out each individual
sequence of the training set in turn. Each new HMM gen-
erated was then tested for the ability to detect all of the
sequences used in model construction.

HMMs were also evaluated using a P-value statistic.
Because the bit score used for classification is based on the
maximum match value for each protein sequence, the
scores obtained should follow an extreme value distribu-
tion. In such a distribution, P(score > x) ~ Ce-λx+c, where
C, c, and λ are constants. For randomly selected protein
sequences, the logarithm of observed probability
(expressed as rank divided by number of sequences) plot-
ted against score should be linear. The point at which this
plot deviates from linearity can be used as a threshold
separating true positives from random scores [48]. To
obtain P-values corresponding to HMM values, the high-
est scoring match was determined for each predicted pro-
tein in the Arabidopsis thaliana genome, then plotted
against the logarithm of observed probability (expressed
as rank divided by number of sequences). A line was fitted
to the central part of the curve to obtain expected P-values.

Comparative evaluation of prediction algorithms
Positive, negative, and unclassified plant sequences were
scored for predicted myristoylation sites using Prosite pat-
tern PS00008 [19], the higher eukaryote settings for the
"NMT Myr Predictor" website [49], the modified predictor
pattern of Boisson, Giglione, and Meinnel [17], and the
Expasy Myristoylator website [25] as described by the
authors. The PROSITE profile gives a simple positive/neg-
ative output, but the NMT Predictor (NMT), Boisson,
Giglione, and Meinnel (BGM), and Expasy Myristoylator
(Expasy) methods produce numerical scores. Cutoff val-
ues for distinguishing positives from negatives were opti-
mized for each quantitative prediction algorithm using
the 1R classification method of Holte [26], as imple-
mented in the WEKA open source software package, ver-

sion 3.2.3 [50]. Briefly, this method seeks to maximize
accuracy using a classified set of positive and negative
examples, which are sorted in numerical order, then
discretized into bins, each bin containing no fewer than a
specified minimum number of instances with the same
classification. The cutoff value is chosen to provide the
highest possible accuracy without splitting the minimum
bin.

The 1R method was applied to each algorithm using the
sequence sets described above (80 positives plus 185 neg-
atives), with bin size set to the smallest possible value
between 2 and 10 allowing separation into exactly two
classes. Overall accuracy, coverage, false positive, and false
negative rates were tabulated first using all 265 test
sequences, then re-calculated using 10-fold stratified
cross-validation to confirm that results were not signifi-
cantly different within any subset of the data.

Algorithm accuracy was also evaluated using Receiver Oper-
ating Characteristic (ROC) analysis, a threshold independ-
ent test for sensitivity and selectivity widely used in clinical
medicine [27,28]. In this test, classified positive and negative
examples are ranked by score in decreasing order, and used
to construct a plot of sensitivity (fraction of positives) on the
y axis, versus 1 – specificity (fraction of negatives) on the x-
axis. The area under the ROC plot is related to the rank-sum
test for two independent samples (Mann-Whitney or Wil-
coxon test). This area is calculated to determine the probabil-
ity that a randomly selected true positive case might receive a
higher score than a randomly selected true negative. Higher
scores indicate greater reliability.

Algorithm ambiguity was tested by obtaining scores for
7230 unclassified plant sequences from Genbank, each
containing glycine at position two. The highest score in
the negative sequence set and the lowest score in the pos-
itive sequence set were used as upper and lower bounds.
The percentage of scores falling between these limits were
calculated as a measure of potential ambiguity for each
algorithm, since these examples could prove difficult to
classify definitively.

Amino acid frequencies were calculated for each of the
first 25 N-terminal positions, based on the set of 247 non-
plant training examples used by Maurer-Stroh et al [21],
and on all 587 plant examples predicted to be myris-
toylated by the final plant-specific HMM. To measure dis-
tance between the two data sets, frequencies were used to
calculate relative entropy according to the following
formula,

H P Q P x
P x

Q xi
i

ii

|| log( ) = ( ) ( )
( )∑ 2
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where H is entropy, P is the amino acid distribution for
plant sequences, and Q the amino acid distribution for
animal sequences [51]. Division by zero was avoided by
the addition of one prior count to each frequency numer-
ator and denominator before entropy calculation.

List of Abbreviations
PSSM, position specific scoring matrix. HMM, profile hid-
den Markov model. BGM, algorithm of Boisson, Giglione,
and Meinnel [17]. NMT, algorithm of Maurer-Stroh,
Eisenhaber and Eisenhaber [20]. ROC Receiver Operator
Characteristic.
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