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Abstract
Background: The thylakoid membrane of higher plant chloroplasts is made of membrane lipids
synthesized in the chloroplast envelope. As the inner envelope membrane and the thylakoid are
separated by the aqueous stroma, a system for transporting newly synthesized lipids from the inner
envelope membrane to the thylakoid is required. Ultrastructural as well as biochemical studies have
indicated that lipid transport inside the chloroplast could be mediated by a system similar in
characteristics to vesicular trafficking in the cytosol. If indeed the chloroplast system is related to
cytosolic vesicular trafficking systems, a certain degree of sequence conservation between
components of the chloroplast and the cytosolic systems could be expected. We used the
Arabidopsis thaliana genome and web-based subcellular localization prediction tools to search for
chloroplast-localized homologues of cytosolic vesicular trafficking components.

Results: Out of the 28952 hypothetical proteins in the A. thaliana genome sequence, 1947 were
predicted to be chloroplast-localized by two different subcellular localization predictors. In this
chloroplast protein dataset, strong homologues for the main coat proteins of COPII coated
cytosolic vesicles were found. Homologues of the small GTPases ARF1 and Sar1 were also found
in the chloroplast protein dataset.

Conclusion: Our database search approach gives further support to that a system similar to
cytosolic vesicular trafficking is operational inside the chloroplast. However, solid biochemical data
is needed to support the chloroplast localization of the identified proteins as well as their
involvment in intra-chloroplast lipid trafficking.

Background
The thylakoid membrane of higher plant chloroplasts
contains a high proportion of galactolipids, which are
synthesized in the chloroplast envelope membranes.
Newly synthesized lipids are rapidly transported from the
chloroplast envelope to the thylakoid membrane [1-4]. In
theory, lipid transport across the aqeous stroma could be
mediated by lipid transfer at sites of physical contact
between the envelope and the thylakoid, by monomer dif-

fusion facilitated by lipid transfer proteins or by a vesicu-
lar mechanism. Ultrastructural studies have failed to
demonstrate any apparent physical contacts between the
inner envelope and the thylakoid membrane in mature
chloroplasts, and chloroplast-localized lipid transport
proteins have not been demonstrated. Regarding a vesicu-
lar transfer mode, however, support comes from both
ultrastructural and biochemical studies. When leaf tissue
was incubated at low temperatures, vesicle-like structures
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accumulated in situ inside chloroplasts, in the stroma
between the chloroplast envelope and thylakoid[5], simi-
larily to the accumulation at low temperature of transitory
vesicles between the endoplasmic reticulum (ER) and the
cis-Golgi compartment in animal cells [6]. When the tem-
perature was increased, from 12 to 21°C, the vesicles dis-
sapeared. The low temperature-dependent accumulation
of vesicles is considered to reflect that fusion of vesicles
with the target membrane (in the examples above thyla-
koid and cis-Golgi, respectively) is blocked at a higher
temperature than vesicle fission from the donor mem-
brane (chloroplast envelope and ER, respectively) [5]. It
was subsequently shown that the transfer of lipids from
envelope to thylakoid in organello was strongly inhibited
at the temperatures where vesicles accumulated in the
stroma [4]. A cell-free reconstitution of lipid transport
from envelope to thylakoid demonstrated a requirement
for stromal proteins and ATP [7] and the release of lipids
from isolated envelope required stromal proteins, ATP
and GTP and was stimulated by acyl-CoA [8]. Vesicular
structures were observed also in isolated chloroplasts and
their abundance was affected by inhibitors of vesicular
trafficking in the secretory pathway [9]. Vesicular traffick-
ing in the secretory pathway is mediated by COPI, COPII
and clathrin coated vesicles [10,11]. Coat assembly and
vesicle formation in the secretory pathway is regulated by
small GTP binding proteins, such as ARF and SAR,
whereas correct targeting and fusion of cargo vesicles in
the secretory pathway is mediated by syntaxins and small
GTPases [12]. Although not studied in the same degree of
detail, plant cytosolic vesicular trafficking seem to require
essentially the same proteinaseous components as mam-
malian and yeast cytosolic vesicular trafficking [13-15].
The putative vesicular transport system in the chloroplast
stroma thus appears to resemble, as inferred by the evi-
dence at hand, the transport system between the ER and
the Golgi apparatus. Given the biochemical characteris-
tics, the molecular machinery behind intra-chloroplast
vesicular transport could be evolutionary related to the
machinery that drives vesicle trafficking in the secretory
pathway. In addition to membrane lipids, the vesicles
could also be expected to transport other hydrophobic
substances, such as quinones and carotenoids, synthe-
sized in the envelope membrane to the thylakoid [16].
Several studies on the unicellular algae Chlamydomonas
reinhardtii also underline the importance of the inner
envelope as biogenic structure for the thylakoid mem-
brane, including photosytem assembly [17-19] and syn-
thesis of chlorophyll b [20]. We aimed to find chloroplast-
localized A. thaliana homologues to known components
of cytosolic vesicular trafficking. The web based chloro-
plast localization prediction tools TargetP [21] and Predo-
tar (version 0.5; http://www.inra.fr/predotar/) were used
to extract putative chloroplast localized proteins from the
dataset of full non-redundant A. thaliana predicted pro-

teins. The resulting set of sequences was searched for puta-
tive vesicle trafficking components.

Results and discussion
Prediction of chloroplast-localized protein
Of the 28952 protein sequences in the non-redundant A.
thaliana dataset, 4780 and 4582 were predicted to be chlo-
roplast localized by TargetP and Predotar respectively (not
regarding the different reliability classes). Of these, 1947
sequences were predicted to be chloroplast localized by
both predictors. Combining the output from more than
one predictor is likely to significantly reduce the number
of false positives, but is also very likely to produce a signif-
icant number of false negatives. That this is in fact the case
has been experimentally shown for the mitochondrial
proteome [22]. Our dataset contained 202 of 362 experi-
mentally verified envelope proteins [23] and 128 of 213
experimentally identified thylakoid-localized proteins
[24]. Subsequently, we added the "missing" sequences to
our dataset. Finally, we also added the sequences for all
the 88 predicted chloroplast encoded proteins. We tested
our chloroplast protein sequence dataset for the presence
of some well established chloroplast proteins and found
that e.g. the rubisco small subunit, light harvesting com-
plex proteins and protochlorophyllide oxidoreductase
were represented in the dataset.

Vesicle budding components
Vesicle budding in the secretory pathway is mediated by
the assembly of three different kinds of protein coats,
COPII, COPI or clathrin. Formation of COPII-coated ves-
icles from isolated ER or chemically defined liposomes
has been shown to require three soluble cytosolic compo-
nents, the Sec13-Sec31 complex, the Sec24-Sec23 com-
plex and the small GTPase Sar1 [25]. The formation of
COPI-coated vesicles requires the presence of two soluble
complexes consisting of a total five different subunits
[11,26] and is regulated by the small GTPase ARF. Assem-
bly of clathrin coats is similarly controlled by small
GTPases and requires the presence of clathrin monomers
and adaptins that link the clathrin coat to activated cargo
receptors in the vesicle bud [11]. A simple BLAST search
against the full A. thaliana peptide dataset retrieved highly
conserved homologues of the sequences for the key com-
ponents of the three different vesicle coats in yeast (Sac-
charomyces cerevisae; Table 1). The identified sequences
agree well with previously published studies on protein
components of higher plant cytosolic vesicular trafficking
[14,15,27]. Having established the conservation of the
cytosolic vesicle coats between yeast and A. thaliana, our
next step was to search the putative chloroplast protein
sequence dataset for vesicle coat components.

We found strong homologues for all the COPII coat sub-
units in our chloroplast protein sequence dataset (Table
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2). The similarities were in general extensive throughout
the length of the proteins. Thus the low E-values were not
only results of short stretches of nearly exact matches. In
particular, yeast Sec23 and Sec24 had extremely good
homologues in our chloroplast dataset. Alignment of the
chloroplast localized Sec13, 23 and 24 with their yeast

homologues as well as the best match from the full A. thal-
iana peptide dataset, revealed N-terminal extensions in
the chloroplast-localized peptides (Fig. 1 and 2 and not
shown) that may well correspond to the N-terminal tar-
geting sequences required for post-translational import of
the protein into the chloroplast. The putative chloroplast-

Table 1: Putative A. thaliana homologues of yeast vesicular trafficking components

S. cerevisaea vesicular trafficking 
component (predicted size in kD)

A. thaliana homologue BLAST-score (%identity / %positives) E-value

Sec13 At3g01340 265 (47/63) 2e-071
At2g30050 258 (46/61) 3e-069

Sec31 At3g63460 236 (23/41) 2e-061
At1g18830 228 (23/43) 2e-059

Sec23 At4g14160 577 (39/58) 1e-165
At1g05520 577 (40/57) 1e-165
At3g23660 574 (39/58) 1e-164
At5g43670 545 (37/55) 1e-155
At2g21630 530 (38/56) 1e-150

Sec24 At3g07100 355 (32/52) 5e-098
Sar1 At1g56330 237 (63/75) 3e-063

At4g02080 232 (63/74) 1e-061
At3g62560 229 (62/75) 5e-061
At1g09180 220 (60/72) 4e-058
At1g02620 113 (55/70) 7e-026

Ret1 At1g62020 936 (41/59) 0.0
At2g21390 932 (42/59) 0.0

Sec26 At4g31490 650 (39/59) 0.0
At4g31480 650 (38/58) 0.0

Sec27 At1g79990 751 (47/66) 0.0
At1g52360 749 (46/67) 0.0
At3g15980 742 (46/66) 0.0

Sec21 At4g34450 488 (35/54) e-138
Ret2 At5g05010 131 (41/71) 9e-031
Sec28 At2g34780 35 (24/41) 0.067
Ret3 At1g60970 95 (34/59) 3e-020

At3g09800 90 (33/54) 9e-019
At4g08520 89 (32/57) 2e-018

Arf1 At3g62290 296 (78/89) 4e-081
Clathrin At3g08530 1419 (42/66) 0.0
heavy chain At3g11130 1408 (42/65) 0.0
Clathrin light chain At3g28770 41 (19/38) 7e-004

Table 2: Putative chloroplast-localized A. thaliana homologues of yeast COPII coat proteins.

S. cerevisaea COPII 
component 
(predicted size in kD)

A. thaliana chloroplast 
homologue

BLAST-score 
(%identity / %positives)

E-value Proposed 
name

Predicted 
size (kD)

Number of 
ESTs

TargetP reliability 
class (transit peptide 
length)

Sec13 (33) At3g49660.1 65 (26/40) 5e-012 cpSec13a 49.6 7 3 (41)
Sec31 (139) At5g38560.1 54 (27/37) 5e-008 cpSec31a 72.3 12 2 (13)

At2g45000.1 51 (22/36) 4e-007 cpSec31b 73.5 1 1 (27)
Sec23 (85) At4g01810.1 100 (20/36) 2e-022 cpSec23 95.9 26 3 (8)
Sec24 (104) At3g44340.1 279 (26/47) 4e-076 cpSec24a 117.7 22 2 (27)

At4g32640.1 276 (28/48) 2e-075 cpSec24b 114.7 8 3 (47)
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localized Sec31 homologues, however, were both shorter
than the yeast query sequence and the overall homology
was much lower than for the other putative chloroplast
COPII subunits. The chloroplast-localized COPII subunit
homologues are all probably highly expressed, judging by
the number of ESTs present in the TAIR database (Table
2).

BLAST searches retrieved no significant hits for five out of
seven yeast COPI coat subunits, yeast light and heavy
clathrin subunits nor any yeast adaptin. The two yeast
COPI subunits that did retrieve significant hits (Ret1 and
Sec27), retrieved the same polypeptides as did yeast Sec13
and Sec31. To rule out cyanobacterial origin of the chlo-
roplast-localized COPII coat components, the genome of
the cyanobacteria Synecocystis sp. PCC 6803 was searched
for homologues of the yeast COPII subunits. This search
yielded only very short stretches of matching sequence;
nothing like full length conserved proteins emerged (not
shown). These data fit with a recent suggestion, that lack
of observable vesicular structures in photosynthetic
organisms beside the embryophytes point to that the
vesicular transport system was acquired by the chloroplast

from the host eucaryotic cell rather than having evolved
from a cyanobacterial mechanism [28].

Membrane fission
The polymerization of the COPI and COPII coats provides
force enough to induce deformation and eventually the
fission of membrane vesicles from isolated membranes or
liposomes [11,25,26]. The formation of clathrin-coated
vesicles, however, requires the presence of the GTPase
dynamin [10]. It is believed that dynamin polymerizes to
form a ring, which through GTP hydrolysis pinches off the
transport vesicle [29]. Dynamin homologue(s) have been
experimentally shown to be chloroplast-localized in A.
thaliana [30]. The Arabidopsis Dynamin Like Protein 2
(ADL2) was predicted to be chloroplast-localized by Tar-
getP but not by Predotar. A BLAST search with various
dynamin sequences from several organisms did not
retrieve any new dynamin homologues from our chloro-
plast protein sequence dataset.

Vesicle targeting and fusion
Vesicle targeting and fusion in the secretory pathway is
thought to be mediated by SNARE proteins and regulated
by RAB GTPases [11]. A few putative chloroplast-localized

Multiple alignment of the yeast Sec23, the best match in the whole A. thaliana proteome At4g14160.2 and the best match in the predicted chloroplast proteome At4g01810.1Figure 1
Multiple alignment of the yeast Sec23, the best match in the whole A. thaliana proteome At4g14160.2 and the best match in the 
predicted chloroplast proteome At4g01810.1. Identical residues are shown in black and conserved residues are shown in gray.
Page 4 of 8
(page number not for citation purposes)



BMC Genomics 2004, 5:40 http://www.biomedcentral.com/1471-2164/5/40
SNAREs were identified by a BLAST search of the
sequences for chloroplast-targeted proteins against the
sequences of several yeast and human SNAREs (not
shown). Cytoplasmic SNAREs are generally membrane-
spanning proteins (with the exception of one; SNAP-25).
The web based membrane spanning helix prediction serv-
ice TopPred [31] predicts one specific membrane span-
ning helix in all the different yeast and human SNAREs
used for the BLAST search. However, of the putative chlo-
roplast-localized SNAREs, only two contained putative
trans-membrane helices and these were not in the same
regions as in the query SNAREs. When the putative chlo-

roplast-localized SNAREs were used as query sequences
for BLAST searching GeneBank, no SNAREs were
retrieved. All of the found proteins were much larger than
any of the tested authentic SNAREs. Apparently, no
authentic SNARE sequences were present in the
chloroplast protein sequence dataset. This could be due to
that no SNARES actually are present in the chloroplast or
to that the SNAREs simply were missed in the prediction
of subcellular localization.

Multiple alignment of the yeast Sec24, the best match in the whole A. thaliana proteome At3g07100.1 and the two best matches in the predicted chloroplast proteome At3g44340.1 and At4g32640.1Figure 2
Multiple alignment of the yeast Sec24, the best match in the whole A. thaliana proteome At3g07100.1 and the two best matches 
in the predicted chloroplast proteome At3g44340.1 and At4g32640.1. Identical residues are shown in black and conserved res-
idues are shown in gray.
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Small GTPases
Both vesicle budding and fusion in the secretory pathway
are regulated by small GTPases [10,11]. Formation of

COPII coated vesicles is regulated by the GTPase SAR,
whereas formation of COPI and clathrin coated vesicles is
regulated by ARF GTPases. We could retrieve one homo-

Table 3: Putative chloroplast-localized A. thaliana homologues of yeast small GTPases.

S. cerevisaea small 
GTPase 
(predicted size in kD)

A. thaliana chloroplast 
homologue

BLAST-score 
(%identity / %positives)

E-value Proposed 
name

Predicted 
size (kD)

Number 
of ESTs

TargetP reliability class 
(transit peptide length)

Sar1 (21) At5g18570.1 37 (25/42) 8e-004 cpSar1a 75.6 5 1 (32)
ARF1 (21) At1g05810.1 47 (27/48) 5e-007 cpARF1 24.2 3 3 (42)

Multiple alignment of the yeast Sar1, the best match in the whole A. thaliana proteome At1g56330.1 and the best match in the predicted chloroplast proteome At5g18570.1Figure 3
Multiple alignment of the yeast Sar1, the best match in the whole A. thaliana proteome At1g56330.1 and the best match in the 
predicted chloroplast proteome At5g18570.1. Identical residues are shown in black and conserved residues are shown in gray.

Multiple alignment of the yeast Arf1, the best match in the whole A. thaliana proteome At3g62290.1 and the best match in the predicted chloroplast proteome At1g05810.1Figure 4
Multiple alignment of the yeast Arf1, the best match in the whole A. thaliana proteome At3g62290.1 and the best match in the 
predicted chloroplast proteome At1g05810.1. Identical residues are shown in black and conserved residues are shown in gray.
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logue of yeast Sar1 from the A. thaliana chloroplast pro-
tein sequence dataset (Table 3). The putative A. thaliana
chloroplast Sar1 homologue sequence was predicted to
encode a protein substantially larger than yeast Sar1.
Alignment of yeast Sar1, A. thaliana cytoplasmic Sar1 and
the chloroplast Sar1 homologue reveals that the Sar1
homology is situated in the C-terminus of the chloroplast
Sar1 sequence (Fig. 3). The chloroplast protein sequence
dataset contained one protein sequence with significant
homology to ARF1 (Table 3). The predicted size of this
protein was quite similar in size to the yeast sequence.
Alignment of the yeast ARF1, the A. thaliana cytoplasmic
homologue and the chloroplast homologue revealed an
N-terminal extension in the chloroplast homologue (Fig.
4), again pointing to an N-terminal extension that targets
the protein to the chloroplast. Overall similarity was
much higher between ARF1 and its chloroplast homo-
logue than between Sar1 and its putative chloroplast
homologue. The chloroplast Sar1 homologue is probably
a GTPase, but whether it performs the same functions as
Sar1 appears less certain.

Conclusions
Morphological [5,9,28], and biochemical evidence [4,7,8]
suggest that lipid transport from the chloroplast envelope
to the thylakoid membrane is mediated by a vesicular
transport mechanism. The bio-informatics data presented
herein suggest that homologues of the components
required for formation of COPII coated vesicles are
present in the chloroplasts of higher plants. Biochemical
studies of the identified components and A. thaliana T-
DNA insertion lines will establish whether the proteins
identified in the present study are in fact involved in intra-
chloroplast lipid trafficking. The one component of the
minimum vesicular transport system still missing is a
SNARE. On the other hand fusion may be mediated by
other mechanisms beside SNARE-SNARE interaction [12].
SNAREs in the secretory pathway are activated by NSF (N-
ethylmaleimide sensitive factor) [12]. A NSF homologue
has been cloned from chromoplasts isolated from red
pepper and was found to be required for fusion of
chromoplast inner membrane vesicles [32]. This indicates
that a system similar to the SNARE system in cytosolic
vesicular trafficking nevertheless mediates fusion events
inside the chloroplast.

Methods
The non-redundant A. thaliana protein dataset (file:
ATH1.pep) was retrieved from the TIGR homepage http:/
/www.tigr.org. The full dataset comprising 28 952
sequences was divided into sets of 1400 sequences each.
The sets were submitted to TargetP http://
www.cbs.dtu.dk/services/TargetP/ and Predotar http://
www.inra.fr/predotar/. Sequences predicted to be chloro-
plast-localized by both predictors were compiled and

used for local BLAST searches using the BLAST software
package [33] downloaded from the NCBI web page ftp://
ftp.ncbi.nih.gov/blast/. S. cerevisae and Homo sapiens
sequences for components of cytoplasmic vesicle
transport were downloaded from Gene Bank. Sequence
alignment was performed with ClustalW [34,35] at the
web service offered by PBIL http://npsa-pbil.ibcp.fr/.
Sequences were compiled and edited with the BioEdit
software package. The datasets used in this study will be
made available upon request.
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