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Abstract
Background: The ability to rapidly map millions of oligonucleotide fragments to a reference
genome is crucial to many high throughput genomic technologies.

Results: We propose an intuitive and efficient algorithm, titled extreme MApping of
OligoNucleotide (xMAN), to rapidly map millions of oligonucleotide fragments to a genome of any
length. By converting oligonucleotides to integers hashed in RAM, xMAN can scan through
genomes using bit shifting operation and achieve at least one order of magnitude speed increase
over existing tools. xMAN can map the 42 million 25-mer probes on the Affymetrix whole human
genome tiling arrays to the entire genome in less than 6 CPU hours.

Conclusions: In addition to the speed advantage, we found the probe mapping of xMAN to
substantially improve the final analysis results in both a spike-in experiment on ENCODE tiling
arrays and an estrogen receptor ChIP-chip experiment on whole human genome tiling arrays.
Those improvements were confirmed by direct ChIP and real-time PCR assay. xMAN can be
further extended for application to other high-throughput genomic technologies for
oligonucleotide mapping.

Background
The ability to rapidly map millions of oligonucleotide
fragments to a reference genome is crucial to many high
throughput genomic technologies. For example, Affyme-
trix, Nimblegen, and Agilent have recently developed oli-
gonucleotide arrays to tile all the non-repetitive genomic
sequences of complex eukaryotic genomes. Since the
arrays were usually designed based on an older genome
assembly, it is important to remap all the probes to the

newest genome assembly or transcriptome annotation
during data analysis [1], under the assumption that the
current genome and transcriptome are more precise than
the earlier ones. It is not uncommon for a probe to map
to multiple locations in the genome. As a result, the probe
could give rise to unexpected behaviour if information on
its genome copy number is unknown or ignored. Other
examples are the next-generation sequencing approaches
to annotate novel transcripts [2,3] and regulatory ele-
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ments [4]. In these applications, millions of short oligo-
nucleotide fragments are generated and mapped to a
reference genome to identify the transcript or cis-element
clusters.

The current algorithms available for fast sequence similar-
ity search such as BLAST [5], MegaBLAST [6], BLAT [7] and
MUMmer [8] were not specifically designed for mapping
millions of query sequences. As a result, using such algo-
rithms often take very long time, even on computer clus-
ters with fast processors and big memory. For example, in
the recent MicroArray Quality Control project [9], it took
approximately two days to map the half a million probes
on the Affymetrix U133 expression microarray to the Ref-
Seq mRNA database of approximately 70 MB size on a
Beowulf cluster with 248 AMD Opteron Dual Processor
nodes. This translates into inhibitive time and resources
required to map the 42 million probes on Affymetrix
genome tiling microarrays to complete mammalian
genomes.

We propose an intuitive and efficient method xMAN
(namely extreme MApping of OligoNucleotide) for the
rapid mapping of millions of query oligonucleotide frag-
ments to the reference genome of any given length. xMAN
differs significantly from existing algorithms. First, instead
of indexing the reference genome which is memory
expensive, xMAN transforms all the query sequences into
integers and stores them in RAM as a hash table. Secondly,
when scanning through a genome of any size for query
mapping, xMAN hinges on bit shifting operation over
sliding windows to boost its search speed. In this paper,
we will explain xMAN's underlying algorithm, compare its
performance with other methods, and discuss its applica-
tion in tiling microarray data analysis.

Results
Tiling microarray probes remapping
Tiling microarrays have probes that cover essentially the
entire non-redundant genome in an unbiased fashion.
Such arrays have diverse applications, including chroma-
tin-immunoprecipitation coupled with DNA microarray
analysis (ChIP-chip), comparative genome hybridization,
empirical detection of novel transcripts and polymor-
phism discovery [10]. The average nucleotides spacing
between centres of neighbouring probes defines the tiling
‘resolution’. There are several tiling array platforms with
different probe length, resolution, and manufacturing
characteristics. We focus our study on Affymetrix tiling
arrays since they have the highest probe density, with
approximate 42 million 25-mer probes covering the non-
repetitive human genome at 35 bp resolution. The sheer
amount of raw data generated on these arrays poses chal-
lenges for data analysis.

Despite extensive efforts to design statistical algorithms to
analyze Affymetrix tiling microarray [11-16], potential
probe mapping problems exist and might have serious
downstream consequences. Early assessments [1] on
Affymetrix expression arrays revealed that remapping
probe sets to the newest genome could create as much as
50% discrepancy in predicted differentially expressed
genes, regardless of the analysis methods used. Therefore,
it is crucial to remap all the tiling array probes to the cur-
rent genome to ensure more precise downstream analyses.
Furthermore, one primary objective in microarray analy-
sis is to minimize probe cross-hybridization. Most tiling
microarrays are designed based on repeat-masked
genome, which still contains many repetitive elements
including tandem repeats [17] with period longer than 12
bp and segmental duplications [18]. Affymetrix tiling
probe selection operates in a local fashion, which does
not check whether a probe matches elsewhere in the
whole genome (S. Cawley, pers. commun.). It does map all
the probes to the genome afterwards, although only to the
repeat-masked genome which could be problematic. This
approach also sometimes maps the same probe to multi-
ple locations in a short genomic region. When calculation
on the region is performed assuming all the probe meas-
ures are independent, this mapping is likely to inflate the
p-value of the region and create a false positive. These
problems could be potentially addressed by taking into
account each probe's copy number [14] and filtering out
repetitive probes [15] in the analysis.

Affymetrix Human Tiling 1.0 arrays were designed based
on build NCBIv34 of the human genome, and we down-
loaded the Affymetrix probe mapping (BPMAP) files from
http://www.affymetrix.com. We used xMAN to remap the
~42 million probes to build NCBIv35 of the human
genome, in both Watson and Creek strands without
repeat-masking (designated as xMAN BPMAP). xMAN
stores the number of times a probe's 25-mer sequence
maps to the genome, so as to aid probe cross-hybridiza-
tion estimation. The whole process took less than six
hours on an AMD Opteron single-CPU Linux computer,
including importing probe sequences into hash table,
scanning the genome, and writing the result BPMAP file.
There are a total of 41,370,900 unique 25-mers on the
whole human tiling microarrays, among which 301,947
have been synthesized on the arrays multiple times,
resulting in a total of 41,782,720 array spots (Table 1). An
unexpected observation is that 13,120 (0.03%) probes no
longer maps to the NCBIv35 genome, thereby should be
excluded from downstream analysis. Another surprise is
that although the tiling probes are selected from the
‘repeat-masked’ genome, 1,215,226 (2.94%) of the
probes have multiple genomic copies (Fig. 1). For exam-
ple, one probe with sequence TCGGCCTCCCAAAGTGCT-
GGGATTA, which was designed to interrogate a non-
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repetitive sequence on chromosome 19, mapped to
114,450 locations in the genome. It is worth noting that a
typical transcription factor only binds less than 1% of the
genome. Thus, the ~3% probes with multiple genome
copies could bring substantial influence to a ChIP-chip
analysis.

Similar situation was observed when xMAN was applied
to remap several other Affymetrix tiling arrays for human,
mouse and Arabidopsis (Table 1).

Based on the above observation, xMAN used the follow-
ing rules to remove probe redundancy in the human
genome tiling array BPMAP: 1) all the probes with copy
number more than 10 are filtered out; 2) the same 25-mer
is mapped only once within a 1 kb window along the
genome; 3) the remaining probes with multiple copy
numbers are not mapped unless it is at least 30bp apart
from the previous probe (the average probe spacing for
the array is 35 bp). The correct whole genome probe copy
number is stored with each probe's 25-mer sequence,
regardless of whether it is mapped to a certain region or
not by rules 2) and 3).

Comparison with existing tools
Many tools are available for sequence similarity search,
among which BLAST [5], MegaBLAST [6], BLAT [7] and
MUMmer [8] are probably the most widely used. We com-
pared the performance of xMAN with these tools in the
same Linux computer to map the 42 million human
genome tiling probes to the human genome. BLASTN [5]
scans for short matches (usually 11-mer) in the genome
and extends those matches into high-scoring pairs (HSPs).

MegaBLAST utilizes a greedy algorithm [6] to search for
nucleotide sequence alignment and is optimized for
aligning slightly different sequences. BLAT [7] indexes
non-overlapping K-mers in the genome and hashes them
inside the computer RAM, then scans linearly through the
query sequence. MUMmer [8] adopts a suffix tree data
structure for rapid sequence alignment, but is memory
intensive. MUMmer 3.0 uses approximately 17 bytes for
each nucleotide in the reference genome, thus requires
~51 GB (3 G* 17) of RAM to create the human genome
data structure. We do not have access to a computer that
meets this RAM requirement, thus did not include MUM-
mer in our comparison.

It took BLAST 2,482 minutes, BLAT 19 minutes, and
MegaBLAST (with an optimal word size of 20) 0.8 minute
to search the first 10 thousand probes against the human
genome. Since search time is approximately proportional
to the query size, extrapolating these numbers predicts
that the three algorithms will take about 173,740, 1,330
and 56 CPU hours to map all 42 million probes, respec-
tively. MegaBLAST appears to be a proper solution to this
specific probe-mapping problem, and is extremely effi-
cient with this word size of 20. Nevertheless, its advantage
diminishes when mapping shorter fragments with smaller
word size. For instance, MegaBLAST requires almost 2
CPU minutes to search 10 thousand 18-mer probes
against the genome with word size of 12, i.e. 140 CPU
hours for the 42 million 18-mer probes. In comparison,
word size in xMAN, which is the minimal length of an
identical match, is always equal to the length of the query
oligonucleotide and has no effect on the searching time.
In any case, xMAN needs less than 6 CPU hours in com-

Table 1: xMAN probe mapping of various Affymetrix tiling arrays to the most recent genome assembly

Affymetrix tiling arrays #UniqSeq #Seq. MEntries #Query Entries #Seq. MGenomeMatches #Seq.NoGenomeMatch #Total Entries

Human ENCODE 1.0a 721,043 14,322 756,555 16,444 506 884,634
Human Chr21/22a 979,553 21,930 1,054,324 49,316 75 1,627,746
Human Promoterb 4,220,999 40,099 4,275,079 251,460 2,537 5,706,819
Human Tiling 1.0 & 2.0b 41,370,900 301,947 41,782,720 1,215,226 13,120 48,332,137
Mouse Tiling 1.0 & 2.0c 38,788,060 431,551 39,576,383 993,890 437,877 51,036,801
Mouse Promoterc 4,096,798 30,835 4,154,546 192,119 37,483 5,716,068
Arabidopsis thaliana 1.0d 3,046,178 7,275 3,053,686 164,728 0 3,772,912

Table head line:
#UniqSeq: Number of unique 25-mer in the original BPMAP file
#Seq.MEntries: Number of 25-mer with multiple spots in the array
#QueryEntries: Number of array spots in the original BPMAP file
#Seq.MGenomeMatches: Number of 25-mer with multiple genomic copies
#Seq.NoGenomeMatch: Number of 25-mer with no match in the genome
#TotalEntries: Number of total entries in the xMAN mapping
aThe original Affymetrix probe mapping is from the NCBIv33 human genome. The new xMAN probe mapping is based on NCBIv35 human genome.
bThe original Affymetrix probe mapping is from the NCBIv34 human genome. The new xMAN probe mapping is based on the NCBIv35 human 
genome.
cThe original Affymetrix probe mapping is from the NCBIv33 mouse genome. The new xMAN probe mapping is based on the NCBIv35 mouse 
genome.
dBoth the original Affymetrix probe mapping and xMAN probe mapping are based on the TIGRv5 Arabidopsis genome.
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pleting the 42 million probe mapping, and is at least an
order of magnitude faster than other popular algorithms.

Impact of the updated probe mapping on the tiling array 
analysis
We aim to systemically investigate the impact of the
updated probe mapping on tiling array data analysis. We
recently developed a Model-based Analysis of Tiling
arrays (MAT) algorithm [14] to reliably detect ChIP-
enriched regions on Affymetrix tiling arrays. MAT employs
a linear model to estimate the baseline probe behaviour
based on probe sequence and copy number. To our

knowledge, it is the only algorithm that considers probe
copy number information in tiling array analysis. As our
goal here is to assess the pure effect of probe mapping on
tiling array data analysis, we only used MAT to investigate
the impact of xMAN probe mapping. Since the Affymetrix
BPMAP does not contain probe copy number informa-
tion, we used 1 copy for every probe.

We applied MAT to the estrogen receptor (ER) whole
genome ChIP-chip data [19] using both Affymetrix and
xMAN BPMAPs (Table 2). Regardless of the thresholds,
the consistency between the ChIP-regions from the two

Copy number histogram of ~42 million probes on the Affymetrix human genome 1.0 tiling arrays.Figure 1
Copy number histogram of ~42 million probes on the Affymetrix human genome 1.0 tiling arrays. Only probes 
with more than one match in the genome are shown.
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probe mappings is usually around 95%. Our analysis sug-
gested that at the same false discovery rate (FDR: expected
percentage of false positives in a set of predictions) thresh-
old, xMAN BPMAP can significantly increase the number
of detected ChIP-regions compared to Affymetrix BPMAP.
At 0% FDR threshold, MAT identified 635 (24%) more
regions with xMAN BPMAP, among which 123 could not
be identified even at 5% FDR using Affymetrix BPMAP.
We randomly selected 10 out of the 123 xMAN-specific
regions to conduct site-specific ER ChIP and real-time
quantitative PCR assay (qPCR), and found 9 out of the 10
regions to be ChIP-enriched (> 4 fold) in an estrogen-
dependent manner (Fig. 2). This indicated that most of
the xMAN-specific ER binding sites are real, suggesting a
reduced false negative rate in the analyses using xMAN
BPMAP. On the contrary, only 53 regions were found at
0% FDR using Affymetrix BPMAP but not found using
xMAN BPMAP at 5% FDR. All 53 Affymetrix-specific
ChIP-regions reside in repetitive sequences, suggesting
that they are most likely false positives, due to the inflated
signals on the repetitive probes in Affymetrix BPMAP.

We conducted another comparison using a spike-in exper-
iment, in which the position and concentration of every
spike-in target was known. The spike-in sample represent-
ing a mock ChIP is a mixture of human genomic DNA and
96 clones of approximately ~500 bp, which are 2, 4-, … ,
256-fold enriched (12 clones at each concentration) rela-
tive to genomic DNA. Genomic DNA without spike-in
clones serves as a mock input control. The samples were
hybridized to Affymetrix tiling arrays in 5 replicates (GEO
accession number GSE5053). With xMAN BPMAP, MAT
achieved 100% accuracy for predicting the spike-in clones
with 0 false positive and 0 false negative. MAT with
Affymetrix BPMAP, however, would yield one false posi-
tive prediction (Fig. 3). A scrutiny into this false positive
region revealed that most of the probes there had multiple
copies in the genome. So by using xMAN BPMAP to con-
trol the cross-hybridization effect, MAT successfully elim-
inated this false positive.

Conclusions
As many genome sequencing projects continuously
update the genome assembly, and high-throughput
sequencing/microarray technologies frequently introduce
millions of oligonucleotides, algorithm for fast mapping
of oligonucleotides to the newest genome is needed. We
introduce an intuitive and effective algorithm xMAN,
which is optimized for mapping millions of oligonucle-
otide fragments to the genome simultaneously and is at
least an order of magnitude faster than other popular
algorithms. It also works on mapping long oligonucle-
otide probes from NimbleGen and Agilent, and can be
further adopted to map the short sequence tags from high
throughput sequencing technologies. xMAN can also be
used to convert probe genome coordinate between closely
related species for analysis, e.g. when Chimpanzee DNA is
hybridized to human tiling arrays.

Although the LiftOver program from UCSC can convert
genome coordinates, it relies on library files which are not
available for all the possible genome assemblies. xMAN,
on the other hand, could be used for any coordinate con-
version when the query and reference genome sequences
are available. In addition, LiftOver only transfers coordi-
nates to a new version without the ability to find other
matches of the query DNA sequence. For example, the
previously mentioned probe on chromosome 19 which
matches ~100 thousand genome locations, will only be
converted to a single new genome coordinate by LiftOver.

Most index-based sequence similarity search programs
involve two major stages, a heuristic search stage to locate
potential similar blocks (anchors) and an alignment stage
to combine the anchors. Since xMAN only finds exact
matches of short fragments, it simplifies the index-based
method by eliminating the second stage. xMAN encodes
the query sequences into hash table in RAM and linearly
scans through the genome for the exact matches. Query
size only affects hash table generation and output writing
time, but not genome scanning time. xMAN does require
RAM to hash all the query sequences, which is much
smaller than the genome size and often available with cur-

Table 2: Whole genome ER ChIP-chip results based on either Affymetrix or xMAN probe mapping under different FDR thresholds

FDR thresholds (%) 0 1 2 5

Affymetrixa 2,646 (2,312) 5,221 (4,572) 5,714 (4,993) 7,293 (6,413)
xMANa 3,281 (2929) 6,544 (5,820) 7,563 (6,760) 8,890 (7,925)
Shared Regionsb 2,475 (2,217) 5,006 (4,481) 5,436 (4,876) 6,871 (6,184)
Percentage of Shared Regionsc 93.5 (95.9) 95.9 (98.0) 95.1 (97.6) 94.2 (96.5)

aThe numbers of ChIP-regions identified by MAT are shown in the table. A ChIP-region is annotated as repeat if more than 70% of the region is 
within RepeatMasker repeats, simple repeats, or segmental duplications. The numbers of non-repeat regions are shown in the parentheses.
bChIP-regions identified from Affymetrix_NCBIv34 probe mapping were converted into NCBIv35 version using LiftOver program (http://
genome.ucsc.edu/cgi-bin/hgLiftOver). Two regions are considered the same if they overlap by more than 50%.
cThe percentage of shared regions was defined as the number of shared regions divided by the number of regions identified using Affymetrix probe 
mapping.
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rent computing capacity. Besides, when query sequences
are too big, they can be split to multiple files, so xMAN
can be carried out sequentially on each smaller query files.

Using xMAN to generate probe mapping BPMAP is impor-
tant for tiling array data analysis. It not only converts the
probe coordinates to newer genome assemblies, but also
removes many redundant probes, and allows algorithms
such as MAT to consider and control probe cross-hybridi-
zation effect. During the BPMAP comparison analysis on

ER ChIP-chip data, we not only removed several false-pos-
itive ChIP-regions residing in highly repetitive sequences

We observed an interesting phenomenon that xMAN
BPAMP allows more ChIP-regions to be identified at the
same FDR cutoff (Fig. 4). After probe standardization,
MAT uses a sliding window approach to calculate a MAT-
score for each window (e.g. 1KB genomic region) based
on the standardized value of all the probes in the window.
Assuming the background NULL distribution to be nor-
mally and symmetric distributed about the median m

Characterization of ER binding sites identified only through xMAN probe mapping.Figure 2
Characterization of ER binding sites identified only through xMAN probe mapping. Standard ChIP assays of ER 
were performed with anti-ER antibody. Immunoprecipitated DNA was quantified by qPCR using primers spanning 10 randomly 
selected regions identified by MAT only with xMAN probe mapping. The results are shown as vehicle (control, white bars) or 
estrogen (black bars) fold enrichment over input and are the average of three replicates±SE. The 10 regions are provided as 
NCBIv35 chromosomal coordinates: Site 1(chr10:94549192-94550690), Site 2(chr11:46253821-46255330), Site 
3(chr11:100812061-100813479), Site 4(chr4:188058695-188060091), Site 5(chr5:52253648-52254807), Site 
6(chr5:133383322-133384523), Site 7(chr7:150991115-150992368), Site 8(chr8:88996063-88997399), Site 9(chr8:99413611-
99415262), Site 10(chr8:102555348-102556385).
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(often close to 0), MAT estimates the NULL distribution
using all the MATscores less than the median. At each
MATscore cutoff (m + x), the number of peaks below (m-
x) over the number of peaks above (m + x) gives the empir-
ical estimate of FDR. xMAN's more accurate probe map-
ping and filtering removes the noise from many windows
with multiple copy number probes, thereby reducing the
overall variance of the MATscore NULL distribution. This
leads to a higher signal to noise ratio, and eventually more
predictions under the same FDR cutoff.

Materials and methods
Hash table for query sequences
xMAN seeks to eliminate the time-consuming disk access
operations by creating a query sequence hash table that
resides entirely in the computer RAM. Each nucleotide is
encoded as two bits, i.e. A: 00; C: 01; G: 10; T: 11 (denoted
as BaseIndex), thus any N-mer sequence can be converted

into a 2N-bits integer, which is a key in the hash table. In
order to avoid encoding ambiguities, all the query
sequences are restricted to have the same length. The value
of each key in the hash table is a feature associated with
the corresponding sequence. The feature can be the X and
Y coordinates of a given probe on the microarray, or the
position of a sequence in the query file. Redundant query
sequences (e.g. if multiple array spots have the same
probe sequence) share the same key, with multiple fea-
tures (e.g. different X and Y coordinates on the array). The
memory requirement is proportional to the total size of
the query sequence.

Scanning the genome
xMAN scans the reference genome using a sliding window
of size N (query sequence length) at steps of size 1. To
accelerate search speed, xMAN also encodes each nucle-
otide in the genome sequence in 2 bits, and takes advan-

ROC-like curve for ENCODE spike-in data using either xMAN or Affymetrix probe mapping.Figure 3
ROC-like curve for ENCODE spike-in data using either xMAN or Affymetrix probe mapping. We applied MAT 
with either xMAN or Affymetrix probe mapping to the spike-in data. xMAN and Affymetrix mapping achieved 100% and 96% 
True Positive Rate (TPR) at 0% False Discovery Rate (FDR) cutoff, respectively. A MAT prediction is considered correct if the 
center of the predicted region lies in the actual spike-in fragment. Please note that False Discovery Rate instead of False Posi-
tive Rate is used in this ROC-like curve.
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tage of the fastest bit-shifting operation for the encoding,
as described below:

Denote the 2N bits integer from the previous window as A

Reset the two left-most bits of A to 0 (i.e. remove the left
most base in the previous window)

Left-shift A by 2 bits

Read one more base and add its BaseIndex to A to form
the new 2N bits integer for the current window

If this new A is a key in the query hash table, xMAN stores
the corresponding chromosome, strand and genomic
position.

Estrogen receptor whole-genome ChIP-chip experiment using xMAN or Affymetrix probe mapping.Figure 4
Estrogen receptor whole-genome ChIP-chip experiment using xMAN or Affymetrix probe mapping. We applied 
MAT with xMAN or Affymetrix probe mapping to the estrogen receptor ChIP-chip experiment on Affymetrix human genome 
1.0 tiling array set, which consists of 14 arrays covering the non-repetitive human genome at 35 bp resolution.
A) MATscore histogram: The standard deviations estimated from the background NULL distribution are 1.07 and 1.09 using 
xMAN and Affymetrix probe mapping, respectively. Only the bottom part of the histogram was shown.
B) Scatter plot of false discovery rate (FDR) versus number of true positives. Under each cutoff, the number of true positive is 
estimated as the number of positive peaks minus the number of negative peaks; the FDR is estimated as the number of negative 
peaks divided by number of positive peaks. Under the same FDR cutoff, MAT predicts more true positive peaks using xMAN 
probe mapping than using Affymetrix probe mapping.
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Step one base 5′ to 3′, and repeat steps 1-5 until the end
of the genome

The scanning is linear in time to the reference genome
size. At the end, for each query sequence, xMAN has all its
genome copy number and positions, which will be output
to a tab-separated values (tsv) file. Query sequences no
longer match to the genome are also output as if they are
in a chromosome called “NOmatch”. Furthermore, the
following xMAN running statistics will be reported. Please
see Fig. 5 for an example.

NumUniqSeq: Number of unique sequences in the query

NumSeq.MEntries: Number of sequences with multiple
entries in the query

NumQueryEntries: Number of entries in the query file

NumSeq.MGenomeMatches: Number of sequences with
multiple genomic matches

NumSeq. NoGenomeMatch: Number of sequences with
no match in the genome

NumTotalEntries: Number of total entries in the final
xMAN mapping result.

Software implementation
xMAN is implemented in open source Python, and is freely
available at http://chip.dfci.harvard.edu/~wli/xMAN. It
requires the query oligonucleotide file and the subject
genome file(s). The query file can be in either in Affymetrix
binary probe mapping (BPMAP) format or plain-text tab-
separated values (tsv) format. The first column in the tsv file
must be the sequence and the other columns (optional)
could be feature(s) associated with the sequence. The refer-
ence genome files must be in Fasta format and can be
downloaded from http://genome.ucsc.edu/.
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xMAN mapping example.Figure 5
xMAN mapping example. In this example, we provide 4 entries in the query (A1, B, A2 and C). A1 and A2 have exactly the 
same sequence, so they will be mapped to exactly the same genomic position(s). B has 3 copies and C has no match in the 
genome. The xMAN statistics for this example are: NumUniqSeq: 3; NumSeq.MEntries: 1; NumQueryEntries: 4; Num-
Seq.MGenomeMatches: 1; NumSeq. NoGenomeMatch: 1; NumTotalEntries: 5.
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