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Abstract
Background: The advance in high-throughput genomic technologies including microarrays has
demonstrated the potential of generating a tremendous amount of gene expression data for the
entire genome. Deciphering transcriptional networks that convey information on intracluster
correlations and intercluster connections of genes is a crucial analysis task in the post-sequence
era. Most of the existing analysis methods for genome-wide gene expression profiles consist of
several steps that often require human involvement based on experiential knowledge that is
generally difficult to acquire and formalize. Moreover, large-scale datasets typically incur
prohibitively expensive computation overhead and thus result in a long experiment-analysis
research cycle.

Results: We propose a parallel computation-based random matrix theory approach to analyze the
cross correlations of gene expression data in an entirely automatic and objective manner to
eliminate the ambiguities and subjectivity inherent to human decisions. We apply the proposed
approach to the publicly available human liver cancer data and yeast cycle data, and generate
transcriptional networks that illustrate interacting functional modules. The experimental results
conform accurately to those published in previous literatures.

Conclusions: The correlations calculated from experimental measurements typically contain both
“genuine” and “random” components. In the proposed approach, we remove the “random”
component by testing the statistics of the eigenvalues of the correlation matrix against a “null
hypothesis” — a truly random correlation matrix obtained from mutually uncorrelated expression
data series. Our investigation into the components of deviating eigenvectors after varimax
orthogonal rotation reveals distinct functional modules. The utilization of high performance
computing resources including ScaLAPACK package, supercomputer and Linux PC cluster in our
implementations and experiments significantly reduces the amount of computation time that is
otherwise needed on a single workstation. More importantly, the large distributed shared memory
and parallel computing power allow us to process genomic datasets of enormous sizes.
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Background
The rapid growth of genomic sequence data starting in
early 1980's has spurred the development of computa-
tional tools for DNA sequence similarity searches, struc-
tural predictions, and functional predictions. The
emergence of high-throughput genomic technologies in
the late 1990's has enabled the analysis of higher order
cellular processes based on genome-wide expression pro-
files such as oligonucleotide or cDNA microarray. A typi-
cal microarray dataset contains hundreds of sample
points for thousands or tens of thousands of genes. A
colossal amount of profound knowledge at genome level
is hidden inside such immense expression data. A single
gene is usually extracted to differentially identify expres-
sion genes at a significant level. However, such point level
analysis does not address the full potential of genome-
scale experiments. Nowadays genes can be affiliated by
their co-regulated expression waveforms in addition to
sequence similarity and proximity on the chromosome as
in gene content analysis. Genes ascribed to the same clus-
ter are usually responsible for a specific physiological
process or belong to the same molecular complex. Such
transcriptome (mRNAs) datasets deliver new knowledge
and provide a revealing insight to the existing genome
(genes) datasets, and can be used to guide proteome (pro-
teins) and interactome research that aims to extract key
biological features such as protein-protein interactions
and subcellular localizations more accurately and effi-
ciently.

However, organizing genome-wide gene expression data
into meaningful function modules remains a great chal-
lenge. Many non-supervised and supervised computa-
tional techniques have been proposed to conjecture the
cellular network based on microarray hybridization data.
The widely employed techniques include Boolean net-
work methods, differential equation-based network
methods, Bayesian network methods, hierarchical cluster-
ing, K-means clustering, self-organizing map (SOM), and
correlation-based association network methods.

Boolean network method is a coarse simplification of
gene networks to determine the gene state as either 0 or 1
from the inputs of many other genes [1,2]. Differential
equation-based network models gene networks as a set of
nonlinear differential equations that indicate the gene rate
change without the assumption of discrete time steps [3].
Bayesian network gives a graphical display of dependence
structure based on conditional probabilities among genes.
In hierarchical clustering, a dendogram is constructed by
iteratively grouping together genes with the highest corre-
lation, which is essentially a greedy algorithm achieving
local optimality while disregarding negative association
[4]. K-means clustering is an improved approach of hier-
archical clustering requiring a subjective specification on

the number of clusters [5]. SOM is a neural network-based
iterative clustering method and also requires the user to
estimate the initial cluster number [6]. The correlation-
based association network technique has been commonly
adopted to identify cellular networks due to its computa-
tional simplicity and the nature of microarray data (i.e.,
typically noisy, highly dimensional and significantly
undersampled). However, the association network
method relies on arbitrarily assigned thresholds for link
cutoff, which inevitably introduces subjectivity in build-
ing network structure and topology. A novel technology,
which can determine the structure of transcriptional net-
works and uncover biological regularities in a computer-
ized and unbiased way, has been under active study by
biological scientists.

There exists a wide range of microarray clustering and vis-
ualization tools available with statistical analysis support,
including affy, cclust, cluster, mcluster, hybridHclust,
SOM packages from R environment [7], integrated sys-
tems such as Bioconductor [8], and Cluster 3.0/Tree view
[9], web-based systems such as cyberT [10], SNOMAD
[11] and CARMAweb [12]. Many stand-alone systems are
built upon R statistical packages using aforementioned
clustering algorithms. We will discuss both the advantages
and disadvantages associated with each clustering algo-
rithm using real data examples in the next section. On the
other hand, rapidly emerging large-scale genomic datasets
pose a great challenge to current bioinformatics software
and hardware resources. Most existing bioinformatics
tools were developed as serial codes that are suitable for
running on a single workstation, but often incur an
unbearably long time delay or even cannot complete exe-
cution for large datasets due to limited memory. To date,
cutting edge supercomputers such as IBM BlueGene, SGI
Altix and Cray XT3, high-speed networks, high-perform-
ance storages as well as large-screen display devices have
been in place or are being deployed across the nation. Effi-
cient utilization of these high performance computing
resources can help solve the problem of computation bot-
tleneck and expedite the experimental turnaround time.
The growing desire for improved application performance
and reduced operational costs necessitates the design and
development of parallel computing programs targeted at
large-scale biological problems.

We propose to develop a system that constructs and ana-
lyzes various aspects of transcriptional networks based on
random matrix theory (RMT) [13,14] using ScaLAPACK
[15,16] for parallel calculation of linear algebra routines.
We run our software package on two datasets: (i) yeast
cycle microarray dataset [17] with about 2,500 genes and
79 samples, and (ii) human liver cancer microarray data-
set [18] with about 20,000 genes and 207 samples. Com-
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parisons are performed between the results generated by
our package and some other popular packages.

Results and discussion
The program in this work is implemented in C and MPI
Fortran, and currently runs on a Linux cluster with eight
nodes. We are now in the process of transiting our system
from the Linux cluster to supercomputers with thousands
of compute nodes. The experimental datasets are extracted
from two public project websites, namely yeast cycle and
human liver cancer projects.

Yeast cycle dataset
Yeast cell cycling data is one of the best known microarray
datasets that have been extensively evaluated. Since the
structure of the network has been quite well understood,
we are able to evaluate our clustering results by referring
to an extensive set of published works.

Results from RMT method
The entire yeast genome is partitioned into a large number
of functional modules sharing similar expression pat-
terns. The large components of a deviating eigenvector
computed from the Pearson correlation matrix are identi-

fied as gene members that belong to a specific functional
module involved in a similar cellular pathway.

Fig. 1 and Fig. 2 show some distinct modules such as pro-
tein biogenesis, DNA replication and repair, energy
metabolism, protein degradation, heat shock protein,
TCA cycle, protein folding, allantoin mechanism, and his-
tone. Various colors of the edges represent different ranges
of correlation values between pairs of genes (vertices). By
visual observation, we note that the correlations within
groups represented by red or orange links are much higher
than those between different groups represented by blue
or green links, which strongly indicates the effectiveness
of our clustering approach. For groups with a large
number of genes, we recursively apply the same method
to identify subgroups within large groups. Two major sub-
modules for the first group with 230 genes in Fig. 1 are
identified as glycolysis and cell cycle. By applying RMT
method to the yeast cycle dataset, we have demonstrated
that our results on functional module identification are
consistent with available biological knowledge, which
justifies the correctness of our approach.

Yeast cycle networkFigure 1
Yeast cycle network. Yeast transcriptional network labeled with gene names and created by pajek [25]
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Results from K-means clustering method
We use cclust package under the R environment to con-
duct K-means clustering, which repeatedly moves all clus-
ter centers to the mean of their Voronoi sets. The distance
between the cluster center and the data points is based on
the Euclidian distance and polynomial learning rate is
used. The major drawback of K-means method is that a
user must specify the number of clusters, which is usually
unknown for unexplored microarray datasets. For experi-
mental purposes, we set the cluster number to be 20 based
on previous results we obtained from the RMT method. K-
means is able to identify protein biogenesis group with
114 genes; however some closely related protein biogen-
esis genes are assigned to several other unrelated groups.
K-means algorithm tends to break down a coherent group
with a large or medium number of gene members but
lacks the capability of identifying small groups such as
histone group of 9 genes, which has been successfully
identified by our RMT method.

Results from hybrid hierarchical clustering method
Hierarchical clustering method has been widely used by
contemporary biologists to cluster microarray datasets.
Groups of genes are nested at different levels of details

represented by a dendrogram. A user can choose either to
build the hierarchical structure in a bottom-up or a top-
down fashion. The bottom-up approach can identify
small clusters but not large ones, while the top-down
approach can easily discern a few large clusters. Chipman
proposed a novel hybrid clustering method [19], which
combines the advantages of bottom-up hierarchical clus-
tering with that of top-down clustering. The key idea is to
create mutual clusters comprised of members closer to
each other than to any other members. A user can perform
a constrained top-down clustering, which inhibits the
breaking of any identified mutual clusters. We load the
hybridHclust library into the R environment and run it on
our yeast cycle data with 2,500 genes. Squared Euclidean
distance is used to calculate the similarity between genes.
Average linkage is exploited to join clusters. A user may
also use single or complete for linking, which will only
affect the dendrogram plotting not the mutual clusters. It
generates a heavily cluttered dendrogram, which is tedi-
ous for users to interpret the nested structure even with a
relatively small number of genes. When examining some
of the mutual clusters, we find out that those mutual clus-
ters are indeed highly correlated with each other. For
example, five glycolysis genes are identified as one mutual

Yeast cycle function modulesFigure 2
Yeast cycle function modules. Some functional modules and their gene members for yeast cycle genes

Functional Modules Gene Members

Protein biogenesis

RPL8B RPL34B RPS19A RPS26B
RPL7B RPL14A RPS6B RPL33B
RPS1B RPL9A RPL11B RPS24A
RPL26B RPS15 RPL24A RPL12B
RPS0A RPS19B RPL19B RPL27B
RPS29B RPL13A RPS4B RPL33A
RPS29A RPL18B RPL11A RPS21A
RPS7A RPL24B RPL9B RPL6B
RPS20 RPL17B…(omit the rest)

DNA replication and repair

CDC45 KIM2 MSH2 DUN1 POL30
SMC3 RFA2 RNR1 SWE1 POL2
POL32 RFA1 SEN34 PIF1 SPH1
OGG1 CDC21 RHC18 RFC3
RAD27 TUB4 ZDS2 ASF1 HCM1
MSH6 RFC5 SAS2 BNI4 CDC2
PMS1 ARP1 POL1 TOP1 RAD51
FCP1 PMT5 PCH1 RNR3 MRE11
ALG2 PRI1 RFA3 BUD2 DUT1
ASF2 ADK2 CDC9 ECM25 RFC4

Protein degradation

SCL1 PUP2 PRE2 PRE5 PRE1
PRE3 RPN6 PRE4 RPT6 PRE9
RPT1 RPN9 RPT4 RPN10 RPN11
PRE7 PUP1 RPN3 PRE8 PRE10
UFD1 UMP1 PRE6 RPN12 PUP3
RPN7 RPT3 RPN2 RPT5 GSH2
QRI8 STE24

Functional Modules

Heat shock protein

Histone

TCA cycle

allantoin utilization

Energy metabolism

Gene Members

SSA2 SSA1 ECM10 SSA4 KAR2
STI1 SIS1 SUR2 YME1 SRP21

FCY1 SUI1 VAM3 PFD4

HHT1 HTA1 HTB1 HHF2 HTA2
HHT2 HHF1 HTB2 HHO1

CYT1 SDH2 MDH1 SDH4 QCR6
ACH1 COR1 SDH3 RIP1

DAL2 DAL1 DAL3 DAL5 MEP2

MRPL9 MRPL13 ATP12 PET123
COX12 MRPL35 MRP2 ATP11
MRP17 DBI56 QCR8 MRP51 PPA2
HXT4 COX17 RML2 MRPS5
MRPL38 MRP7 MRPL25 ATP14
MSS51 FMC1 MSM1 MRPL8 CYT2
COX14 MEF1 MRPL32 MSN4
CBP4 PHB1 MSF1 MRPL16
MRPL6 IMG2 MRP13 NAM2 MAS1
MRPL36 NAM9 CYC3 KIM4 CBP3
STS1 COX10 MBA1 MRPL31
ECM19 STP4 CAF16 COX13 CAP1
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cluster, eight out of nine histone genes are found within
one mutual cluster. However, the size of a typical mutual
cluster is generally quite small ranging from 2 to 8 with
the majority of 2. We cannot use mutual clusters alone to
identify any bigger size clusters. The mutual cluster
method works well in recognizing distinct small size clus-
ters. However, negative correlations providing important
anti-regulation information in many cellular processes,
are ignored in the similarity calculation. Moreover,
mutual clustering is sensitive to small data variations
which may easily cause gene membership change.
Another problem associated with hybrid clustering is that
with an increasing density of gene numbers, some genes
will likely occur within the boundary of any mutual clus-
ter, thus making it dificult to find mutual clusters [19].

Human liver cancer dataset
We characterize the expression pattern of gene expressions
in hepatocellular carcinoma (HCC) using RMT method.
There are about 20000 genes with more than 200 sam-
ples, including 97 primary HCC, 76 nontumor liver tis-
sues, 7 benigh liver tumor samples with 3 adenoma and 4
FNH, 7 metastatic cancers, and 9 HCC cell lines. We clus-
ter the microarray data for both genes and samples. The
liver samples are roughly divided into two major groups,
namely the HCC tumor tissues and nontumor liver tis-
sues, where a few HCC tumor samples are found in the
nontumor cluster. Adenoma and FNH samples are dis-
persed within the HCC cluster. Metastatic colon cancer
samples are identified as a single cluster due to their
highly similar expression patterns. Two metastatic granu-
losa cell tumor samples are also grouped together. We
observe that our method is also able to detect subclusters
within a big cluster. For example, since tumor samples
that are acquired from the same patient usually display
similar expression patterns, 6 HCC samples from patient
HK64 are grouped together as a subcluster within HCC
cluster; 5 samples from patient HK66 are found in the
same subcluster; 3 samples from patient SF34 also appear
in one subcluster. Our clustering results conform nicely to
the results published in the literature [20].

In addition to samples, we also successfully categorize the
20000 genes separately using parallel RMT program exe-
cuted on an eight-node Linux cluster with a parallel com-
putation time of about 20 minutes. However, domain
knowledge in liver cancer is needed to elucidate our clus-
tering results at a greater depth. The authors are seeking
collaboration on this aspect. We also try to apply R
hybridHclust library to the human liver cancer dataset.
However, the hybridHclust library under the R environ-
ment cannot even read the raw dataset due to the upper
limit on the loadable memory in Windows. K-means clus-
tering is tested on human liver cancer data as well. Fig 3
illustrates the K-means clustering results of 20 different

clusters. Each dot stands for one gene with different color
representing different cluster membership. Different ini-
tial setting for the total cluster number produces signifi-
cantly different clustering results, making K-means an
unfavorable clustering approach for unknown microarray
datasets.

Conclusions
High-throughput genomic technologies such as microar-
rays have generated gene expression data at the transcrip-
tion level. The unprecedented power for the study of gene
expression of thousands of genes simultaneously can be
potentially used to unveil the topology and functions of
transcriptional networks. In this paper, we explored ran-
dom matrix theory and parallel computing techniques to
dissect transcriptional networks and identify various func-
tional modules for large-scale microarray datasets.

Luo et al[21] also proposed a random matrix theory-based
approach to infer transcriptional networks based on
microarray data. However, their analysis is mainly focused
on eigenvalues. In addition, their method require more
computation cycles to calculate eigenvalues for many dif-
ferent correlation matrices. In our approach, we only need
to compute eigenstates for one correlation matrix. We
experimentally compare the performance between hierar-
chical clustering, K-means clustering, and our RMT
method. Hierarchical clustering method is a very popular
grouping technique used by biologists due to the simple
underlying rationale and tree-like structure that can be
easily visualized. However, similar to other heuristic
approaches, it suffers from no guarantee of global optimi-
zation. Another problem with hierarchical clustering is
that once a local grouping decision is made, no backtrack-
ing is possible. Moreover, when the total number of genes
becomes prohibitively large, it is extremely dificult to ana-
lyze the nested tree structure to identify clusters. K-means
algorithm, a typical partitioning based clustering method,
seeks to find K clusters that minimize the sum of squared
distances between each gene and its centroid. Input
parameters such as the number of clusters and initial cen-
troid locations need to be selected. However, different
input parameters may lead to very different results, conse-
quently leading to the problem of human subjectivity. K-
means typically converges very fast, however, to a local
optima, rather than the global optimum.

Our RMT method analyzes the genomic datasets from a
global view. High levels of noise inherent to most biolog-
ical datasets are removed first, and the true signal is fur-
ther amplified for enhanced data interpretation.
Consequently, RMT method avoids being trapped into
local optima. Small-sized clusters that are easily mixed
with other clusters by some clustering algorithms can be
accurately extracted by our RMT method. Experimental
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results show that RMT method is able to recognize biolog-
ically meaningful clusters with various gene numbers
ranging from two to several hundreds.

Most previous clustering methods partition members into
non-overlapping groups. However, in our RMT method,
one gene is allowed to reside in multiple groups, which
supports a legitimate argument from the biological per-
spective that a single gene may get involved in different
pathways. Transitively co-regulated genes, which are not
directly correlated but both of which have correlation
with the same gene, can also be detected and grouped.
Our method is computationally efficient, objective with-
out human intervention, and robust to high levels of

noise. Functions of unknown genes are conjectured and
explored through their associated function modules. This
computational analysis is solely based on microarray
data. If genes in the same functional module do not show
a significant correlation, we will not be able to identify
them using RMT method. However, it is likely that genes
in the same functional module show a significant correla-
tion under one condition but not under another condi-
tion, for example, the module of heat shock proteins is
rarely identified in other yeast microarray datasets. By
consolidating functional modules from multiple micro-
array datasets simultaneously, we will be able to improve
the liability of the structure of functional modules. The
authors will work toward this direction in the future.

K-means clustering results for human liver cancer genesFigure 3
K-means clustering results for human liver cancer genes. K-means results with 20 clusters for human liver cancer 
genes
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Methods
Problem formulation
We define the expression signal of gene i = 1, …, N in var-
ious samples s = 1, …, K as:

where Esi (s) denotes the expression signal of samplesfor
gene i, and Eci (s) is the corresponding control signal. To
account for various levels of expression signal shown by
different genes, we normalize the data as:

where  represents the standard devia-

tion of Wi, and Wi stands for the average over different

samples for gene i. From this normalized N × K data
matrix M, we calculate the cross-correlation matrix C
according to

Pearson correlation coefficient Cxy between gene x and y,
each with k data series, can also be calculated from Eq. 4:

where sx and sy denotes the standard deviations. Pearson
correlation ranges from 1 as perfect correlation to -1 as
perfect anti-correlation. When Cij = 0, no correlation exists
between genes i and j. However, conducting direct study
on these empirical cross-correlation coefficients is rather
difficult due to the unique properties of microarray exper-
iments. Firstly, the cross-correlation between any pair of
genes may not be constant: such co-regulations can fluc-
tuate over time or under different sample conditions. Sec-
ondly, the limited number of samples that a microarray is
typically conducted upon, may introduce significant
“measurement noise” that compromises the accuracy of
the underlying correlations. In order to filter out random-
ness contained within the empirical cross-correlation
matrix, we test the eigenstates of this correlation matrix
against those of a controlled counterpart, a truly random
correlation matrix generated by computer random gener-
ator. Statistic properties that conform to the truly random
matrix are labeled as noise contributions; on the other
hand, any deviating eigenstates are treated as genuine cor-
relations, which will be amplified and analyzed for tran-
scriptional network construction.

Deviating eigenvalues of the correlation matrix
We further compare the probability distributions PC (λ)
and PR (λ) of the eigenvalues λi calculated from the cross-
correlation matrix C and the random matrix R, respec-
tively. Eigenvalues are arranged in an ascending order
such that λi < λi+1. The probability distributions PC (λ) and
PR (λ) for human liver cancer data are plotted in Fig. 4. It
has been observed that a set of the eigenvalues of C fall
within the well-defined range of [λ−, λ+] calculated from
R, with a few deviating from the upper (λ+) and lower
bounds (λ−) conveying the true correlation information.
This observation enables us to separate the real correla-
tion from the randomness. This denoising process is nec-
essary since microarray data is extremely undersampled
and may introduce significant measurement noise. Inter-
estingly, Kwapien et al.[22] found that increasing the
length of time series or number of samples would cause
eigenvalues to deviate more from the random matrix
eigenvalue bounds. They declared that the bulk of the cor-
relation matrix is not pure noise as conventionally
thought to be. It could be possible that more subtle and
less prevalent co-regulated gene groups could be squeezed
out of the noise segment if we are able to acquire a larger
sample size K. However, in practice, a large sample size K
from the perspective of mathematical view is not always
feasible for most biological datasets due to the considera-
ble time and material resources involved in bio-related
experiments.

The components of the corresponding deviating 
eigenvectors
We consider the set of eigenvalues that deviate from the
eigenvalue range of the random matrix as genuine corre-
lation. The amount of variance contributed by each eigen-
vector (factor) can be reflected by the proportion of
eigenvalue over the sum of all eigenvalues based on prin-
ciple component analysis (PCA). In other words, princi-
ple factors are responsible for the majority of variation
within the data. Thus, only large eigenvalues and their cor-
responding eigenvectors are retained for further treatment
and gene group analysis. The rest of the eigenstates con-
tain either insignificant or noisy information.

Deviating eigenvalues naturally lead us to the investiga-
tion of their corresponding deviating eigenvectors. There
are N eigenvectors ui in total, i = 1…N. Each eigenvector ui

has N components corresponding to N gene variables. All
eigenvectors are perpendicular(orthogonal) to each other
and are normalized to length of 1. The probability distri-
bution of eigenvector components for different eigenval-
ues are plotted and compared against that of a random
matrix, which follows Gaussian distribution with zero
mean and unit variance.
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The probability distribution of the eigenvector compo-
nents with the corresponding eigenvalue λk from the bulk
λ− ≤ λk ≤ λ+ from human liver cancer data shows a good
agreement with Gaussian distribution as indicated by the
upper figure in Fig. 5. The deviating eigenvector compo-

β
π

( ) exp .u
u= −⎛

⎝
⎜⎜

⎞

⎠
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1

2

2

2
(5)

Eigenvalue probability distributionFigure 4
Eigenvalue probability distribution. Comparison of probability distributions for eigenvalues. Left: Eigenvalues calculated 
from a random correlation matrix R. Right: Eigenvalues calculated correlation matrix C from human liver cancer dataset.

Eigenvector components probability distribution for human liver cancer dataFigure 5
Eigenvector components probability distribution for human liver cancer data. upper: eigenvector components for 
uK, an undeviating eigenvector; lower: eigenvector components for uN, a deviating eigenvector.
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nents demonstrate a significant deviation from the Gaus-
sian distribution as shown by the lower figure in Fig. 5. It
has been also observed that the distribution curve is grad-
ually reforming to approximate the shape of a Gaussian
distribution when eigenstates approach the characteristic
region represented by a random matrix.

Loading factor and orthogonal rotation
After acquiring a set of normalized eigenvectors, we trans-
form the eigenvector components to loading factors by
taking the multiplication of vector components and the
square root of corresponding eigenvalue. Each eigenvec-
tor represents one factor leading to one gene cluster. A
larger loading factor (we select 0.5 to be the cutoff point)
indicates that the corresponding gene “load” more on that
eigenvector, or that gene is more expression-dominating
for that cluster. To simplify the eigenvector structure and
make the interpretation of gene clusters easier and more
reliable, we apply orthogonal rotation to the retained
eigenvectors. Since the rotation is performed in the sub-
space of the entire eigenstates, the total variation
explained by the newly rotated factors are always less than
the original space, but the variation within the subspace
remains the same before and after rotation, only the par-
tition of variation changes.

VARIMAX [23] is a simple and popular rotation method
that transforms the principle data axes such that each
eigenvector will contain a small number of large loadings
and a large number of zeroes or small loadings. Biologi-
cally speaking, each gene tends to load heavily on only
one or a few gene clusters. Thus, gene clusters consist of a
reduced number of genes compared with pre-rotation
results. The rationale behind VARIMAX is that a rotation
(linear combination) of the original factors is searched in
order to maximize the variance within factor loadings. A
rotation matrix R can be determined to specify such rota-
tion as following:

where θi,j is the rotation angle from old axis i to new axis j.

Stability of gene clusters in samples
The eigensignal zi (s) of a certain eigenvector ui under a
sample series s is computed as the scalar product of the
sample series on the eigenvector as shown in Eq. 6. The
stability of gene clustering based on our eigenstates anal-
ysis can be evaluated in terms of variance of total expres-
sion signals denoted by zi for eigenvector i among
different samples and time series. The variances are
directly associated with the corresponding eigenvalues as
one of the most important properties of eigensignals [22]
in Eq. 7. The gene cluster derived from eigenvector with

larger eigenvalue is more unstable compared with gene
cluster associated with smaller eigenvalue. Note that vari-
ance levels indicate the consistence of gene members
across different samples. Stability evaluation does not
affect our clustering results. It only provides additional
information on the quality of cluster membership.

Time-lagging expression behavior among genes
Time-series gene expression data provides temporal
dimension of knowledge space. However, most similarity
measurement techniques including Pearson correlation
usually consider the expression patterns between two
genes under the same conditions or at the same time
points, no time-lagging analysis is taken into account.
Thus, expression time-lagged genes will not be correctly
identified as the same group. In fact, a certain time lag
usually exists before a transcription factor begins to influ-
ence the expression of some other genes because of the
delay in signaling mechanism. Such co-regulation behav-
ior could be categorized as either up-regulation or down-
regulation, namely the expression of a gene may either
stimulate or inhibit the expression of other genes. It is our
interest to capture and explore the time-lagging relation-
ship among all the genes in our future work. Cross-corre-
lation method [24] in Eq.8 calculates the correlation
between two genes by taking the time-lagging into consid-
eration.

where xt is the expression signal of a known gene at time

t, and  is the mean of xt. yk+t is the expression level of a

gene at time k+t, and  is the mean of yy+t. N denotes the

number of time points and k represents the time delay/
lag. Likewise, the correlation will also be large if the first
expression signal leads the second with the expression
waveform shifted to the left of the second.

To capture the discrete correlation of two gene samples
with time-series expression data, we can utilize discrete

R
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Fourier transform to compute the correlation. Corr(x, y)k
denotes the correlation of two genes x and y.

where X(f) and Y(f) are the discrete Fourier transforms of
xt and yt, and the asterisk represents complex conjugation.

In addition, after genes are clustered by time-lagging anal-
ysis, people usually conduct upstream sequence analysis
to identify consensus regulatory elements for those genes
that are controlled by the same transcription factor.

Parallel linear package ScaLAPACK
A single workstation is no longer fast and powerful
enough to cope with emerging large scale microarray data-
sets. High performance computing facilities become
indispensable tools for biologists to reduce the computing
time and improve efficiency. In order to calculate the
eigenvalues and eigenvectors for a large correlation
matrix, we install ScaLAPACK on our Linux cluster. ScaLA-
PACK is an acronym for Scalable Linear Algebra Package,
and is a library of high-performance linear algebra rou-
tines for distributed memory message-passing computers.
PDSYEVX routine is used to compute selected eigenvalues
and eigenvectors of a real symmetric matrix by calling the
recommended sequence of ScaLAPACK routines. We use
2D block-cyclic data distribution for work load balance
among all computer nodes to achieve performance and
scalability. The size of the subblock dividing the symmet-
ric correlation matrix is chosen to be 64 × 64, and the
computer grid configuration is set to be 2×4 for an eight
node cluster. With the help of parallel computing pack-
ages, we are able to finish some heavy computing tasks
within short period of time (one hour), which might take
up to days for a single workstation to run.
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