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Abstract
Background: Microarray technology is often used to identify the genes that are differentially
expressed between two biological conditions. On the other hand, since microarray datasets
contain a small number of samples and a large number of genes, it is usually desirable to identify
small gene subsets with distinct pattern between sample classes. Such gene subsets are highly
discriminative in phenotype classification because of their tightly coupling features. Unfortunately,
such identified classifiers usually tend to have poor generalization properties on the test samples
due to overfitting problem.

Results: We propose a novel approach combining both supervised learning with unsupervised
learning techniques to generate increasingly discriminative gene clusters in an iterative manner.
Our experiments on both simulated and real datasets show that our method can produce a series
of robust gene clusters with good classification performance compared with existing approaches.

Conclusion: This backward approach for refining a series of highly discriminative gene clusters for
classification purpose proves to be very consistent and stable when applied to various types of
training samples.

Background
Microarray has become an important tool for identifying
genes that discriminate sample classes because of its
power of monitoring the expression levels of thousands of
genes in a single experiment. Finding discriminative genes
with microarray data is actually the feature selection prob-
lem in classification theory. From the machine learning
point of view, it is critical since the microarray datasets
usually contain a small number of experiments (called

samples) and a large number of genes (called features) in
each experiment. The selected highly discriminative genes
after filtering out those non-representative genes which
may dilute the pattern in classification computation can
be further studied for the investigation on the biological
mechanisms that are responsible for class distinction.

A number of efforts have been put in searching effective
gene selection methods (For example [1-6]). Due to the
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small-sample size and high-dimension properties of the
tissue classification problem, it is not difficult to find a
small feature subset that can perfectly discriminate all the
samples [7]. In fact, theoretical study in [8] showed that
even for the non-informative, randomly generated data-
set, the expected size of a feature subset that can linearly
discriminate all the n samples is just (n + 1)/2. In micro-
array data analysis, there can be a large number of highly
discriminative subsets containing only a couple of genes;
and each individual gene in such a subset is not necessar-
ily highly discriminative. For example, we observed by
exhaustive search that there are as many as 10,173 perfect
3-gene subsets for classification with the weighted voting
method proposed by Golub et al and with their proposed
training-test split [1]; and these gene subsets cover 3,337
genes (93.4% of all the 3,571 genes in the datasets after
preprocessing). This observation suggests that a method
of finding a highly discriminative compact gene subset is
not enough. The variability of the subsets found by such a
method likely hinders the discovery of real interaction
among the genes given that the method is usually sensi-
tive to both the choice of samples and noise in the micro-
array data.

The fundamental limit and challenges mentioned above
motivates us to design more robust methods by taking
into account the expression similarity information among
genes. In this paper, we identify a series of discriminative
gene clusters by running clustering and feature selection
processes iteratively, where the centroids of the clusters
are used to form predictors. This work also shows that the
predictor constructed in this way is more stable and less
sensitive to the choice of training samples. Because bio-
logical functions are usually resulted from collective
behavior and coordinated expression of a group of genes
rather than that of an individual gene, genes grouped
according to their co-expression pattern may be more
powerful in revealing gene regulation mechanisms.

Our approach to generate discriminative gene clusters is a
combination of supervised and unsupervised technique
In recent years, Jornsten and Yu [9] and Dettling and
Buhlmann [10] proposed similar combination
approaches. However, there are major differences
between their methods and our method. We use a multi-
variate approach for cluster selection, while Dettling and
Buhlmann [10] employed a univariate approach, which
assumes the independence of the contribution of clusters
to classification. Although such hypothesis reduces com-
putational complexity for large datasets, the accuracy is
compromised since the complex biological interaction
among gene clusters is not properly reflected. We exploit
a multivariate approach in the content of gene expression
analysis since it accounts for the joint contribution of clus-
ters to classification.

Our method differs from [9] in the following two aspects:
Although both works adopt multivariate approach, first of
all, in their information-based approach, clustering and
cluster selection are done simultaneously, resulting in a
set of clusters optimizing the Minimum Description
Length. In comparison, our computation-oriented
approach is a refining process where clustering and cluster
selection are performed alternatively in each iteration step
with better and better results. Secondly, the clusters gener-
ated with Jornsten and Yu's approach include both active
and inactive ones. Here, active clusters are those whose
centroids are relevant to classification, and inactive ones
are not. Our method is essentially a backward approach
[4]. It iteratively eliminates the less active clusters and re-
clusters the remaining genes in the active clusters, reduc-
ing the negative influence of non-discriminative clusters
on the classification.

Our program outputs a series of cluster sets that have
increasing discrimination power for training samples
without losing prediction power on the test samples, as
indicated in our experimental results. It achieved similar
or better prediction accuracy than the known methods
aforementioned for most of the tested datasets in our val-
idation process. More importantly, our test shows that the
centroids of the output clusters using different sets of
training samples are stable and consistently achieve signif-
icant proximity to the global optimal gene clusters
obtained by using all the samples. Another advantage of
our method is that it provides researchers with flexibility
to decide which cluster set should be chosen for their pur-
pose.

Results
We implemented the algorithm (described in the Meth-
ods section) as MATLAB functions. It runs on a PC with
the Windows operating system. The SVM program written
by Gavin Cawley was downloaded from the website http:/
/theoval.sys.uea.ac.uk/~gcc/svm/toolbox. In this section,
we present the detailed test results on both simulated and
Leukemia AML/ALL datasets [1]. We also have tested our
method on other real datasets and compared the perform-
ance of our algorithm with those reported in the previous
literature. The details of the performance measures are
described in the Method section.

Simulated datasets
We generated 100 simulated binary classification datasets
using a simple stochastic model. Each simulated dataset
contains 100 samples evenly split into two classes. Both
training and test samples contain 25 samples in each class.

Each dataset contains of 400 genes evenly divided into
four gene clusters. Two of the four clusters are relevant to
classification and these two discriminative clusters C1 and
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C2 contribute to classification independently. Their cen-

troids x(C1) and x(C2) are generated according to the sam-

ple class labels. Each component of x(C1) in a position is

generated according to normal distributions N(1, 0.5) or
N(-1, 0.5) depending on whether the corresponding sam-
ple is in class 1 or class -1, while each component of x(C2)

generated according to N(-1, 0.5) if the sample is in class
1 and N(1, 0.5) otherwise. Similarly, the centroids of the
non-discriminative clusters C3 and C4 are generated

according to the normal distribution N(1, 1) and N(-1,1)
regardless of the samples' class. For each i = 1, 2, 3, 4, the
expression values of a gene in the cluster Ci are generated

according to the multivariate normal distribution

, where di = minj ≠ id(x(Ci), x(Cj)).

We run our algorithm with the input gene set S contains
all the 400 genes for each of the 100 simulated datasets.
The performance results are summarized in Fig. 1. We
observed that the classification performance of the gener-
ated clusters keeps increasing as the iteration process goes.
The average classification accuracy θtest of these tests jumps
from 0.756 up to 0.848 (Fig. 1a); and the classification
accuracy θtrain on training samples goes up from 0.720 to
0.984 (Fig. 1b).

We also observed that more and more truly discriminative
genes are identified in the active clusters as the algorithm
proceeds. Since the genes in the discriminative clusters are
known in each simulated dataset, we computed the ratio

 of the truly discriminative genes

over all the genes in Si for each iteration i. The active clus-

ters output psim (i), just before the algorithm terminates is

about 0.778 (Fig. 1c). Recall that, at each iteration i, the

algorithm generates κ = 50 active gene clusters since the
number of training samples nr = 50 for each simulated

dataset. We found that at each iteration i, the centroids of
two active clusters are very close to x(C1) and x(C2), the

centriods of the discriminative clusters in the model. This

is reflected by the indistinguishably small p-value ρS (i)

calculated based on (Ai, Δ'). Here (Ai, Δ') is the 'aver-

age' Euclidean distance of centroids between an active

cluster in Ai and its closest cluster in Δ' = {C1, C2}.

In the same time, the centroids of active clusters become
more and more distinguishable from each other, increas-
ingly close to the average pairwise distance of all 400

genes, and such trend can also be reflected by the increas-

ing p-value ρS (i) from 0.228 up to 0.476 (Fig. 1d), calcu-

lated based on (Ai), the average Euclidean distance

between the centroids of active clusters in Ai. Meanwhile,

the Silhouette width (Ai) of active clusters in Ai

increases from 0.826 to 0.980.

Leukemia dataset
Leukemia AML/ALL dataset [1] contains the expression
values of 6,817 human genes in 47 acute lymphoblastic
leukemia (ALL) and 25 acute myeloid leukemia (AML)
tissue samples. After performing the threshold filtering
and logarithmic transformation procedure, we obtained a
reduced dataset with only 3,571 genes.

Here, we validate our algorithm by using three-fold cross
validation. In each run, we randomly selected two third of
the samples as the training samples and the rest as the test-
ing samples. The samples of different classes are kept pro-
portional in the training and test samples. The resulting
dataset was further normalized by rescaling the variance
of expression values of each gene to 1 in the training sam-
ples, and then applying the same rescaling factor to the
expression values of that gene in the test samples.

We conducted the three-fold cross validation for 100
times. To reduce computational cost, we restrict our algo-
rithm on small portions of discriminative genes. In each
run, the algorithm starts with the input gene set S consist-
ing of the 357 genes (10% of all the 3,571 genes) that are
highly correlated with the training samples' classification
in terms of the correlation metric proposed in [1].

Fig. 2 summarizes the values of the different performance
indicators. The average classification accuracy θtrain on the
training samples ranges from 0.994 up to 1 (Fig. 2b); and
the average classification accuracy θtest on the test samples
increase slightly from 0.966 to 0.972 (Fig. 2a). These
results show that the centroids of the clusters generated in
different iteration steps discriminate the training samples
better and better without significant decrease of its gener-
alization ability.

For the evaluation of our algorithm, we searched for per-
fect 3-gene subsets, which can be used to perfectly classify
all 72 samples using the weighted voting classifier trained
on all the samples. This search resulted in 9,722 perfect

subsets. We selected 48 (roughly equal to nr) genes gi (1 ≤

i ≤ 48) with highest occurrence frequency to form the clus-

ter set  = {{gi}|1 ≤ i ≤ 48} for comparison with the

clusters generated by our algorithm.

N x Ci
di( ( ), )4

p isim
Si C C

Si
( )

( )= ∩ ∪1 2

d d

δ̂

ω

′Δ1
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We also evaluate our algorithm using another cluster set

, the final set of active clusters generated by our algo-

rithm with S' as the input gene subset and with all the 72
samples as the training samples, where S' is the set of the
357 genes (10% of all the 3,571 genes) that are highly cor-
related with the AML/ALL classes in terms of the correla-
tion metric proposed in [1].

Probably because of the selection sensitivity of the corre-
lation metric of [1] resulting from small sample size, the
gene sets that are selected according to different training-
test splits do not have many genes in common. In all the
100 validation experiments, only 120 genes appearing in
every input gene set S. This number is quite small com-
pared with 1,071, the number of the genes appearing in
some input gene sets (each of size 357). By contrast, the

centroids of clusters in the set Ai generated in each of iter-

ations of our algorithm in different runs are significantly

similar to the selected discriminative genes in  and 

at most iteration steps. This is reflected by the very small

p-values ρS(i) computed based on  and

, which range from 4.11 × 10-2 to 6.12 × 10-3

(Fig. 2c) and from 5.62 × 10-3 to 2.38 × 10-3 (Fig. 2d)
respectively. The above observation strongly suggests the
stability associated with discriminative clusters rather
than with individual discriminative genes. Such stability
is one of the main advantages of our method.

We further studied the biological function of genes in the
active clusters using Gene Ontology (GO), focusing on
the biological processes located at the fifth level of the GO
hierarchy. For the set of all genes from active clusters in Ai,

′Δ2

′Δ1 ′Δ2

d Ai( , )′Δ1

d Ai( , )′Δ2

The performance analysis on simulated datasetsFigure 1
The performance analysis on simulated datasets. The solid lines indicate the average values; and dotted lines indicate 
one standard deviation from the averages. The X-axis represents the number of genes in Si. Note that, when the generating 

process goes, the number of genes in Si decreases. (a) The classification accuracy θtest on the test samples. (b) The classification 

accuracy θtrain on the training samples. (c) The percentage psim (i) of truly discriminative genes in Si; (d) The p-value ρS(i) based 

on (Ai).
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we find its enriched biological processes by calculating the
hyper-geometric p-value, then convert the p-value into a
log score s by s = -log10 (p). Table 1 gives the top four bio-
logical processes that are most significantly enriched in
the active clusters in the final iteration, in terms of the
score averaged from the 100 validation experiments. All
four processes are frequently associated with leukemia. In
addition, we inspected the change of proportion of the
genes of the four processes in the active clusters during
refinement iterations. The proportions are also averaged
over the 100 validation experiments. Fig 3 shows that
when the active clusters contain less than two third genes
in input gene set S, the average gene proportions of all
four processes monotonically increase until the last itera-
tion. Such convergence strongly suggests that our method
can indeed refine clusters into biologically meaningful
ones. Interestingly, processes of inflammatory response

and response to wounding showed very similar conver-
gence patterns. In fact, these two processes are closely
related. The same holds for biological processes of regula-
tion of catalytic activity and positive regulation of meta-
bolic process.

The analysis of the three-fold cross validation performance of the algorithm on the Leukemia datasetFigure 2
The analysis of the three-fold cross validation performance of the algorithm on the Leukemia dataset. The dot-
ted lines indicate the performance values in individual tests. The solid lines indicate the average values; and the dotted lines 
indicate one standard deviation from the averages. The X-axis represents the number of genes in Si. (a) The classification accu-

racy θtest on the test samples. (b) The classification accuracy θtrain on the training samples. (c) The p-values ρS(i) based on 

. (d) The p-values ρS(i) based on . (e) The p-value ρall(i) based on (Ai). (f) The average Silhouette width 

(Ai) of active clusters in Ai.
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Table 1: Significantly enriched biological processes

Biological process Average score

Inflammatory response 2.72
Regulation of catalytic activity 2.19
Response to wounding 1.98
Positive regulation of metabolic process 1.95
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The performance analysis on other real datasets
Besides the above dataset, we also tested our algorithm on
seven other datasets. The descriptions of these datasets are
listed in Additional file 1. Altogether, we derive 12 classi-
fication studies from the 8 datasets.

We preprocessed each dataset by applying filtering and
logarithm transformation if necessary. For each classifica-
tion study, we run our algorithm 100 times by choosing
random training-test splits in the same way as the Leuke-
mia dataset described in the last subsection. The perform-
ance of our method is summarized in Table 2. In the table,
there are two columns for each performance measure,
indicating the average values of the corresponding meas-
ures at the first and last iteration step of our algorithm.
Because the exhaustive search of the most frequent glo-

bally optimal genes for constructing  is time-consum-

ing, we only compare the active clusters with 

constructed as follows: 1) we apply our algorithm on all
samples in the dataset and 2) use the active clusters of the

last iteration as .

The classification accuracy θtest on the test samples shows
that among 9 of 12 classification studies, the prediction
performance of active clusters in Ai increases slightly from
the start to the end of each execution, which are high-

lighted in the table. The value of θtest for the remaining
three studies (Breast, Colon and Carcinoma) decrease
slightly. The above observations indicate that for all data-
sets we tested, there is no significant decrease in the gen-
eralization ability of the active clusters in Ai obtained in
each iteration step. The classification performance θtrain on
the training samples increases in all of the 12 studies,
which indicates that the separation of the training sam-
ples improves for all studies.

All the 100 input gene sets S vary a lot in different runs for
each study. There are only 1.1% to 5.1% of all the genes
appearing in all the 100 input gene sets S, while at least
23.8% to 51.7% genes appear in some input gene sets. By
contrast, the centroids of clusters in Ai generated by our

algorithm at each iteration step i are stably close to the

optimal centroids of clusters in  as reflected by the p-

values ρS(i) ranging from 2.99 × 10-4 to 8.75 × 10-2 at the

first iteration step and those ranging from 6.42 × 10-5 to
3.20 × 10-2 in the last iteration step. The consistent close-
ness of the clusters generated in different repeats can also

be reflected in the standard deviation of ρS(i), which are

limited from 0.32 to 0.96 times of the absolute values of

ρS(i) in the first iteration step and 0.24 to 1.37 times at the

last iteration step.

′Δ1

′Δ2

′Δ2

′Δ2

Average proportion of genes of the four biological processes during the refinement iterationsFigure 3
Average proportion of genes of the four biological processes during the refinement iterations. The solid black, 
blue, red, and green lines corresponding to the ordered processes in Table 1 from top to bottom.
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During the generation process, the p-values ρall(i) of aver-

age pairwise distance (Ai) among centroids of clusters

in Ai keeps increasing for all 12 studies (ranging from

0.088 to 0.750 at the first iteration step and from 0.252 to
0.755 in the last step), and the average Silhouette width of
active clusters (Ai) keeps increasing for all the 12 stud-

ies (ranging from 0.230 to 0.698 at the first iteration step
and from 0.964 to 0.989 in the last iteration step). This
indicates that the clusters in Ai are more and more distinct

in general.

In summary, our test shows that on real microarray data-
sets, our algorithm is able to generate clusters that sepa-
rate the training samples with increasing prediction
accuracy and closeness to known optimal clusters. Such
discriminative cluster refinement is consistent with what
we have observed on simulated datasets.

Comparing the classification performance to other studies
In this section, we compare the cross validation perform-
ance of our method with previous works reported in
[9,10,15,16]. For the purpose of comparison, we con-
verted the classification performance from the classifica-
tion accuracy θtest into the error rate. Table 3 summarizes

the comparison of our algorithm (of both binary and
multi-class versions) with others by the cross validation
error rates. It is difficult to make direct comparisons with
other approaches in the literature, because the specific
data sets or data preparation are not always available.
However, the performances our method is in general com-
parable to others. In the comparison, the DLBCL and Car-
cinoma datasets are validated using leave-one-out
validation; and the remaining datasets are validated using
three-fold cross validation.

Dettling and Buhlmann [10] reported the error rate of
their algorithm for different datasets. They employed
nearest neighbors and aggregated trees as the classifiers in
their three-fold cross validation test. For the leukemia
AML/ALL dataset, our algorithm seems to achieve a
slightly lower error rate than theirs. In the Colon and Pros-
tate datasets, the error rate of our algorithm lies between
that of theirs. For the Breast dataset, the error rate is signif-
icantly higher than that of Dettling and Buhlmann's.
However, we obtained the performance using all the orig-
inal 49 samples. The error rate in each test ranges from
7.89 to 6.90. According to [17], at least 7 out of the 49
samples are inherently erroneous. In comparison, Det-
tling and Buhlmann [10] used the 38 good samples
selected by [17], and the error rate ranges from 1.14 to

δ̂

ω

Table 2: The performance of the algorithm for different classification studies

Datasets θtest ρS(i) based on ρall(i) based on (Ai)
(Ai)

Leukemia ALL T/B cell 0.970 0.977 1.72E-02 8.28E-03 0.088 0.331 0.406 0.973
Breast 0.843 0.842 1.33E-02 8.36E-03 0.142 0.421 0.351 0.974
Carcinoma 0.983 0.981 2.96E-02 3.20E-02 0.194 0.252 0.382 0.966
Colon 0.814 0.806 2.43E-02 2.06E-02 0.750 0.755 0.673 0.978
DLBCL 0.896 0.929 8.75E-02 1.99E-02 0.441 0.514 0.716 0.982
Melanoma 0.913 0.921 1.71E-02 2.25E-02 0.129 0.463 0.272 0.957
Prostate 0.889 0.916 4.79E-02 2.27E-02 0.495 0.541 0.680 0.987
SRBCT-BL 1.000 1.000 3.63E-04 7.52E-05 0.314 0.322 0.682 0.984
SRBCT-EWS 0.956 0.986 5.06E-04 9.17E-05 0.297 0.408 0.634 0.984
SRBCT-NB 0.989 0.996 2.99E-04 6.42E-05 0.321 0.436 0.665 0.986
SRBCT-RMS 0.974 0.980 4.82E-04 8.18E-05 0.304 0.347 0.630 0.989
Lukemia AML/ALL 0.966 0.972 5.62E-03 2.38E-03 0.212 0.398 0.627 0.980

d Ai( , )′Δ2 δ̂ ω

Table 3: Comparison of our algorithm with others

Datasets Our algorithm Dettling and Buhlmann (2002) Jornsten and Yu (2003) Shipp et al. (2002)

Lukemia AML/ALL 3.43 – 2.57 6.58 – 2.71
Leukemia three classes 13.8 – 9.3 12.6
Breast 16.14 – 14.11 3.00 – 0.75
Carcinoma 5.6 – 0.0
Colon 19.41 – 18.23 23.35 – 15.95 13.6
DLBCL 8.7 – 7.4 7.8
Prostate 11.09 – 8.36 16.47 – 6.91
SRBCT multi class 5.92 – 4.27 5.76 – 0.43
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0.10. The 38 samples used in Dettling and Buhlmann [10]
consists none of the above 7 erroneous samples. Thus, we
believe that the performances of ours and Dettling and
Buhlmann's are still comparable for the Breast dataset.

For the DLBCL dataset, the leave-one-out performance of
Shipp et al. [15] is in our performance range. For Carci-
noma dataset, Jaeger et al. [16] achieved perfect leave-one-
out performance, and our best performance can match
theirs. For the Colon dataset, both ours and Dettling and
Buhlmann's error rate are higher than Jornsten and Yu's.

We also test the performance of the multiple-class version
of our method against other methods. For the Leukemia
three-class dataset, our method is comparable to Jornsten
and Yu's method. However, for the SRBCT multi class
dataset, our algorithm seems had a slightly higher error
rate than that of Dettling and Buhlmann's.

Conclusion
Due to the small-sample-high-dimension nature of the
microarray dataset, it is not difficult to find highly dis-
criminative gene subsets of small size. However, if a gene
selection process is unstable with the choice of training
samples, the biological significance of the resulting gene
subsets is often not guaranteed. In this paper, instead of
finding individual discriminative genes or gene subsets,
we propose a novel backward approach for generating a
series of highly discriminative gene clusters. Compared to
selection of individual discriminative genes, genes
grouped in these clusters are more stable when subject to
change of training samples. Therefore they could provide
more convincing support to gene interactions that are
associated with the sample classes. In future, we will work
with biologists to study the biomedical implication of
these clusters.

Regarding to the classification performance, the gene clus-
ters produced by our approach can generally achieve good
cross validation performance compared to the existing
methods for most of datasets we tested. More importantly,
our test experiments show that regardless of the choice of
training samples, the centroids of the clusters generated
are stable and significantly close to the known optimal
gene clusters found using all the samples. All these indi-
cate that our approach is promising. However, the current
version of our algorithm is time-consuming. In future, the
computational efficiency will be investigated. On the
other hand, we used K-means algorithm, a typical parti-
tioning based clustering method to seek a certain number
of clusters that minimize the sum of squared distances
between each gene and its centroid. The drawback for K-
means is the subjective specification of input parameters
such as the number of clusters and initial centroid loca-
tions. For unknown microarray datasets, such informa-

tion is unavailable. Furthermore, different input
parameters may result in significantly different clustering
results. K-means can only converge to local optima, rather
than the global optimum. In order to address these prob-
lems associated with K-means clustering. We plan to
apply a novel clustering method based on Random Matrix
Theory (RMT) [18] which is completely objective and do
not require the specification of cluster number and initial
centroid locations. RMT method avoids being trapped
into local optima. Furthermore, most previous clustering
methods including K-means and hierarchical clustering
partition members into non-overlapping groups. The
RMT method allows the same genes in multiple groups to
reflect the fact that a single gene may contribute to multi-
ple biological pathways.

In order to test the discriminative power of a certain gene
cluster, additional criteria established by statistical analy-
sis should also be conducted to identify and remove inac-
tive cluster. For example, gene expression pattern
observed in the active clusters should be less likely to
appear in the control set. Chi Square test might be used to
test the significance. Some data normalization technique
may be considered in the preprocessing step to improve
the data quality. Furthermore, more suitable backward
feature selection method needs to be exploited so that the
gene clustering and cluster selection processes can be inte-
grated better. Our approach provides a flexible framework
that allows us to test the performance of various comput-
ing modules in a various ways of combinations.

Methods
Algorithm
In this subsection, we present our backward approach for
generating discriminative gene clusters. The method is
executed in a repetitive manner. In each pass, the method
first groups genes into clusters that may indicate func-
tional categories [11]. It then ranks the generated clusters
and eliminates those clusters that are less discriminative
so that the re-clustering of remaining genes can generate
modules with better resolution and stronger association
with the sample classes. In the clustering stage, we use the
K-means method to group the genes into a constant
number of active clusters.

In the elimination stage, we use a backward feature selec-
tion method. This stage involves cluster validation and
evaluation of the discriminative ability of active clusters.
To validate clusters, we use the Silhouette width [12] to
measure their validity. Assume the input genes are parti-

tioned into p clusters C1, C2,..., Cp. Given a gene g, let 

be the average Euclidian distance between g and another

gene within the same cluster, and let  the average Euc-

w g

bgJ
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lidian distance between g and a gene in a different cluster
CJ. Then the Silhouette width wg of g is defined as

, and the Silhouette width of a

cluster is defined as the average Silhouette width of all its
members. It is easy to see that the Silhouette width of a
cluster fall within the range from -1 to 1. A good cluster
should have a high Silhouette width.

To measure the discriminative ability of an active cluster,
we adopt the idea of SVM-RFE method in [2]. Support
Vector Machine (SVM) is a binary-class prediction
method originated from statistical learning theory [13]. A
linear SVM first finds a decision hyperplane y = wTx + b
that maximizes the separation between samples of two
classes; and then it does class prediction according to the
relative location of a new sample with respect to the
hyperplane in the feature space. Note that the weight vec-
tor w found by the linear SVM indicates the relative
importance of the genes for the classification. Here, we
iteratively train a linear SVM and eliminate a gene cluster
based on an overall evaluation on both the weight and the
Silhouette width instead of discarding single gene in the
original SVM-RFE method. Such systematic approach
makes the elimination process to better reflect the under-
lying biological meaning.

Our method is summarized into the algorithm in Fig. 4.
In the algorithm, Δ denotes the set of inactive gene clus-
ters; Ai denotes the set of active clusters at each iteration i;
Si denotes the set of genes under consideration at the
beginning of the iteration i; κ denotes the number of clus-
ters partitioned at each iteration step. For simplicity, we
set κ to be nr, the number of training samples.

It is often difficult to determine how many clusters the
genes should be grouped into for microarray datasets,
which usually have complex expression patterns. The
algorithm outputs κ = nr, the number of the training sam-
ples, active clusters in each iteration. This is because the
expected size of a feature subset that can linearly discrim-
inate all the samples is only (nγ + 1)/2 [8]. Note that if the
feature number is too small, the clustering will lose its res-
olution.

Recall that the K-means clustering method starts with an
initial partition of the genes. In order to make it more
deterministic in Step 2, we first select κ genes as follows:
Find a furthest gene pair and form an initial gene set G,
and then iteratively find a gene with largest average Eucli-
dean distance from the genes in G and add it into G until
|G| = κ. We then partition all the genes into κ clusters by
merging each gene with its nearest gene in G.

The calculation of the Silhouette width of each cluster in
Ai takes all the clusters in both sets Ai and Δ into account.
At the ith iteration, the algorithm groups all the genes in
the set Si into κ clusters, forming the cluster set Ai, and
then insert the least active cluster into the inactive cluster
set Δ in Step 5 as follows.

There are two important factors to evaluate in order to
determine which cluster should be removed from Si and
added into Δ. The first factor is the cluster's Silhouette
width. Another factor is the cluster's discriminative ability
in terms of its weight determined by the linear SVM con-
structed in Step 4. Here, we would like to eliminate a least
discriminative cluster whose centroid is sufficiently repre-
sentative of the expression pattern of the cluster (meas-
ured by the Silhouette width). In other words, we
eliminate a set of well clustered genes whose expression
patterns have little contribution to classification. On the
other hand, those not well clustered genes will be re-clus-
tered at later iterations.

Since the above two factors are not always consistent, we
adopt a multiple objective optimization technique
appearing in [14] to find a nice tradeoff between these two
factor and such multiple objective method is shown in
Fig. 5.

Finally, we can extend the algorithm to the multiple-class
case by adopting the popular one-against-all approach. In
this approach, given a training test split, both training and
test samples of a dataset of K > 2 classes are transferred
into K binary classification problems, each corresponding
to classify samples from one class against samples from all
remaining classes. Then our algorithm executed on the K
problems results in K series of active cluster sets Aj, i, j =

ω g
J

bgJ wg

J
bgJ wg

=
( )−

( )⎛

⎝
⎜

⎞

⎠
⎟

min

max min ,

The algorithm of selecting discriminative clustersFigure 4
The algorithm of selecting discriminative clusters.
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while  do  
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Train a linear SVM using the centroids of active clusters in ; 
Find a  least  active cluster  in   according to its Silhouette width and  weight 
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 ;  
end do 
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1,..., K. Then classifiers are constructed using K × κ clusters

from the K active cluster sets  by selecting

i1,..., iK such that | |,..., | | are roughly identical.

Given the centroids of the above K × κ clusters, a multi-
class linear SVM is trained using training samples and
tested on test samples.

Performance measures
We validate our method in terms of its classification per-
formance and clustering performance. The classification
performance is determined by the classification accuracy
on training or testing samples. We use the SVM as the clas-
sifier to evaluate the generated gene clusters. Classifica-
tion accuracy θtest on the test samples is defined as the
percentage of the correctly classified samples. However,
we define classification accuracy θtrain on training samples
as the average accuracy of the 10-fold cross validation on
the training samples as suggested in [4] for less biased esti-
mation of classification performance.

The clustering quality is measured in terms of the density
of the clusters, as well as the distinction between clusters
and the closeness of the clusters to some reference clus-
ters. They are measured respectively by (a) the average Sil-
houette width (Ai) of active clusters in Ai produced in

iteration i, (b) the average Euclidean distance (Ai)

between the centroids of active clusters in Ai and (c) the

'average' Euclidean distance (Ai, Δ') of centroids

between the an active cluster in Ai and its closest cluster in

a reference cluster set Δ' (the construction can be found in
the Result Section). To be more precise, assume Ai =

{C1,..., Cκ} and Δ' = {D1,..., Dκ}. First, from 1 to κ, find

recursively  ∈ Ai and  ∈ Δ' such that

,

where x() denotes the centeroid of a cluster, d(,) the Eucli-

dean distance between two vectors,  and

. Then, the 'average' Euclidean distance

(Ai, Δ') is defined as .

We measure the statistical significance of average dis-
tances in both case (b) and (c) at each iteration i against
the pairwise distances of all genes in the input gene set S
in terms of the p-value ρS(i), and against all the genes in
the dataset in terms of the p-value ρall(i). In each case, the
p-values are calculated according to the empirical distri-
bution (null distribution) of the pairwise distance of
genes randomly sampled in the whole dataset.
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