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Abstract

Background: The retina as a model system with extensive information on genes involved in development/maintenance
is of great value for investigations employing deep sequencing to capture transcriptome change over time. This in turn
could enable us to find patterns in gene expression across time to reveal transition in biological processes.

Methods: We developed a bioinformatics pipeline to categorize genes based on their differential expression
and their alternative splicing status across time by binning genes based on their transcriptional kinetics. Genes
within same bins were then leveraged to query gene annotation databases to discover molecular programs
employed by the developing retina.

Results: Using our pipeline on RNA-Seq data obtained from fractionated (nucleus/cytoplasm) developing retina
at embryonic day (E) 16 and postnatal day (P) 0, we captured high-resolution as in the difference between the
cytoplasm and the nucleus at the same developmental time. We found de novo transcription of genes whose
transcripts were exclusively found in the nuclear transcriptome at P0. Further analysis showed that these genes
enriched for functions that are known to be executed during postnatal development, thus showing that the P0
nuclear transcriptome is temporally ahead of that of its cytoplasm. We extended our strategy to perform temporal
analysis comparing P0 data to either P21-Nrl-wildtype (WT) or P21-Nrl-knockout (KO) retinae, which predicted that the
KO retina would have compromised vasculature. Indeed, histological manifestation of vasodilation has been reported at
a later time point (P60).

Conclusions: Thus, our approach was predictive of a phenotype before it presented histologically. Our strategy can be
extended to investigating the development and/or disease progression of other tissue types.
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Background
The retina has been the most accessible part of the devel-
oping central nervous system with a wealth of information
on detailed birth order of its cell types and on many genes
involved in executing specific programs such as cell cycle
regulation, cell fate determination, and neuronal differen-
tiation. However, a comprehensive gene regulatory net-
work is still not achieved as gene-centric approach can
only go so far. To address this issue, transcriptome cap-
ture to identify co-transcriptionally regulated genes across
retinal development has previously been attempted and
was of great value [1]. However, these efforts were ham-
pered by the lack of depth of the captured transcriptome
and lack of fractionation to gain higher resolution. An-
other concern was that at any given time the retina con-
sists of different cell types with varied transcriptomes,
which renders finding meaning from co-transcriptionally
regulated genes difficult. We wanted to investigate
whether higher depth of the captured transcriptome
through RNA-Seq with minimal cross-compartment (nu-
cleus-cytoplasm) normalization could resolve this issue.
Here we report analysis of RNA-Seq data from cyto-

plasmic and nuclear transcriptome of the developing ret-
ina. We show that combinatorial use of RNA-Seq with
our custom bioinformatics strategy reveals the precise
order of gene activation and transitions in processes dur-
ing retinal development. Transition in gene expression
was validated and resolved at the isoform level through
our custom microarray. Importantly, we show proof of
principle by extending our methodology to analyze
RNA-Seq data from P21-Nrl-WT and KO retinae. Our
approach which focuses on understanding the temporal
progression in gene expression during normal/aberrant
development can be extended to development and dis-
ease progression of other tissues.

Methods
Animal procedures
All experiments used CD1 mice from Charles River
Laboratory, MA. All mice procedures were compliant
with the protocols approved by the University of
Connecticut’s Institutional Animal Care and Use
Committee (IACUC).

RNA fractionation
Retinae were dissected from E16 embryos and P0 pups
followed by fractionation protocol as described previously
[2]. Once the fractions were obtained, Trizol (Invitrogen,
CA, cat # 15596-026) was used as per the manufacturer’s
instructions.

Library preparation for deep sequencing
After the total RNA was prepared from the two frac-
tions, ribosomal RNA (rRNA) was removed using

Ribozero Ribosomal RNA removal kit (Epicenter, WI,
cat # RZH1046) by following the manufacturer’s in-
structions. The removal of rRNA was confirmed by gel
electrophoresis and was used for RNA-Seq library
preparation. RNA-Seq library was prepared using
Script-seq mRNA seq library preparation kit (Cambio,
UK, cat # SS10906). The library was deep sequenced
in multiple runs using Illumina Hi-Seq 2000 platform
at the University of Connecticut Health Center Deep
sequencing core facility. P21 Nrl- WT and KO RNA-
Seq data was shared with us by Dr. Anand Swaroop;
National Eye Institute [3].

RNA-Seq analysis
CD1 reference creation
The transcriptome captured by deep sequencing was
obtained as short paired-end reads. We analyzed the
RNA-Seq data from each sample through riboPicker [4],
an algorithm to identify reads derived from rRNA, which
showed minimal (0.02–0.34 %) rRNA reads (Table 1).
Next, reads were mapped to the mouse genome and the
transcriptome to create a reference. The mouse genome
sequence (mm10, NCBI build 38) was downloaded from
UCSC database [5, 6] together with the GTF for the
Ensembl transcript library (release 68) (http://geno
me.ucsc.edu). The paired-end reads from E16 cytoplas-
mic extract (CE), P0CE and P0 nuclear extract (NE)
were mapped separately to the mm10 genome and the
transcript sequences extracted according to the Ensembl
transcript library coordinates. Mapping was done using
bowtie [7] and allowed for three mismatches in seed-
length of 30 bases. For each sample, the two sets of read
alignments (genome and transcriptome) were merged
together using the HardMerge tool from the NGSTools
suite [8]. HardMerge discards reads that align at mul-
tiple locations in the genome or transcriptome as well as
reads that align uniquely to each but at discordant loca-
tions. This initial mapping was used to perform mis-
match analysis with another tool in the NGSTools suite
(Additional file 1: Figure S1). Accordingly, the first 6 and
last 32 bases from each read were trimmed. The
trimmed reads (62 bp) were remapped using the afore-
mentioned mapping parameters to the genome and tran-
scriptome, and were once again merged using the
HardMerge rules. Since the RNA-Seq was performed on

Table 1 Read mapping statistics and rRNA levels in the E16CE,
P0CE, and P0NE samples

Sample Percentage of transcriptome
mapped read pairs

Percentage of
rRNA reads

# mapped
bases in Gb

E16CE 61.26 % 0.34 % 7.54

P0CE 52.85 % 0.19 % 7.69

P0NE 25.42 % 0.03 % 4.02
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retinal RNA extracted from CD1 strain mice, the result-
ing alignments from all three samples were pooled to-
gether and used to call Single Nucleotide Variations
(SNVs) using SNVQ [8]. A CD1 reference genome se-
quence was created by modifying the mm10 reference to
reflect the inferred SNVs. Transcript sequences were ex-
tracted from this CD1 genome based on Ensembl 68
annotations.

Gene expression analysis
E16CE, P0CE and P0NE reads were mapped against the
CD1 Ensembl 68 transcriptome reference. The P21 WT
and KO single end reads were mapped against the

C57BL6 reference transcriptome based on Ensembl ver-
sion 68. Mapping was done using bowtie and allowed for
one mismatch in an alignment seed of 30 bases. Gene ex-
pression levels were estimated using IsoEM [9], an
expectation-maximization algorithm that estimates iso-
form frequency from single and paired RNA-Seq reads.
IsoEM exploits read disambiguation information provided
by the distribution of insert sizes generated during se-
quencing library preparation, and takes advantage of base
quality scores, strand, and read pairing information. Iso-
form expression is reported as Fragment per Kilobase per
million mapped reads (FPKM) units and gene expression
is the sum of FPKM of its constituent isoforms. For gene

Fig. 1 Binning strategy for RNA-Seq data. Binning protocol shown here is for two theoretical samples, A and B. Schematic on the top shows the
different steps in the binning protocol and the outcomes are shown as bar graphs underneath (purple boxes). In the bar graph FPKM units are
shown on the y-axis and the gene is represented as a bar in green (sample A) and orange (sample B). Colored lines within the bar represent the
constituent isoforms (Yellow boxes). The dashed line represents the threshold (1 FPKM) of gene expression
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differential expression, two methods were run, GFOLD
[10] and Fisher’s exact test with house-keeping gene
normalization as in [11]. Gapdh was used as the house-
keeping gene for this analysis. Genes were called differen-
tially expressed if they showed ≥2 fold expression in one
sample by both methods. GFOLD was run on the CD1
transcriptome aligned reads, with default parameters and a
p-value of 0.01. Fisher’s exact test was run on estimated
number of reads mapped per kilobase of gene length (cal-
culated from IsoEM estimated FPKM values). Similar to
GFOLD, a p-value of 0.01 was used for Fisher’s exact test.

Binning strategy
Samples were analyzed in pairs, and genes were classi-
fied based on their expression levels (expressed vs. not
expressed), differential gene expression status, and the
number of expressed isoforms. 1 FPKM was set as
threshold for expression. Genes were then classified into
one of the following bins (Fig. 1) based on yes/no calls.
Firstly, genes with expression level less than 1 FPKM in
both compared samples are placed in the not expressed
(No_Ex) bin (Fig. 1i). The rest of the genes, which were
expressed in at least one sample, were further catego-
rized into the following bins (Fig. 1ii). Genes expressed
exclusively in one sample were placed in one of the
ONLY bins (Fig. 1iii). Differential expression calls were
made for genes expressed in both samples (Fig. 1iv). If a
gene passed GFOLD and Fisher’s test, then it was placed
in the over represented (OR) bin. Genes, which did not
pass both or either of these tests, were placed in the
non-differentially represented (non_DR) bin. Bins of
expressed genes were subcategorized based on the alter-
native splicing status of the genes. This categorization
included single and multiple isoform bins (SI, MI).
There were genes with multiple isoforms that were indi-
vidually below threshold, but the sum of FPKM values of
these isoforms is above threshold. These were placed in
the multiple isoforms below threshold (MIBT) bin. Simi-
larly, genes expressed with multiple isoforms where only
one isoform was above threshold were placed in the
multiple isoforms one above threshold (MOAT) bin.

Functional annotation analysis
Genes belonging to each bin were analyzed for enrichment
of individual GO terms to find whether co-transcriptionally
regulated genes had overlapping functions using the Data-
base for Annotation, Visualization and Integrated
Discovery, DAVID (Fig. 2a-i) [12, 13]. Default parameters
(≤0.05 Benjamini score) were used for all analyses. The
gene lists enriching for GO terms were run through an-
other online tool called GeneMANIA to identify potential
partners [14]. First, we took the gene list underlying a bio-
logical process identified by DAVID and used it as bait in
GeneMANIA (Fig. 2c-II), which identified potential

partners for genes from the primary list. The potential part-
ners identified by GeneMANIA are based on published lit-
erature and publicly available databases, which could
introduce a partner that is relevant in another tissue, but
might not be expressed in the retina. To eliminate such
genes, we selected only those genes that were expressed in
our RNA-Seq data. Subsequently, this short list of genes
was added to the primary list to generate a secondary list,
which was used again as bait in GeneMANIA. This process
was repeated until convergence, which was reached after
three iterations (Fig. 2c-II).

Microarray design
We designed a custom Affymetrix microarray to en masse
interrogate the presence/absence of unique exon/exon
junctions in isoforms expressed in the RNA-Seq data. After
mapping the RNA-Seq reads from the three samples
(E16-CE, P0-CE and P0-NE) to the Ensembl 68 tran-
scripts and running IsoEM to estimate the FPKM
values for each of the three samples, genes expressed
in any of the three samples were selected. Exon-exon
junctions that are unique among expressed transcripts
in genes that have more than one expressed transcript
were selected (junctions with flanking sequences of
length ≤12 bases were eliminated). As a result, we in-
cluded probes for 28,574 unique junctions from
11,923 transcripts on the custom Affymetrix chip.

Custom affymetrix data analysis
Cytoplasmic RNA (1 μg) was prepared from retinae
harvested from E12, E16, E18 embryos and P0, P4,
P10 and P25 and processed at Yale Center for Gen-
ome Analysis. Expression levels of probe targets were
computed from the raw intensity values using the Ro-
bust Multichip Average (RMA) algorithm [15, 16],
which was performed with the affy R package [17].
Subsequently, the data were processed through Gene
Expression Similarity Investigation Suite (Genesis)
(v1.7.6) for k-means clustering [18]. Here, we ran 500
iterations to generate a total of 10 clusters that fell
into three categories based on expression kinetics.
These trends were defined as embryonic, postnatal,
and embryonic + postnatal. The gene lists belonging
to each cluster were separately analyzed for functional
enrichment using DAVID.

Results
RNA-Seq of fractionated retina
RNA for deep sequencing was obtained from retinae
from E16 as it is the midpoint in embryonic develop-
ment and P0 as it is a major transition in development.
RNA-Seq was performed on rRNA depleted RNA cap-
tured from the cytoplasmic extract (CE) of E16 and P0
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along with nuclear extract (NE) of P0. The rationale was
that by comparing the CE across development, we would
capture mRNA that were most likely translated into pro-
teins, which in turn would reveal transitions in biological
processes during the retinal development. Also, compar-
ing the cytoplasmic transcriptome minimizes the con-
tamination of unspliced transcripts contributed by the
nuclear fraction, which might spike the FPKM units of
isoforms and in turn the gene expression. On the other
hand, comparison of P0CE to P0NE would reveal tran-
scriptome dynamics within the P0 time point. The two-

way comparison (time and fraction) would capture
change in transcription kinetics with three distinct sets
of transcripts: transcripts in both fractions; transcripts
exclusively in the CE; and transcripts exclusively in the
NE. Overall, the transcriptome captured by RNA deep
sequencing was obtained as 99.28, 117.38, and 127.46
million paired-end reads from E16CE, P0CE, and P0NE,
respectively. An important decision for RNA-Seq ana-
lysis is setting the threshold for gene expression, which
in the field ranges from 0.3–1.0 FPKM [19]. This range
suggests that the threshold for any dataset must be

Fig. 2 Custom bioinformatics pipeline revealed transition in biological processes. a E16CE-P0CE comparison is shown with its bins as boxes that
were used to extract gene list for DAVID analysis and the GO terms for functions enriched by these lists were curated (Detailed list of GO terms
in Additional file 2: Table S1.1, S1.2). This process is represented by the roman number I. b An example to show the output of Part I, where
OR_P0CE bin was chosen from E16CE-P0CE comparison. The genes that enriched for a function in each bin in a were then subjected to pipeline
shown in c (II), which starts with gene list entry to GeneMANIA followed by (arrow going up) identification of new partners. (Right) Output of the
pipeline in c (II), where the primary gene list (17 genes) that enriched for “Visual Perception” function is shown in the first column. The three
iterations of the pipeline in part II are denoted as 1X, 2X and 3X. d (III). Genes in the final list were assigned to their bins in E16CE-P0CE and
P0CE-P0NE comparisons. e Output for d (III) with rows showing distribution of genes in bins from E16CE–P0CE comparison and the columns
reflecting genes in bins from P0CE-P0NE comparison
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vetted through empirical evidence. Thus, we interro-
gated a range of FPKM values to set the threshold for
gene expression in the retina. We found that 1 FPKM
was the appropriate value, as genes with known retinal
expression were above this threshold, hence considered
expressed. In contrast, skeletal muscle-specific genes
were below 1 FPKM, and were considered not expressed
in the retina (Table 2). While the low-level expression
(<1 FPKM) of skeletal muscle-specific genes might have
a yet-to-be-identified biological function in the retina,
we reasoned that in the absence of any literature support
it would be safe to consider them as not expressed, to
ensure high specificity of our analysis, at the cost of pos-
sible slight loss in sensitivity. Once the threshold was
set, the reads were then subjected to our custom bio-
informatics pipeline as described in materials and
methods. The output of mapping and gene expression
quantification was reported in Fragment per Kilobase
per million mapped reads (FPKM) units.

Validation of RNA-Seq data
We used genes with established expression kinetics to
objectively assess the sensitivity of RNA sequencing [20].
For example, Fgf15, Sfrp2, Atoh7 and Irx4 are known to
have higher expression levels at E16 than at P0, which
was reflected in E16CE compared to P0CE data (Fig. 3a)
[1, 21–25]. Likewise, expression of Fabp7, Gngt2, Nr2e3,
Nrl, and Rho was as predicted in that it was higher in
P0CE compared to E16CE (Fig. 3b) [1, 26–32]. Finally,
Pax6 showed little variation between E16CE and P0CE
(Fig. 3b), which was also as expected [33, 34]. The tran-
scriptional kinetics of some of these genes was inde-
pendently validated by qPCR analysis across retinal
development (E14, E16, E18, P0, P2, P4, P10, P25),
thereby confirming the robustness of both RNA-Seq
data and the bioinformatics approach used to assign ex-
pression and binning [2].
We also used the same paradigm of genes with estab-

lished expression kinetics to determine the level of

cross-contamination between P0CE and P0NE RNA. To
determine the level of nuclear RNA contaminating the
cytoplasmic extract, we checked the expression of genes
whose transcripts are predominantly nuclear, such as
Xist, Malat1, Tsix and Neat1 [2, 35–37]. Indeed, for all
four genes, the FPKM values were significantly higher in
the NE compared to the CE (Fig. 3c). Determining the
level of cytoplasmic RNA contamination in the nuclear
extract presented a unique challenge as the majority of
the RNA in the CE would be expected to be in the NE.
For this, we examined expression of replication-
dependent histone genes, as they are intronless and are
known to be efficiently exported to the cytoplasm [38].
Indeed, histone genes have higher FPKM in the CE than
the NE (Fig. 3d). Furthermore, replication-dependent
histone genes also serve to account for genomic DNA
contamination. These genes lack introns and do not re-
quire splicing, so histone genomic DNA would be read
as histone mRNA and inflate FPKM values in the NE,
which was not the case (Fig. 3d), thus confirming min-
imal genomic contamination. Finally, genomic DNA
contamination would result in FPKM value >0 for all
genes; however, we observed 0 FPKM in the NE for a
large number (804) of genes. In all, these controls sug-
gest that there was minimal genomic DNA contamin-
ation in our fractionated NE RNA-Seq data.

RNA-seq revealed high-resolution transcription kinetics
We wanted to test the fidelity of our approach in
capturing in vivo kinetics and the identification of co-
transcriptionally regulated genes. Inherent to our bin-
ning strategy is identification of co-transcriptionally
regulated genes. Therefore, the aforementioned bin-
ning strategy (Fig. 1) was employed for the E16CE vs.
P0CE comparison and the P0CE vs. P0NE comparison
to extract the transcription kinetics. For example,
genes in the E16CE_Only bin had FPKM below
threshold in P0CE. This suggests that transcription of
these genes was initiated at/before E16 and was down-
regulated after E16 or just before P0. Genes in the
P0CE_Only bin were transcribed after E16, but before
P0. Genes in the OR_E16CE bin suggest that their
transcription was initiated at/before E16 and downreg-
ulated after E16, but before P0 such that their FPKM
was not below threshold in P0CE. Overall, 12,041 gene
were expressed (Additional file 1: Figure S2) of which
10,369 were non-differentially represented (Non_DR)
between E16CE and P0CE (Additional file 2: Table
S1.1, S1.2, Additional file 1: Figure S2). Further ana-
lysis of alternative splicing status showed that genes in
Non_DR bin were alternatively spliced at a higher
level (42 %) compared to those undergoing transcrip-
tional change (37 %, Additional file 1: Figure S2). Like-
wise, the binning strategy was employed with the

Table 2 Skeletal muscle-specific genes expression. The table
shows FPKM values of skeletal muscle-specific genes in E16CE,
P0CE and P0NE samples

Skeletal-muscle genes E16CE FPKM P0CE FPKM P0NE FPKM

Tnnt3 0.10 0.11 0.00

Tnnt1 0.94 0.50 0.50

Tnni3k 0.00 0.02 0.10

Tnni2 0.30 0.21 0.20

Tnni1 0.10 0.90 0.44

Tnnc2 0.00 0.00 0.10

Tnnc1 0.63 0.95 0.91

Tnn 0.00 0.00 0.10
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Fig. 3 Validation of high-resolution transcriptome by RNA-Seq. a–d Expression of genes with established expression kinetics including a Fgf15,
Sfrp2, Atoh7, Irx4, b Fabp7, Gngt2, Nr2e3, Nrl, Rho, Pax6, c Malat1, Xist, Tsix, Neat1, d Hist2h2bb, Hist2h2aa2, Hist1h4k and Hist1h4f shown as bar
graph with FPKM in y-axis (log scale for a–c) between E16CE (blue), P0CE (red), and P0NE (black). e–j Combined E16CE-P0CE and P0CE-P0NE
high-resolution transcription kinetics, E16CE_Only (e), OR_E16CE (f), Non_DR (g), OR_P0CE (h), P0CE_Only (i) and No_Ex (j). OR_E16CE - Over
represented in E16CE; OR_P0CE – Over represented in P0CE; Non_DR – Non-differentially represented
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P0CE-P0NE comparison, which showed an increase in
the number of expressed genes, which was mostly
accounted for by the 2007 genes in the P0NE_Only
bin (Additional file 1: Figure S2). Investigation of the
alternative splicing status showed that genes over rep-
resented in P0NE (OR_P0NE) employed the highest
degree of alternative splicing (68 %) compared to other
bins including OR_P0CE (36 %) and Non-DR (52 %)
(Additional file 1: Figure S2). Next we combined
E16CE-P0CE transcription kinetics with those observed in
P0CE-P0NE transcription kinetics. Briefly, we took genes in
a bin from the E16CE-P0CE comparison and interrogated
their distribution in the different bins in the P0CE-P0NE
analysis, which yielded high-resolution transcription kinet-
ics. The term “high-resolution transcription kinetics” en-
capsulates both temporal and detection sensitivity. For
example, amongst the genes in the E16CE_Only (632) and
not expressed (No_Ex, 22,331) bins, 379 and 1628 genes
were detected above threshold in the P0NE_Only bin, re-
spectively (Fig. 3e and j). Similarly, 86 genes from the 384
genes in the OR_E16CE bin and 1710 genes from the
10,369 genes in the Non_DR bin were upregulated in the
P0NE compared to the P0CE (Fig. 3f and g). In contrast, 35
genes of the 255 genes in the OR_P0CE bin were downreg-
ulated in P0NE compared to P0CE, while FPKM for 13
genes was below threshold (Fig. 3h). Likewise, 11 genes of
401 genes found in P0CE_Only in the E16CE-P0CE com-
parison were downregulated in P0NE compared to CE and
94 genes had FPKM below threshold (Fig. 3i). Overall, there
were 2007 genes with transcripts exclusively in P0NE, of
which 1084 were protein coding genes, 582 were Gm
clones, 214 were Riken clones, and the rest were non-
coding RNA genes (Table 3).

Transcriptionally coupled genes revealed molecular
programs in the developing retina
Our objective here was to employ RNA-Seq to find tran-
scriptionally coupled genes so that we could leverage them
to discover molecular programs being employed during ret-
inal development. For this, genes were subjected to DAVID

analysis (Fig. 2a-i). Interestingly, our first submission of
genes (632; Fig. 3e) in the E16CE_Only bin to DAVID did
not enrich for any statistically significant (Benjamini <0.05)
functions (Fig. 2b). However, other bins with fewer or
more genes than in E16CE_only yielded many func-
tions (Fig. 4, Additional file 3: Table S2.1). For ex-
ample, genes in the OR_P0CE bin enriched for 7
functions of which the top hit was “visual perception”
(Fig. 2b, Additional file 3: Table S2.1), showing that
this function was initiated just before birth. This
showed that transcriptionally coupled genes could in-
form biological processes that were executed at that
developmental timepoint.
One caveat to our binning strategy was that while it

grouped genes based on transcription kinetics, it may
have separated genes participating in a common bio-
logical process (identified by DAVID) into different bins.
This in turn would prevent extraction of the expression
kinetics of genes known to participate in executing a
biological process of interest. To address this issue, we
devised an iterative approach using GeneMANIA
(Fig. 2c-II) to identify genes participating in a common
biological process from the different bins. For example,
17 genes in OR_P0CE genes (E16CE-P0CE) that
enriched for visual perception by DAVID were used as
bait in GeneMANIA, followed by the aforementioned it-
erations (Fig. 2c; 1x-3x) to generate a final list of 36
genes (Fig. 2c, Right). Subsequently, each gene was
assigned to its respective bin in both E16CE-P0CE and
P0CE-P0NE comparisons (Fig. 2d-III). Redistribution of
the genes into their respective bins is shown in Fig. 2e.
For visual perception, the transcription of Rdh5, which
converts all-trans retinal to 11-cis retinal [39] was initi-
ated at/before E16, shut down just before birth and was
initiated again at birth as we find it in P0NE_Only bin in
the P0CE-P0NE comparison (Fig. 2e). In contrast, Crb1,
Cngb3, Pcdh15 and Rgs9, which play a role in photo
transduction [40, 41] and structural support/maintenance
of photoreceptors [42, 43], were transcribed at/before E16
and upregulated at P0 as they were over-represented in
P0NE in P0CE-P0NE (Fig. 2e). Rp1, which is a
photoreceptor-specific microtubule-associated protein [44],
was the only gene that was transcribed at P0 (P0CE_Only
in E16CE-P0CE) that continued to be upregulated as it was
over-represented in P0NE in P0CE-P0NE (Fig. 2e). Tran-
scription of Guca1a was initiated between E16 and P0
(P0CE_Only in E16CE-P0CE), except it was turned off be-
fore P0 (P0CE_Only in P0CE-P0NE) (Fig. 2e). Through this
method we were able to deconstruct the precise activation
of genes involved in many aspects of vision acquisition/
phototransduction during embryonic development.
The same analysis was performed on all the bins in

P0CE-P0NE comparison. Specifically, genes in the
OR_P0NE bin showed enrichment for 120 GO terms of

Table 3 Distribution of 2007 transcripts in P0NE_Only sample

Type of RNA # genes

Protein coding genes 1084

Gm clones 582

Riken clones 214

Miscellaneous/Anti-sense/non-coding/rRNA 35

Pseudogenes 33

snoRNA 21

microRNA 27

lincRNA 5

snRNA 6
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which one of them was “synapse” (Additional file 3: Table
S2.2). This functional enrichment agrees with studies show-
ing that synaptogenesis occurs postnatally in the rodent ret-
ina [45]. Further analysis of genes underlying the GOterm
“synapse” showed transcription initiation of the AMPA re-
ceptor subunit genes including, Gria1, Gria2 and Gria4 be-
fore/at E16 (Non_DR in E16CE-P0CE) (Additional file 1:
Figure S3). Similarly Grik2, which encodes for a subunit of
the ionotropic kainate receptor, was also initiated before/at
E16 (Additional file 1: Figure S3). Gad2, which is necessary
for the production of the inhibitory neurotransmitter
GABA, was transcribed before E16, while Gad1 transcrip-
tion was initiated after E16 prior to birth (Additional file 1:
Figure S3). Overall, genes involved in formation of the pre-
synaptic activity were activated mostly during embryonic
development (Additional file 1: Figure S3). In contrast,
genes involved in postsynaptic activity had overlapping
transcriptional activation with a subset of genes (Grid2,
Grid1, Grik5, Grin3a, Ryr2 and Shank2) that were specific-
ally activated in P0NE (Additional file 1: Figure S3). Finally,
employing the same analysis for genes in P0NE_Only,
which reflected de novo transcription, enriched for 14 GO

terms, of which voltage-gated calcium ion channel activity
was one of the top hits (Additional file 3: Table S2.2). Again,
this enrichment did agree with previous studies where it
has been shown that calcium channel activity is crucial for
the construction of functional synapses that occurs postna-
tally [45].

Extending the analysis to other time points through the
custom microarray
To confirm our RNA-Seq findings and extend our ana-
lysis across retinal development, we leveraged our RNA-
Seq data to design a custom microarray. The array was
designed to en masse validate isoform kinetics by assay-
ing for unique exon-exon junctions of a subset of genes
across retinal development. The junctions were selected
based on the following criteria: 1) gene must have more
than one isoform expressed in the RNA-Seq data; and 2)
An exon-exon junction must be unique such that it is
not found more than once in all of the isoforms for that
gene in the Ensembl database. In all, the microarray had
28,575 probes for 5581 genes and was employed to in-
terrogate expression of these isoforms in the cytoplasmic

Fig. 4 RNA-Seq revealed progression of biological programs across normal and aberrant retinal development. a Schematized representation of
kinetics of the molecular programs identified by RNA-Seq (E16CE-P0CE- P0NE) is represented with different colors and the shapes represent the
gene expression kinetics. b Extension of our temporal analysis strategy to P21-Nrl-WT and P21-Nrl-KO by comparing them to P0 (P0CE + P0NE)
revealed molecular programs in normal development (P21-Nrl-WT) and unique programs in aberrant development (P21-Nrl-KO). c Schematic
representation of a cell at P0, where the cytoplasm and the nucleus are temporally synchronized and the cell with dotted line shows that the
nuclear transcriptome is shifted forward temporally compared to that of the cytoplasm
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transcriptomes of E12, E16, E18, P0, P4, P10 and P25
retinae. Data obtained were subjected to K-means clus-
tering with the Genesis software, which was set to gener-
ate 10 clusters (Additional file 4: Table S3). Based on the
overall patterns across time, the clusters were organized
into three groups: embryonic, embryonic + postnatal and
postnatal clusters (Fig. 5a-c), subsequently referred to as
clusters 1, 2, and 3, respectively.
Next, we applied DAVID analysis to each cluster and

found that embryonic clusters (Clusters 1 and 2)
enriched for functions such as cell cycle regulation
and cell projection organization (Fig. 5d). For the em-
bryonic + postnatal clusters (Clusters 3–9), the func-
tional GO terms that were enriched were those
required for cell cycle regulation and terminal

differentiation of neurons, such as vesicle-mediated
transport, synapse formation, negative regulation of
apoptosis, and axon guidance (Fig. 5e). Finally, the
sole postnatal cluster (Cluster 10) was the only one
that enriched for functions such as visual perception,
photoreceptor cell differentiation and sensory percep-
tion of light (Fig. 5f ). In all, the isoform-specific
microarray confirmed RNA-Seq findings and further
revealed the complexity of alternative splicing
employed by the developing retina.

Comparison with other analysis methods
Our analysis pipeline is characterized by two main fea-
tures, namely the temporal nature of the analysis and
the binning strategy that allow us to do the functional

Fig. 5 Custom microarray revealed isoform/gene expression coherence and validated RNA-Seq. a–c. Shown here is a centroid view of K-means
clusters of isoform-specific probes across retinal development (Clusters given in Additional file 4: Table S3). The y-axis shows arbitrary units (−3 to 3) of
expression and the developmental time is shown on top and bottom. d–f Selected GO terms enriched by DAVID analysis for genes in clusters (a-c)
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analysis on genes with very specific expression kinet-
ics. The current norm for next generation sequencing
based functional analysis in the literature is done
based on simple differential expression (DE) analysis,
where the whole list of DE genes is fed into DAVID, or
a similar functional annotation analysis platform. The
list of DE genes can sometimes be too large, exceeding
the input size limit of the functional analysis tool. To
overcome this problem, a sub-list is sometimes se-
lected based on prior knowledge of the gene functions
[46]. Most analysis are also done in a static manner,
where samples represent two conditions at the same
time point [3]. In this section, we studied the effect of
binning and the temporal analysis on the result, by
varying the analysis strategy. We first applied our ana-
lysis strategy to RNA-Seq data from P21-Nrl-WT and
P21-Nrl-KO (Courtesy Dr. Anand Swaroop; NEI) [3].
Then we applied three variants of the analysis pipe-
line, listed in Table 4, to the same data, and compared
the results.

Temporal analysis combined with static analysis of Nrl WT
and KO RNA-Seq is more informative
The loss of Nrl results in cell-fate switch from rod to
cone photoreceptors [47]. This made Nrl-KO an ideal
system to test our hypothesis that temporal comparison

would yield more information than the static analysis.
First we performed static comparison between P21-Nrl-
WT and P21-Nrl-KO data (Additional file 1: Figure S4,
Additional file 5: Table S4.1), similar to the one previ-
ously reported [47]. The objective of transcriptomics
analysis of wild-type and knockout tissue is to find genes
undergoing change to reveal the resulting biological
change in the absence of that gene. Surprisingly, DAVID
analysis of genes undergoing dynamic changes in gene
expression in static comparison of P21-Nrl-WT and KO
enriched for a couple of generic functions that did not
give any meaning in terms of the knockout phenotype
(Additional file 3: Table S2.5).
Our RNA-Seq analysis of data from E16CE to P0CE and

P0CE to P0NE comparisons showed that comparison
across time (Δ/time) was crucial in revealing biologically
relevant meaning from co-transcriptionally regulated genes.
Therefore, we introduced the variable of time by comparing
P21-Nrl-WT and P21-Nrl-KO data separately to our P0
data (P0CE + P0NE) (Additional file 1: Figure S4,
Additional file 5: Table S4.2, S4.3). The rationale was
that Δ/time would reveal unique sets of gene in P0 vs.
P21-Nrl-KO comparison, which in turn would reveal
changes in the biological processes. In both compari-
sons, there were several bins with co-transcriptionally
regulated genes (Additional file 1: Figure S4), which is

Table 4 The table shows our analysis strategy (highlighted in grey) and the three other analysis variants compared.

Fig. 6 Temporal comparison of P21-Nrl-WT and P21-Nrl-KO to P0. Shown is an example of common and unique GO terms identified in the
P21_only bin in both P0 vs. P21-Nrl-WT (P21WT_Only) and P0 vs. P21-Nrl-KO (P21KO_Only) comparisons and the genes underlying them. (Left)
common function (visual perception); (Right) Unique to P0 vs. P21-Nrl-KO (regulation of blood pressure) (Detailed list of GO terms in Additional
file 2: Table S1.3, S1.4)
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not surprising, considering the major developmental
shift from newly born developing retinae at P0 to fully
functional P21 retinae. Also, DAVID analysis yielded
significant GO terms for all the bins in the temporal
analysis (Additional file 3: Table S2.3, S2.4). Moreover,
there were many common functions in P21_Only bin
(P21WT_Only and P21KO_Only) in both analyses.
The most relevant issue was to ascertain the overlap
in the identity of genes for the same process in the
P21_Only bin in both sets of comparisons. For ex-
ample, one of the common function in P21_Only bin
was “visual perception”. Interrogating the genes
underlying the GO term “visual perception” in these
bins, there were 21 genes common to both P0-P21WT
and P0-P21KO analysis. However, 3 genes (Gnat1,
Gucy2f, Rpgr) were only found in the P0-P21WT com-
parison, and one gene (Glra1) was specific to the P0-
P21-KO comparison (Fig. 6, Left). The three genes
unique to WT comparison are known to operate spe-
cifically in rod photoreceptors, which were of course
absent in the Nrl-KO retina [48–50]. On the other
hand, Glra1 is an important gene for cone-bipolar
cells, which might be undergoing adaptive changes in
the Nrl-KO retina [51]. The GO terms enriched by
genes in P21_Only bin in the P0 vs. P21-Nrl-KO com-
parison were also informative. One of the functions
enriched in DAVID was “regulation of blood pressure”
(Fig. 6, right). Analysis of function of the genes under-
lying this enrichment revealed that most of them were
engaged in vasodilation, suggesting that the Nrl-KO
retina was undergoing vasculature restructuring/dila-
tion as a secondary effect of the cell-fate switch. More-
over, a recent report showed that the Nrl-KO retina
develops dilated retinal blood vessels and leakage at P60
[52]. This showed that our gene expression/binning strat-
egy captured the molecular signature at P21 for a pheno-
type that manifests histologically at P60.

Binning vs. DE based analysis of Nrl WT and KO data
Here we have introduced a new strategy for RNA-Seq
data analysis. To understand the advantages afforded by
this approach we compared our binning method to the
more commonly used DE method. First we analysed the
static comparison between Nrl-WT vs. Nrl-KO data by
the binning method and the DE-based method. Here we
found that the DE-based method showed a large number
(1116) of genes with differential expression (Additional
file 6: Table S5.1). Similar data was obtained by the bin-
ning method except that the DE genes were now in bins
labelled OR and Only, which reduced the large list of
DE genes into manageable quanta. Moreover, the inher-
ent value of the bins is inferred transcriptional kinetics.
However, the binning method has a cost, which is
reflected in the few statistically significant biological

functions enriched by DAVID analysis. In contrast, the
DE-based method generates a large list, which requires
the investigator to decide the fold-change that might be
relevant for his/her study. The one advantage of the DE
method is that it produces a wide range of functional en-
richments (12 GO terms) for DE gene-list for DAVID
analysis (Additional file 7: Table S6.3).
Next, we analysed temporal comparison between P0

vs. P21 Nrl-WT and P0 vs.P21 Nrl-KO by both the bin-
ning method and the DE-based method (Additional file
6: Table S5.2, S5.3). Here the binning method revealed
gene transcription kinetics across time, which is inher-
ently valuable for deciphering developmental changes in
normal and aberrant situations. The DE-based method
produced a large DE gene-list, but did not yield any
change in gene transcription over time (Additional file 7:
Table S6.1, S6.2). Thus, it would require further decon-
struction of the list, which is not necessary by the bin-
ning strategy. Also, DAVID analysis of the binned data
provided enrichment of biological functions tethered to
the specific gene expression profile. This is of great value
as it is one of the central goals of performing RNA-Seq
to capture transcriptome change over time (Additional
file 3: Table S2.3, S2.4) . In all, the two approaches of
RNA-Seq analysis have merits that can be leveraged to
effectively analyse RNA-Seq data.

Discussion
Amongst the co-transcriptionally regulated genes identi-
fied by our binning strategy, genes that remained tran-
scriptionally unaltered employed a higher degree of
alternative splicing than those undergoing dynamic regu-
lation. This suggests that during development the major
transcription initiations and terminations might lay
down the foundation, while the proteome diversity gen-
erated through alternative splicing might be engaged in
resolving the finer details, such as neuronal subtype spe-
cification and terminal differentiation. Another advan-
tage of the binning strategy was that the large
transcriptome data was quantized, allowing us to inter-
rogate the dataset for genes with established expression
kinetics. The purpose of this was to challenge the binned
data generated based on the 1 FPKM threshold for
known gene expression patterns (Fig. 3a-b).

Table 5 An example of a “P0NE_Only” gene, Ces5a, whose
FPKM unit in P0NE is comparable to those of other genes with
known established expression kinetics (Nrl, Nr2e3, Gngt2)

Genes E16CE FPKM P0CE FPKM P0NE FPKM

Ces5a 0.073539 0.420057 161.0296

Nrl 0.558403 15.88869 6.104338

Nr2e3 0.008781 28.08 35.45415

Gngt2 10.06518 91.92727 22.08052
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Once the dataset was validated, the status of genes in
various bins in the E16CE-P0CE comparison was inter-
rogated in the P0CE-P0NE comparison, which revealed
dynamic transitions in the transcription kinetics in the
same developmental stage. For example, the 632 genes
in E16CE_only bin in the E16CE-P0CE comparison bi-
furcate into No_Ex and P0NE-Only bins in the P0CE-
P0NE comparison (Fig. 3e). This suggests that while
some genes will remain off, some are re-initiated and
predicts that these transcripts will appear in the CE of
the next developmental stage. This was confirmed by
our quantitative PCR analysis for Nr2e3, Nrl and Rho
across postnatal retinal development [2]. The presence
of transcripts for 1084 protein coding genes in the
P0NE_Only bin suggested that we had captured de novo
transcription of genes that might be required for the
next developmental program. For example, Ces5a is a
~36 kb gene that has FPKM below threshold in E16CE
and P0CE, but has FPKM of 161 in P0NE. This value is
much higher than FPKM of genes such as Nr2e3 (35.4
FPKM), Nrl (6.1 FPKM) and Gngt2 (22 FPKM) (Table 5).
This indicates that expression of Ces5a is more than
physiologically equivalent, yet it is not observed in P0CE
where it could be translated. One possibility is that there
is an active regulation of its export, although this war-
rants further investigation.
The intrinsic value of identifying co-transcriptionally

regulated genes is the expectation that they might reveal
the biological processes being executed by the develop-
ing retina. Our bioinformatics pipeline can deconstruct
the order of activation of specific genes engaged in exe-
cuting a specific biological process so that one can
begin to generate gene regulatory networks underlying
retinal development. A key feature of our pipeline is the
use of GeneMANIA to find potential partners of the
core set of genes from a specific bin that enrich for a
function in our DAVID analysis (Fig. 2c). A priori, one
would predict a progressive increase in the number of
genes with sequential application of the GeneMANIA
part of the pipeline (Fig. 2c). However, we observed that
there was quick convergence in the number of partner
genes (Fig. 2c, Right). This suggests that leveraging
RNA-Seq data to remove genes that were not expressed
in the retina enriched for those genes relevant to retinal
development and function at the time point under
investigation.
Next we applied our analysis pipeline to find co-

transcriptionally regulated genes in the P0 and P21-
Nrl-WT comparison and the P0 and P21-Nrl-KO
comparison (Additional file 1: Figure S4, Additional
file 5: Table S4). One of the salient features of this
analysis was that temporal analysis was more inform-
ative than static comparison. One explanation is that
temporal analysis created bins that were developmentally

regulated, which through DAVID analysis revealed changes
in biological processes. For example, there is no cell cycle
occurring at P21 so the majority of the cell cycle genes
should be inactivated. Indeed, we observe cell cycle in the
P0_Only bin in both P0 vs P21-Nrl-WT and P0 vs. P21-
Nrl-KO analysis (Additional file 3: Table S2.3, S2.4). These
genes in static analysis would show up as not expressed.
Similarly, genes in P21_Only bin enriched for functions
such as ion channel activity, ion transport, visual per-
ception, synapse, voltage-gated ion channel activity,
neurotransmission and others (Additional file 3: Table
S2.3, S2.4). This was as expected as the retina is fully
functional at P21 compared to P0. The advantage of
our strategy is that it allowed us to understand the
progression in gene expression kinetics in normal de-
velopment and leverage that to understand how this
progression deviates in the knockout retina. When
P21_Only bin (either P21WT_Only or P21KO_Only)
was analyzed through DAVID, we found many func-
tions that were common to both sets of comparison,
except examination of the number of genes underlying
these functions revealed that there were subtle differ-
ences between the two bins (P21WT_only and
P21KO_Only) (Additional file 3: Table S2.3, S2.4). This
suggested that while many of the functions remain un-
altered in the KO, there are subtle changes in the
manner in which they might be executed. For ex-
ample, “visual perception” showed up in the P0 vs.
P21-Nrl-WT and P0 vs. P21-Nrl-KO comparisons in
the P21_Only bins (Fig. 6). There were 24 genes
underlying enrichment of this function in the WT
comparison (Fig. 6), while there were 22 genes in KO
comparison (Fig. 6). Upon comparing the gene iden-
tities from both sets, subtle differences emerged that
allowed us to find the biological meaning from change
in a single gene such as the rod photoreceptor-specific
gene, Gnat1, that was absent in the Nrl-KO retina,
which lack rod photoreceptors [48]. Finding Gnat1
through temporal analysis raises the question whether
it would have been found in static analysis. While
Gnat1 was present in the P21WT_Only bin in static
analysis, the rest of the genes that would normally be
part of the GO term “visual perception” were in the
Non_DR bin. Thus, without a priori knowledge one
would not find this specific gene out of the entire list
of genes in the P21WT_Only. Temporal analysis com-
bined with our gene expression and binning strategy
followed by our custom bioinformatics pipeline was
able to find these subtle changes, which in case of
static analysis was not possible (Additional file 1:
Figure S4). While one could find these subtle changes
in the static analysis by looking at specific genes, it re-
quires a priori knowledge. The advantage of doing
whole transcriptome analysis is that one could find
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patterns computationally, which can be leveraged to
obtain new insights without the need for a priori
knowledge. For example, GO terms such as potassium
channel complex, sodium channel activity, synaptic
vesicle, calcium ion transport and regulation of blood
pressure regulation (Additional file 3: Table S2.4) were
enriched by genes in the P21_Only bin in P0 vs. P21-
Nrl-KO comparison, but were absent in the WT com-
parison. This finding suggests that there are specific
anomalies in the Nrl-KO retina. Given that in the Nrl-
KO retina, the majority of the rod photoreceptors have
converted to cone photoreceptors, changes in ion
transport and synaptogenesis are to be expected [53,
54]. However, regulation of blood pressure seemed out
of place for the Nrl-KO retina. Indeed, closer examin-
ation of the genes underlying this function revealed
the need to examine vasodilation in the Nrl-KO retina.
Notably, previous reports showed that the Nrl-KO ret-
ina develops dilated retinal blood vessels and leakage
at P60 [52]. Thus, this confirmed the prediction made
through shifts in the molecular signatures identified
by our temporal analysis. Importantly, our analysis
predicted an outcome based on gene expression pat-
tern changes occurring between P0 to P21 that mani-
fests at P60.

Conclusions
In summary, we were able to extract shifts in biological
processes (Fig. 4a) governed by precise changes in gene
expression through our unique RNA-Seq data acquisi-
tion/analysis platform. Importantly, it showed that the
nuclear transcriptome was temporally shifted ahead of
the cytoplasmic transcriptome at a developmental time-
point (Fig. 4c). Overlapping these discoveries with those
made by extending our strategy to P21-Nrl-WT and KO
analysis was most fruitful when Δ/time was extracted.
This strategy identified perturbation in the molecular
signature that enabled prediction of a phenotype that
would manifest histologically at a later time (Fig. 4b). In-
deed, this strategy would be effective toward decon-
structing the progression of molecular changes during
aberrant development or the progression of pathogenesis
of the retinal diseases and can be extended to other
tissues.
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