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Abstract

Background: Poxviruses constitute one of the largest and most complex animal virus families known. The
notorious smallpox disease has been eradicated and the virus contained, but its simian sister, monkeypox is an
emerging, untreatable infectious disease, killing 1 to 10 % of its human victims. In the case of poxviruses, the
emergence of monkeypox outbreaks in humans and the need to monitor potential malicious release of smallpox
virus requires development of methods for rapid virus identification. Whole-genome sequencing (WGS) is an
emergent technology with increasing application to the diagnosis of diseases and the identification of outbreak
pathogens. But “finishing” such a genome is a laborious and time-consuming process, not easily automated. To
date the large, complete poxvirus genomes have not been studied comprehensively in terms of applying WGS
techniques and evaluating genome assembly algorithms.

Results: To explore the limitations to finishing a poxvirus genome from short reads, we first analyze the repetitive
regions in a monkeypox genome and evaluate genome assembly on the simulated reads. We also report on
procedures and insights relevant to the assembly (from realistically short reads) of genomes. Finally, we propose a
neural network method (namely Neural-KSP) to “finish” the process by closing gaps remaining after conventional
assembly, as the final stage in a protocol to elucidate clinical poxvirus genomic sequences.

Conclusions: The protocol may prove useful in any clinical viral isolate (regardless if a reference-strain sequence is
available) and especially useful in genomes confounded by many global and local repetitive sequences embedded
in them. This work highlights the feasibility of finishing real, complex genomes by systematically analyzing genetic
characteristics, thus remedying existing assembly shortcomings with a neural network method. Such finished
sequences may enable clinicians to track genetic distance between viral isolates that provides a powerful
epidemiological tool.
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Background
Poxviruses are one of the largest and most complex animal
virus family known [1]; the subfamily chordopoxvirinae
comprises at least eight genera (orthopoxvirus, capripox-
virus, leporipoxvirus, suipoxvirus, parapoxvirus, yatapox-
virus, avipoxvirus, and molluscipoxvirus). The orthopoxvirus
variola virus (VARV; a.k.a. smallpox) was wiped out of a
human history in the 1970s, thanks to the success of vaccin-
ation. Smallpox eradication counts as one of the greatest tri-
umphs of modern medicine. Before the eradication,
smallpox caused from 30 to 35 % case-fatality rates (CFRs).
It is a highly contagious and strictly human disease, which
caused an estimated 300–500 million deaths during the
20th century alone [2].
Human smallpox has a simian sister, monkeypox virus

(MPXV). This virus, also of the orthopox genus, causes
an endemic disease, first recognized in Africa in 1970,
but with an outbreak in 2003 in the United States, that
was traced to imported monkeypox virus-infected West
African rodents [3]. MPXV causes smallpox-like disease
in humans; in Africa the disease typically kills between 1
and 10 % of its human victims [4]. Smallpox vaccination
is known to lower the risk of contracting monkeypox, but
there is no specific immunization against monkeypox per
se. Due to a declining immunity to orthopoxviruses in the
general population, there is a risk that monkeypox might
emerge as a significant human pathogen.
With better timeliness and accuracy, whole-genome se-

quencing (WGS) holds promise of revolutionizing health
surveillance systems and possibly of resolving many
current limitations associated with poor pathogen dis-
crimination [5–7]. Genomic information offers a profound
increase in the resolution of pathogen type, enabling pos-
sible identification of geographic origin and whether the
agent is previously known or represents a novel mutant.
Mature data processing methodologies developed to ad-
dress the decades-long preponderance of Sanger sequen-
cing data are not always adaptable to the characteristics of
WGS sequencers, which have produced prodigious data,
but only over a period of ten years [8]. Bioinformatician is
turning the computational challenges in the WGS tech-
nology to opportunities for developing new algorithms, or
improving efficiencies of existing ones as to processing
raw data into medically useful sequences.
WGS technology produces millions of short sequence

fragments (“reads”). The reads are ordered and combined
into longer sequences called “contigs” (a.k.a “assemblies”).
Finally the contigs are ordered to produce a complete
genomic sequence. This highest level ordering can often
exploit known genomic reference in agents, like poxvirus,
for which there are reliable genomic sequences available.
Of course, this entire assembly process, whether de novo
or against a known reference, demands appropriate and
efficient computational algorithms.

Given an accurate genomic sequence, it becomes pos-
sible to deduce unique SNP/Indel profiles to facilitate
quick-and-easy field diagnosis of a particular strain. Such
unambiguous diagnosis, in turn, triggers a range of epi-
demiological tracking and public health surveillance and
control systems.
At a theoretical level, the new genomic information sup-

ports phylogenetic clustering analysis, which can place an
outbreak strain into the broader context of the poxvirus
“family tree”. Such analysis often revels the ultimate
geographic origin of a new strain, a rough chronology of its
emergence, and the plausibility that it is a cross-over from
a xenobiotic strain, like monkeypox. Both tactical and
theoretical motives have served to put pathogen genomic
sequencing high on the priority lists of public health agen-
cies, such as the CDC.
A definition of “high-quality” has been promulgated

by Genome Assembly Gold-Standard Evaluations
(GAGE) [9, 10] and applied in two competitions for
quality assembly: “Assemblathon” [11, 12] and the “De
Novo Genome Assembly Assessment Project” (dnGASP)
[13]. These efforts evaluated the contigs generated by
popular assembler software. Assembly of the complex
poxvirus genomes were poorly represented in the compe-
titions: only the assembly of swinepox genome was
evaluated, and that only from simulated data with fixed
read-lengths of 75 (paired-end) [14]. It is well recognized
that good performance of assembler software on simu-
lated data may not reflect its performance on real data,
which often include gaps, inverts, and rearrangements,
usually generated from shorter reads. Moreover, these
evaluations were focused on the computational times and
ignored the peculiarities of real, complex genomes.
For example, in the long poxvirus genome, gaps (in refer-

ence to related poxviruses) are common, and may be of
biological significance [3, 15–18]. Moreover, poxvirus ge-
nomes are known to contain “inverted terminal repeats”
(ITR’s) – longer or shorter, but comprising as much as 1 %
of the genome, and prone to hair-pin loop-outs [3, 18].
ITR’s have traditionally confounded poxvirus sequencers,
who have usually simply ignored them in published se-
quences. Regions of ambiguity can be (and have sometimes
been) addressed by laborious, “manual” sequencing of PCR
amplicons [19], but these approaches are costly and time-
consuming, and thus defeat the main advantages of WGS.
To our knowledge, no one has systematically reported

on procedures or insights relevant to the assembly from
short reads of genomes with peculiarities like those in
monkeypox, although numerous papers have compared
quality of assembly for different types of sequencing data,
such as long reads. The general computational challenge
to the assembly of genomes with repetitive sequences has
been addressed [13]. But the general case seems to over-
simplify the particular problems of repetitive regions in
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the poxvirus genome which has inverted terminal repeat
(ITR) at each end of the genome with a size range of 2 to
12Kbp [2, 15, 16, 18–21]. The ITR region contains add-
itional local repeats within global repeats, which pose a
special challenge to the assembly problem. This unique
feature is presented in the entire family of poxviruses,
comprising a large number of species-specific viruses, in-
fecting a long list of mammalian species, and of significant
agricultural and wild-life impact. The focus of the study
was on the MPVX short reads (such as Hi-Seq/Mi-Seq),
because short-read sequencers have become a major diag-
nostics tool for epidemiologists, providing fast results as
needed during outbreak investigations. We are actively
pursuing evaluations of long-read methods, such as Pac-
Bio, with a view to obtaining a single contig which covers
the entire genome. So far, we have not attained this goal,
but feel the present study is a worthwhile, interim report.
Our work with poxvirus genomic assembly posed

many questions. Is it even realistic to expect that de
novo assembly algorithm can arrive at a single contig
covering the whole poxvirus genome, especially from the
short reads available from “next generation sequencing”
technology (NGS)? If an unassembled region is ob-
served, how do we decide whether the problem lies with
the bioinformatics tools, or with sequencing chemistry?
Can we simply ignore such problems, or do they reflect
biologically significant characteristics of the genome?
Methodological corollaries to these questions are: Can
obtaining additional short-read data improve the quality
of assembly? If yes, how much additional data is needed?
Are there technical compromises which adequately cope
with the problems while still supporting robust public
health surveillance requirements?
To answer these questions, we first analyze a reference

(e.g., monkeypox) genome. We then generate simulated
WGS reads from the reference genome. The de novo
contigs derived from new sequences are evaluated by
comparing to the reference genome, which process iden-
tifies mis-assembly and gap regions. This strategy not
only allows us to deduce a high-quality genomic se-
quence for the strain of the virus under study, but also
allows us to understand the limitations of the assembler
algorithms, and hopefully to remedy them.
We then show how gap-filling of the genome can be con-

verted into the all k shortest path (KSP) problem. Finally
we propose a neural network method (namely Neural-KSP)
to show that it is possible to finish a monkeypox genome of
a clinical sample by utilizing this method.

Results and discussion
Monkeypox genome, ITRs and tandem repeats
The repetitive sequences in the poxvirus genome have
been reported previously [3, 18, 20, 21], but they have
not been systematically correlated to the WGS analysis

from short reads. In this section, we focus first on an
analysis of a known monkeypox genome.
Repeats, which can cause breaks in contigs and thus

mis-assembly, can be divided into two groups: global
and local. A global repeat is defined as a long sequence
which is duplicated throughout the genome [22]. The
ITR repeat in the monkeypox genome is one typical ex-
ample of the global repeat [22]. For example, the se-
quence of the monkeypox genome deposited in
GenBank (Accession No. DQ011154) has a length of
197,195 bp with 206 annotated coding sequences (CDS).
The two ends of the genome (ITR regions) are identical,
but inverted, with a length of 6,477 bp. The many coding
sequences which connect the two ends are abbreviated
as black dots in Fig. 1a, while the red sequences are
inverted with respect to each other.
In contrast to global repeats, the local repeat contains a

simple sequence, which is duplicated in tandem many
times. In the monkeypox genome, local tandem repeats
are found both within the ITR regions and outside these
regions; that is, local repeats may be nested within global
repeats. Specifically, there are total 22 tandem repeat re-
gions [23]. Four of them are in the ITR region. As shown
in Fig. 1b, the full lengths of each tandem repeat varies
from 24 to 250 bp, the unique period size are from 3 to
70 bp, and the copy sizes are from 2 to 30. These tandem
repeat regions seem to be spread more-or-less randomly
in the genome. This genetic characteristic of the MPXV
genome leads, mathematically speaking, to the branching
path problem, and usually breaks the assembly [24].

De novo assembly of simulated monkeypox data
With the repeat information in hand, we simulated the
Illumina® intrument’s (Hi-Seq 2500) paired-end reads
using two different lengths: 100 and 250 bp, and at vari-
ous coverage depths (e.g., from 5X to 10,000X). Reads
were simulated using the fastqSimulate tool in Celera
Assembler (version 8.1). Three types of errors at a level
of 1 % were taken into consideration while doing the
simulation; namely mistmatch, insertion and deletion
[25]. The reasons for choosing these read lengths are:
100 bp covers the longest period size (70 bp, as noted
above), while 250 bp is approximately the longest tan-
dem repeat in monkeypox genome. These two lengths
are supported by a standard Illumina NGS techniques
(100 bp for “Hi-Seq” and 250 bp for “Mi-Seq”).
With these simulations, we are trying to address sev-

eral questions: 1) Are repeats the sole Achilles’ heel of
the genome assembly from short reads? 2) What is the
relationships among read length, longest contig size,
genome coverage, genome depth coverage? 3) What is
the minimum coverage sufficient for obtaining a reason-
able assembly? 4) Will more sequencing reads alleviate
ambiguities in de novo assembly?
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Results of the simulation experiments are tabulated in
Table 1. For simulated 100-bp read lengths, while de-
creasing the total number of reads from 50 to 10K (last
two rows), we observed that coverage decreased from
25X to 5X, leading to a large increase of the total num-
ber of contigs and a decrease of maximum contig length.
This is simply due to insufficient sequence data. Twelve
million, 100 bp-reads yields the fewest and longest con-
tigs, which corresponds to about 90 % coverage of the
genome with 100 % accuracy.
A general performance pattern can be perceived: to ob-

tain maximal contig length, there exists an optimal cover-
age at given read lengths for any fixed set of assembly
parameters. (e.g., here we set mismatch = 0.8 and align-
ment = 0.9 in the CLC Bio de novo assembly for all simu-
lated read-lengths). Although, this is the first report of
simulation results based on the monkeypox genome, the

phenomenon of diminishing returns with increasing se-
quencing effort has been reported before [14]. Thus, for
any simulated read-length, collecting additional sequence
data beyond this optimum does not improve assembly,
but costs unproductive effort, as when we increase the
number of reads from 12 to 20M, at a 100-bp read length
for the example in Table 1. We do not suggest that this is
a mathematically provable theorem, nor are we certain of
this physical basis. But it is a consistent feature over a
wide range of assembly parameter settings, generating
large disparities of contig lengths (results with only one
parameter set are reported here). We venture to surmise
that the superfluous coverage introduces more noise to
the data, in a way that confounds the random algorithm
rather than contributing to finding longer contigs.
The simulations indicate that increasing the read

length to 250 bp can be expected to improve the de novo

Fig. 1 a A simple illustration of monkeypox genome (accession number: DQ011154) with ITR regions highlighted in red. The red sequences
(nucleotide positions: 1-6477 and 190719-197195) are inverted with respect to each other. b x-axis: the tandem repeat locations in monkeypox. y-axis:
their period size (blue bars), copy size (red bars) and the length (green bars) of the tandem repeat region. Two black boxes highlight tandem repeats
within the ITR region. Tandem repeats were calculated by Tandem Repeat Finder [23]

Table 1 Statistics for de novo assemblies using simulated monkeypox reads

Read length: 100 Read length: 250

Total Reads Coverage Contigs Numbers Longest Contig (bp) Coverage Contigs Numbers Longest Contig (bp)

20M 9760X 7 127K 24971X 4 135K

12M 6085X 2 183K 15213X 25 159K

7.5M 3803X 5 159K 8523X 31 169K

2M 910X 4 159K 2535X 4 184K

1M 450X 5 161K 1280X 4 168K

100K 50X 5 159K 127X 4 186K

50K 25X 7 142K 63X 1 189K

10K 5X 108 4K 12X 6 95K
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assembly, but, of course, at a price of increasing reagent
consumption and sequencing time (for example, doub-
ling Illumina read length will lead to a doubling of the
sequencing time). In Table 1, the longest contig length
was achieved at 250-bp reads: 50 thousand reads pro-
vides 60X coverage, with a single contig of 189Kbp. This
observation highlights a rule-of-thumb that long reads
require less coverage for assembly. Regardless of simu-
lated read length, assembly breaks in the ITR regions
due to the global and local repeats.

Recasting the assembly task into a graph-theory context
Before describing our results with real-world, mon-
keypox sequence data, it is useful to review briefly
the concepts relating the de novo sequence assembly
problem to graph theory. Details and examples of our
specific approach are laid out in the Methods section
below.
Utilizing graph methods to deal with the assembly prob-

lem has typically involved constructing an overlapping, or
de Bruijn graph, where each node in the graph represents a
short sequence fragment (either a read or k-mer) [26, 27].
If there is an overlap between two fragments (overlapping
method), or if k-mers have a particular prefix and suffix
(the de Bruijn graph method), an edge is added between
the corresponding nodes. A weight is assigned to this edge,
which takes into consideration the length of the overlap
and possibly other factors (e.g., indels, gaps, sequencing er-
rors, etc.). In effect, a contig can be considered as a path in
the graph from an initial node to a terminal node (specific-
ally, initial read to terminal read in an overlapping graph or
initial k-mer to terminal k-mer in a de Bruijn graph). The
intrinsic problem of deducing and ranking several possible
contigs (from a data set of millions of fragments, all similar
in length) which join a set of specific, overlapping, short
fragments is equivalent to searching out a path (or paths)
in a graph.
Velvet [28] has utilized a Dijkstra-like algorithm to

search out paths in de Bruijn graphs. The approach con-
fronts two of the general challenges: 1) A sequence repe-
tition (e.g., a monkeypox ITR) represents a branch in the
paths through the graph, at which the algorithm gets
confused, and lacking some additional rule, the assembly
process stops [24]. 2) As the number of reads increases,
the complexity of the graph becomes so large that it
overwhelms computation of the true path. The branch-
point dilemma has been ameliorated somewhat by
reporting the best path so far, before giving up in failure
[29]. The complexity issue is greatly exacerbated by new
generation instruments, which churn out many more,
but significantly shorter, reads.
These previous efforts highlight the fact that global

and local repeats are fundamental obstacles to the appli-
cation of graph-theory to de novo assembly, because

such repeats constitute branching points which termin-
ate as broken contigs [24]. Such gaps are the major chal-
lenge to “finishing” a genome, that is, to generating a
single, unbroken contig. Our approach provides a partial
solution to these dilemmae by delineating multiple,
“shortest” paths, that is, a few, alternative, unbroken
contigs, one of which most likely represents the “true”
genomic sequence.
Rather than holding out for the shortest path, and risking

failure, we settle for the k-shortest paths. At branch-points
caused by repetitive sequences, we pursue all possible
branches, and rank the ultimate complete paths by length.
To solve the k shortest path problem (KSP) we resort to
neural networks.

The all k shortest path problem (KSP) problem and a neural
network method
To find all k shortest paths in a graph needs not only
computation of the shortest path from the initial node
to the end node, but also computation of the second,
third… kth shortest paths (if available). Typically, it is
solved by heuristic algorithms, such as the well-known
Dijkstra's algorithm, which can quickly provide a good
solution in most instances. However, as the scale of
problem increases, these methods become inefficient
and may consume considerable amounts of CPU time.
Neural networks, which are massively parallel models,
have been reported as an approach to circumvent these
problems with the classical algorithms [30–33].
Continuous-time coupled neural networks in have been
advocated as effective approaches [34–36] to solving
shortest path (SP) problems. In these methods, decision
variables vij (a.k.a., edges in a graph) are denoted as the
neuron activation states. These state are described by a
system of differential equations. A Lyapunov (energy)
function is designed to drive each neuron to its stable
state [34, 37]. Usually, the terms “neuron” and “node”
were used interchangeably, though by “neuron” we imply
also the system of differential equations associated with
that node’s activation. Recent techniques use vertices in
the graph to denote neurons [33, 38]. The neural dynam-
ics are modeled by coupled differential equations in such
a way that a smaller coupling strength (e.g., connection
weights in a graph) corresponds to an individual neuron’s
earlier firing time. Following excitation of the initial
neuron, the signal propagates according to the graph top-
ology and individual neural dynamics – across (a properly
constructed) network, from the initial node to terminal
node through all paths, including the shortest path.
One advantage of this method is that the time re-

quired to propagate of the signal (wave) is not
dependent of the number of nodes in the graph, but only
on the path lengths from the initial node to the terminal
node [38]. It is this characteristic that addresses the
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second dilemma, namely, graph node-complexity inher-
ent in NGS chemistry. To find the shortest path, one
must calculate the individual node dynamics; closed-
form solutions are available in system which contain
only first-order linear differential equations (see [38]).
We have previously extended a neural network method

to the KSP problem (namely Neural-KSP) for a graph with
multiple edges and demonstrated its independence of the
number of nodes and edges but on a graph topology [38].
The computational intensity of the Neural-KSP algorithm
scales with the network topology – performing better
when all k shortest path lengths are small and the network
is large [39].
With respect to gap-filling, we have also explored

“GapFiller”, a program which has been validated on bac-
terial datasets and the human genome [40]. We were
not able to fill the 6 gaps in Table 2. Thus, we embed
the Neural-KSP method as the final stage in our in-
house pipeline for calculating finished viral genomes.
This laboratory has sequenced (and published) numerous
poxvirus sequences; all previous, conventional methods of
assembly have proven far more laborious. In the Methods
section, we lay out a generalized formulation, taking into
account both individual node dynamics and overall net-
work topology. This form offers a mathematical founda-
tion for the Neural-KSP method. Applying this pipe-lined
process has enabled us to obtain a finished, monkeypox
genome of length of 197Kbp, as shown below.

Application of the de novo assembly protocol to clinical
monkeypox data
To explore the strategy for generating a finished gen-
omic sequence from clinical data, we used an Illumina
Hi-Seq® instrument (100 bp pair-end read) to sequence
monkeypox virus isolated from a human patient. We ex-
pect that the method would generate better results when
applied to Mi-Seq data, since it generates longer reads.
However, due to limited timeline and resources, we have
not been able to compare systematically results with Hi-Seq
and Mi-Seq protocols. We hope to be able to do so in a

follow-up report. Using standard assembly software, we ex-
pected multiple, short, gappy contigs. For this isolate, with
a 33M-read datatset, the trimming process did not signifi-
cantly reduce read length, as shown in Table 2. About 31M
reads mapped to the human genome, and were excluded,
leaving about 3M reads, presumably of viral origin. (That
90 % of the sequencing reads map to the human genome is
a general caveat to researchers who would sequence clinical
viral samples. This level of human contamination is
probably typical.)
Using conventional assembler software (in this case

from the CLC Genomics Workbench), these reads were
assembled into 7 contigs, with a maximum contig length
around 130kbp. These seven contigs were ordered
against a bona fide monkeypox genome, leaving a draft
genome with 6 gaps (length varied from several bases to
a few hundred) and covering 96 % of the genome, in-
cluding the ITR region at one end (the other is missing);
these statistics are summarized in Table 3. The observa-
tions are similar to a previous study [41].
The “finishing” job thus was to fill in six gaps compris-

ing all together 733 bases (estimated by ABACAS), plus
around 7Kbp missing ITR regions. Our strategy for
doing this was to present, as input data to the Neural-
KSP method, all 3.2M reads (pruned of human se-
quences) plus the gap-flanking sequences (as established
by conventional assembly) – one run of the Neural-KSP
for each of the six gaps.
The result of this process was to fill all six gaps, pro-

ducing a single contig of 197,020 bp (including ITR on
both ends). The finished genome is depicted in Fig. 2,
relative to the template monkeypox genome. In this par-
ticular isolate, we observed few significant genomic vari-
ations, such as indels, implying that the virus infecting
the patient was genetically close to the reference strain.

Conclusions
In summary, as final stage in a protocol to elucidate clin-
ical poxvirus genomic sequences, we have utilized a
Neural-KSP method to “finish” the process by closing
gaps remaining after conventional assembly. Such

Table 2 Statistics for clinical sample

Raw data, number of reads 33,339,183

Read length before trimming 100 bp

Trimmed reads 31,012,094

Read length after trimming 97 bp

Unmapped to human 3,197,545

de novo contigs # 7

Maximum contig length 129,805 bp

Genome scaffold coverage ~96 %

Total number of gaps 6

Finished genome length 197,020 bp

Table 3 Gap statistics for clinical sample

Estimated
gap sizea

Scaffoldsa Referenceb

Startc Endc Startc Endc

75 2224 2298 8682 8756

12 142573 142584 148875 148886

17 159557 159573 165859 165875

139 163216 163354 169518 169656

184 172663 172846 178965 179148

306 190706 191011 196890 END
aGap size estimated by ABACAS; bAccession No. DQ011154; cPosition within
the sequence
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finished sequences may enable clinicians to track genetic
distance between viral isolates, a powerful epidemio-
logical tool. In principle, the protocol should prove
useful in any clinical viral isolate regardless if a
reference-strain sequence is available. The protocol may
prove especially useful in genomes confounded by many
global and local repetitive sequences embedded in them.

Methods
Pipeline
As show in Fig. 3, the preliminary quality evaluation for
each sample (FASTQ file) was generated using FASTQC.
The raw data were preprocessed to remove ambiguous

base calls (Ns), bases or entire reads of poor quality, and
those containing adaptor sequences. After trimming, the
dataset passed quality control based on “Per base se-
quence quality” and “Per sequence quality” scores. Next
the trimmed reads were mapped to human genome to
exclude any contaminating human sequences.
Thus pruned, the remaining reads were assembled de

novo using CLC Genomics Workbench 6.5.1 (CLC Bio).
We used ABACAS [42] to order de novo assembled
contigs against using the information from a reference
genome (a.k.a. “scaffolding”).. This tool generated a re-
ordered draft genome and reported gap positions; this or-
dered set of contigs was used as input for the Neural-KSP
method. Genome alignment and visualization were gener-
ated by MAUVE; sequence alignments were performed by
BLAST and CLUSTALW. The Neural-KSP algorithm was
written in-house in C++. (A prototype algorithm is avail-
able upon request). The Neural-KSP method is the last
piece of the pipeline; it is summarized below.

A general form of a coupled neural network in
continuous time
We first construct a network of n interacting, linear/non-
linear l-dimensional dynamical systems (neurons), and de-
note these neurons as xi = (xi

1, xi
2,…, xi

l), i = 1,…, n. We
can then define a general framework for the coupled net-
work as follows:

:
xi ¼ F xið Þ−

Xn

j¼1;j≠i
dij tð Þτ xj

� � ð1Þ

where F(xi) defines each individual system, τ(xj) is an ac-

tivation (sigmoidal) function, τ xj
� � ¼ 1= 1þ eλ xj−θð Þ� �

,

which couples neurons i and j. It stipulates an excitation
of the ith neuron by jth neuron, when the potential of
jth neuron exceeds some synaptic threshold θ. This

Fig. 2 The upper bar depicts the reference monkeypox genome; the lower bar is the finished genome of the clinical isolate, assembled by the
protocol described herein. The dark red lines within the bars track regions of multiple base differences between the two genomes, such as indels.
The resolution of these charts are insufficient to reveal single nucleotide replacements (a.k.a. SNPs)

Fig. 3 A pipeline for finishing monkeypox genome
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coupling form has been termed “fast threshold modula-
tion” [43, 44]. dij(t) defines the coupling strength (a.k.a
weights in a graph) from neuron i to j; it should be posi-
tive and depends on time t. Coupling strength (an in-
ternal parameter) is defined, as explained in previous
publications [32, 38, 45, 46], in such a way as to ensure
that the rate of signal travel from neuron i to j is faster
when the coupling strength is smaller. This form of
coupling has the advantage of allowing inclusion of
graphs that represent vertices as neurons.

A neural network method for the KSP problem
(Neural-KSP)
Due to the sigmoidal coupling functions, the proposed
system cannot be solved analytically. A closed form solu-
tions are available in a special case where the system
contains only first-order linear differential equations (see
[38]). In fact, a computer handles this problem by dis-
cretizing continuous time to discrete time. Calculation
of one specific example in discrete time, as well as
pseudo-code, can be found in our description of the
algorithm [39], which is a discrete counterpart with re-
spect to integrating equation 1 in a continuous time. We
have evaluated the performance of the Neural-KSP algo-
rithm for calculating all k shortest paths on a network
data [33, 38, 39].
Here we describe in pseudo-code our Neural-KSP al-

gorithm to find the all k shortest paths in an acyclic
graph. It is applicable to both directed and undirected
graphs so long as the graph remains loopless. Given a
connected graph G = (V, E), let V denote the set of
neurons (or nodes) and E denote the set of connections
between any two neurons. F(xi) in equation 1 models the
dynamics of neuron (or node) i and dij defines the
weight between neuron i and j. In a pseudo-code, we use
dij and w interchangeably. If neuron i excites neuron j,
we say neuron j is a downstream neuron of i.
Input: An acyclic graph with or without multiple edges,

designated initial and terminal neurons, and the value of k.
Output: all k shortest paths.
begin:

1. [initialize the network]
Excite the initial neuron. c = 0 (c represents the cth
shortest path); w = 0 (w records a weight on an edge).
2. [track individual neuron’s excitation status at a
discrete time]
Search minimal weighted outgoing edge(s) for the
excited neuron(s).
Record the weight as w.
Track current excitation state of each neuron.
(Please see references [38] for a calculation example.)
If current neurons are being excited for a first time;
then go to 3.

Elseif current neuron is in an excited state but not for
the first time, track the excitation information of this
neuron and attach all outgoing edges back to the
neuron; then go to 3.
Elseif current neurons are not being excited and have
not been excited yet, do nothing.
3. [compute the network dynamics]
Excite downstream neuron(s).
If terminal neuron arrived.
Track the path(s) and set c = c + 1;
If c = k; then go to 4;

Else set all outgoing edges’ weights of the excited
neurons minus w, and then go to 2.

4. [end]

Representing gap-filling as a KSP problem
Here we present two simple examples to show how to
convert the gap-filling task into KSP problem. Let’s start
with (what we believe to be) an accurate, genomic se-
quence of monkeypox virus (as published by the
National Center of Bioinformatics, NCBI accession
number DQ011154). From it, we have selected a 55 nu-
cleotide region (positions 4809 to 4864; “Ref” in Fig. 4a),
and extracted from that region five short-read sequences
(“R1” to “R5”), simulating experimental data (in this
case, we are mimicking data generated by the Illumina®
instrument). Each short-read-sequence has 30 nucleo-
tides. For simplicity, we assume the following: 1. R1 to
R5 are randomly sampled from the reference region
(“Ref”); 2. The sequenced nucleotides harbor no errors,
mutations, insertions or deletions; 3. The genome se-
quence starts from R1 and ends at R5; 4. One wants to
use as many of these short fragments as possible. These
assumptions are not mandatory for the method, but fa-
cilitate illustration.
The goal is to infer the correct sequence assembly

from fragments R1 to R5. Based on the non-overlapping
lengths, we can build a graph in Fig. 4b. In this figure,
the edge from R1 to R2, with a weight of six corresponds
to six non-overlapping nucleotides in the alignment of
R1 and R2 in Fig. 4c. Since the alignment is not unique,
we can align them alternatively, as in 4D. The path in
red corresponds to the shortest path using all fragments
in Fig. 4. In this case, we have obtained the “correct” as-
sembly by calculating shortest path.
However, we have been able to find other regions in the

reference genome for which this is not the case. For ex-
ample, extracting five simulated reads from another region
of the same published sequence (positions 142075 to
142145), and using them to build an analogous graph
(depicted in Fig. 5b), we find that the shortest path
(Fig. 5d) does not reveal the “correct” sequence assembly.
Here one must calculate all k shortest paths, among which
is the “correct sequence”. This is where the Neural-KSP
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algorithm comes in: by performing a calculation (as in ref
[39]) one does obtain the “correct” DNA sequence as one
of the top k shortest path.
Despite the advantages of the neural network to enu-

merate all possible paths, to decide which path (even
among a few shortest k-paths) is the correct sequence is
not trivial. We recommend setting k = 20 for initial gap
filling (based on our observations of finishing the clinical

data in Table 2). We make two assumptions to guide
choice among these 20 shortest paths. First, that there is
only one correct sequence; second, that the genome is
sequenced randomly, so that there is no coverage bias
toward some regions. Then, after mapping all reads back
onto the regions to be filled, we accept as the best, filled
sequence (or path) that one whose coverage is closest to
the average coverage over the genome.

Fig. 4 Predicting DNA sequence correctly from the shortest path [39]. a A reference sequence ("Ref"), positions 4809 to 4863, is taken from a
published monkeypox genome (accession number: DQ011154). Sequences R1 to R5 were assumed as short fragments obtained experimentally.
b An example of an overlapping graph in which each node represents an individual sequence (R1 to R5). An edge is added and its corresponding weight
is the non-overlapping nucleotide count between any two overlapping sequences. c The path in red indicates that the sequence was assembled correctly.
d The path in black indicates that the sequence was assembled incorrectly

Fig. 5 A sequence which cannot be estimated correctly based on the shortest path [39]. a A reference sequence ("Ref"), positions 142075 to
142145, is from a published monkeypox genome (accession number: DQ011154). Sequences R1 to R5 were assumed as short fragments obtained
experimentally. b An example of an overlapping graph in which each node represents an individual sequence (R1 to R5). An edge is added and
its corresponding weight is the non-overlapping nucleotide count between any two overlapping sequences. c The path in red indicates that the
sequence was assembled correctly. d The path in black indicates that the sequence was assembled incorrectly
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Running time
As implied in Fig. 3, overall running time for finishing a
genome depends on a sequential process of a few tools,
including CLC Bio (genome assembly and mapping) and
ABACAS (genome scaffolding), as preprocessing steps,
before the application of the Neural-KSP method. On an
IBM laptop equipped with 1.83 Mhz Intel CPU and 4GB
RAM and running Windows 7, for the clinical sample
described here, the most time-consuming step is to filter
out the human reads (an ~3 billion basepair genome).
This filtering takes CLC Bio ~5 h, plus 6 min to assem-
ble the remaining, non-human reads. The ABACAS pro-
grams runs in less 1 min. The Neural-KSP method has
been tested on a simulated graph with 1 million nodes
and 2 million edges, for which it uses 42 s (an average of
10 runs), compared with 142 s of a Dijkstra-based algo-
rithm [38, 39]. On the actual clinical data set, it ran in
90 s. Accordingly, our current efforts at shortening to
overall analysis time is focused on parallelization of the
human read filtering step.
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