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Abstract

Background: Somatic mutations can be used as potential biomarkers for subtyping and predicting outcomes for
cancer patients. However, cancer patients often carry many somatic mutations, which do not always concentrate
on specific genomic loci, suggesting that the mutations may affect common pathways or gene interaction
networks instead of common genes. The challenge is thus to identify the functional relationships among the
mutations using multi-modal data. We developed a novel approach for integrating patient somatic mutation,
transcriptome and clinical data to mine underlying functional gene groups that can be used to stratify cancer
patients into groups with different clinical outcomes. Specifically, we use distance correlation metric to mine the
correlations between expression profiles of mutated genes from different patients.

Results: With this approach, we were able to cluster patients based on the functional relationships between the
affected genes using their expression profiles, and to visualize the results using multi-dimensional scaling.
Interestingly, we identified a stable subgroup of breast cancer patients that are highly enriched with ER-negative
and triple-negative subtypes, and the somatic mutation genes they harbor were capable of acting as potential
biomarkers to predict patient survival in several different breast cancer datasets, especially in ER-negative cohorts
which has lacked reliable biomarkers.

Conclusions: Our method provides a novel and promising approach for integrating genotyping and gene
expression data in patient stratification in complex diseases.

Keywords: Distance correlation, Breast cancer patient stratification, Functional analysis of somatic mutation,
Integrative analysis

Background
The initiation, development, and metastasis of cancers
are complicated processes involving multi-cell, multi-
tissue interactions and communications. Most cancers
confer heterogeneity among patients that lead to differ-
ent clinical outcomes such as survival time and response
to treatment. With recent rapid advancement in next gen-
eration sequencing (NGS) technologies and computing
capacity for processing and storing large data, more and

more human cancer genomes have been characterized in a
systematic way, bringing great opportunities for researchers
to carry out integrative analysis to identify potential
molecular markers for stratifying patients into subtypes
with different predicted clinical outcomes [1]. Currently
The Cancer Genome Atlas (TCGA) project harbors com-
prehensive data ranging from genomic sequences, gen-
etic variants, transcriptomic and proteomic data to clinical
data for multiple types of human cancer tissues as well as
normal tissues. It is a great source for scientists to integrate
data from different levels and mine the buried interaction
among them, which will shed light on the understanding of

* Correspondence: Kun.Huang@osumc.edu
Department of Biomedical Informatics, The Ohio State University, Columbus,
OH 43210, USA

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The Author(s) BMC Genomics 2016, 17(Suppl 7):513
DOI 10.1186/s12864-016-2902-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-2902-0&domain=pdf
mailto:Kun.Huang@osumc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


cancer subtyping, prognosis as well as the cancer initiation
and development [2–4].
In TCGA database, we often observe patients with a

lot of somatic mutations that can significantly alter cor-
responding protein structures or functions of the genes
they reside on (we named the affected gene as signifi-
cantly mutated gene, or SMG). SMGs are the results of
splice-site-change, nonsense, non-stop or frame-shift
mutations. The prevalence of SMGs in almost all cancer
types let us postulate that they may be potentially used
as signatures for subtyping and outcome prediction, or
as starting point to elucidate the tumorigenesis process.
However, there is a big challenge in using SMGs for can-
cer patient stratification — the overlaps between the
SMGs from different patients are usually small and the
lists are usually not converging to common pathways
[1, 5]. For instance, the breast cancer (BRCA) project
in TCGA has identified three commonly mutated
genes TP53, GATA3, and PI3KC but every patient has
a much larger number of somatic mutations which
cannot be easily summarized and compared even at
the pathway level [1]. Therefore, it is of great interest
in identifying the potential relationships between the
mutated genes from different patients.
In this paper, instead of directly working on the gene

lists, we propose to examine the functional relationships
of the SMGs between different patients based on func-
tional genomics data. One of such functional measure-
ments is gene expression profile obtained from
microarray or RNA-seq experiments, which has already
been curated in TCGA. Specifically, given two sets of
SMGs from two patients, we develop a method to estab-
lish the relationship between them based on expression
profiles of the two gene lists.
Given a list of genes with their expression profiless mea-

sured in a cohort of patients, one way to characterize their
roles is to examine how these genes lead to separation of
the patients. In other words, we can establish a “patient
network” using the difference of the expression levels of
the genes as distance metric. Then given two gene lists,
we can compare the similarity between the patient net-
works established by each of the lists. The similarity will
provide pivotal information on the similarity between the
roles of these two gene lists among the patients.
Mathematically, such similarity between patient net-

works can be computed using a recently developed
metric called distance correlation [6]. Therefore in this
paper, we develop a workflow for establishing the func-
tional similarity among SMGs from different patients
based on distance correlation. Our goal is trying to re-
veal the yet unknown links between different SMG,
which indicate their functional relationships in the con-
text of human gene interaction network, and use this re-
lationship to stratify patients with different subtypes.

While we demonstrate our approach using a breast can-
cer study, our method provides a novel promising ap-
proach of integrating genotype and gene expression data
in patient stratification in complex diseases.

Methods
In this paper, we obtained whole genome exome-seq
data (WES) from TCGA for the patients with breast can-
cers and derived the SMG list for each patient. The list
of SMGs from each patient were used as features for this
patient. We then computed distance correlation of every
pair of SMG lists to obtain the functional relationships
between the affected genes in different patients based on
the gene expression profiles. The process yielded the dis-
tance correlation matrix across the patients. Then we vi-
sualized the patients by multi-dimensional scaling, and
further clustered the patients into different groups. Our
workflow is summarized in Fig. 1.
The key component in this workflow is to compute

the distance correlation between a pair of gene lists (in
this case, expression profiles of two SMG lists from two
patients). The intuition behind distance correlation can
be considered as following: A gene list can be used to
cluster the patient cohort of a heterogeneous disease,
generating a clustering result. Two different gene lists
will generate two results, and the results may be similar
if the two gene lists play similar functional roles in the
disease phenotype. The distance correlation measures
the similarity of the two results.
In our case, we used the gene expression data (RNA-

seq) of the entire cohort to compute the distance correl-
ation, although theoretically, any gene expression dataset
of a cohort with similar disease diversity can be used,
and from a more general point of view, any type of data
which present deep enough functional relationship
among genes, even on normal people, can be used.
After we obtained the distance correlation matrix of

any two SMG lists in the context of gene expression,
which represents the functional relationship of any two
sets of SMGs in the breast cancer disease gene expres-
sion, we use this matrix to cluster the entire breast can-
cer cohort, and the results should show a group of
patients grouped by their common underlying perturb-
ation resulted from seemingly different SMG lists.

Datasets
The Cancer Genome Atlas (TCGA http://www.cancer-
genome.nih.gov) level-3 breast cancer patients’ somatic
mutation derived from WES and RNA-seq data were
downloaded from TCGA data portal in July, 2013.
Among all 876 available patients at the time of down-
load, 445 have matching SMG and RNA-seq data. The
data from these patients were chosen for further
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analysis. 83 normal breast sample RNA-seq level 3 data
were also obtained from TCGA.

SMG selection
Somatic mutations derived from WES of the TCGA
breast cancer patients were screened for significant mu-
tation genes (SMG). SMG was defined as genes with
frame-shift Indels, splice site change, non-stop mutation,
or nonsense mutation. The mutation of mismatch, silent,
RNA and in-frame indel were not included in SMG. For
a specific group of patients, the number of SMG refers
to the union of SMGs in that group of patients. For all
the patients we analyzed in this study, their correspond-
ing SMGs were listed in Additional file 1: Table S2.

Computing distance correlation
Distance correlation is a recently developed metric with
two advantages [6]. First, it can be used to calculate the
“correlation” between two matrices instead of just two

vectors. Essentially it calculates the similarity of effects
of two “feature sets” on separating the same set of sam-
ples. Secondly, unlike Pearson correlation that is based
on a linear model, it can respond to nonlinear relation-
ships. These properties make it a good candidate for our
purpose when comparing relationships between two
gene lists.
In this project, the distance correlation was computed

using Matlab as described in [6]. Given two lists of
SMGs ga and gb with na and nb genes respectively, we
first extract their gene expression matrices across N
patients as

Ea ¼ ea1 ⋯ eaN½ �∈ℜna�Nand Eb

¼ eb1 ⋯ ebN
� �

∈ℜnb�N ;

where ej
i (i ∈ {a, b}, j ∈ {1, 2,…,N}) are ni- dimensional

column vectors representing the expression profiles for
the j-th patient over the i-th SMG list. The distance

Fig. 1 Workflow of identifying functional gene relationships using variants and transcriptomic data
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matrices among the patients for the two sets of SMGs
can be calculated as

Da ¼ da
jk

h i
∈ℜN�Nand Db ¼ db

jk

h i
∈ℜN�N

with djk
i = ‖ej

i − ek
i ‖, i ∈ {a, b}, j, k = 1, 2,…,N. Let �di

j;⋅ and
�di
⋅;k be the average of the j-th row and k-th column for

the matrix Di (i ∈ {a, b}) respectively. Also set �di
⋅;⋅ be the

grand average of all entries of Di (i ∈ {a, b}). Then set the
centralized distance matrices to be

�Di ¼ �di
jk

h i

¼ di
jk−

�di
j;⋅−

�di
⋅;k þ �di

j⋅k

h i
∈ℜN�Nwith i ∈ a; bf g:

Then the distance covariance between two distance
matrices can be computed as

dCov Ea; Eb
� � ¼ 1

N2

XN

j;k¼1
�da
jk ⋅

�db
jk ;

and the distance correlation is defined as

dCor Ea; Eb
� � ¼ dCov Ea; ; Eb

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dCov Ea; ; Eað Þ⋅dCov Eb; Eb

� �q :

For the 445 SMG lists obtained from the 445 patients,
we compute the distance correlation matrix

DdCor ¼ dCor Ei;Ej
� �� �

∈ℜ455�455; i; j ¼ 1; 2;…; 445:

Multidimensional scaling and clustering
In order to visualize the distribution of the patients with
the proximity measurements defined by the distance
correlation matrix, we applied multidimensional scaling
(MDS) to embed the data points (each point represents
a patient) in 3D space. Specifically we used Matlab func-
tion cmdscale() with its default settings. The distance cor-
relation matrix was first transformed to a dissimilarity
matrix (using 1 −DdCor) before MDS. K-means clustering
was performed upon the patients using data using the
same dissimilarity matrix. It was carried out using Matlab
k-means function with default square-Euclidean distance
and replicates of 50, K = 3 or 5.

Jaccard index computing
SMGs for every pair of patients in TCGA BRCA cohort
were used to calculate the similarity between the two
SMG lists using Jaccard index (J), which is defined as:

J ¼ A ∩Bj j
A ∪Bj j ;

where A and B are the two groups of SMGs from any
pair of patients in the TCGA BRCA cohort. A∩B is the

set of overlapping genes within the two SMG groups A
and B, and A∪B is the union of these two groups.

Survival analysis
For validation, NCBI GEO breast cancer dataset
GSE1456 (containing 318 patients of mixed types) [7] as
well as Netherlands Kanker Instituut (NKI) NKI-295
dataset (containing 295 patients of mixed types) were
used [8]. These microarray datasets (and their specific
subtypes) contain gene expression data and matching
survival time (years) that are needed for survival ana-
lysis. Log-rank test was performed to determine the sig-
nificance of difference in survival time between two
patient groups and Kaplan-Meier curves were plotted.

Pathway analysis and gene query in TCGA database
Ingenuity Pathway Analysis (IPA) was used to analyze
enriched biological functions and pathways in the identi-
fied SMGs. The prevalence of SMGs on other cancer
types in TCGA database was generated using the cBio-
Portal online tools (http://www.cbioportal.org) [9].

Results
We applied the above described workflow to analyze 445
breast cancer patients with matching SMG and RNA-
seq data from TCGA. The distance correlation matrix
was calculated and transformed. After MDS, the patients
were imbedded into a 3D space for visualization, as
shown in Fig. 2, with each point representing a patient.
When the patients were clustered using the K-means

clustering algorithm, we observed a distinctive group of
patients as highlighted by the red circle in Fig. 2. The
number of clusters is tested by checking the silhouette
values and plots for different choice of K. The silhouette
value reaches its high peak at K = 5 (data not shown) but
this group is stable even when the number of clusters
changed (e.g., K = 3 vs. 5). In addition, we inspected the
silhouette plots and found that the clusters are more
separated when K = 3. Thus we use K = 3 for most the
rest analysis.
In order to test if the clustering of patients can be

achieved using other methods or could be an artifact, we
carried out three tests. First, we directly used the SMGs
as features for the patients and the similarity among the
patients were established by calculating the Jaccard indi-
cies between every pair of patients. Out of all the 98,790
patient pairs, 96.2 % are zeros, which means they do not
share any common genes. Thus using SMGs cannot ef-
fectively separate the patients. Secondly, we tested if
using non-cancer gene expression data can lead to the
same observation. As shown in Fig. 3a, there is no clear
separation among the patients and the clusters obtained
from K-means algorithm do not have any enrichment of
specific subtypes of breast cancers when we used 83

The Author(s) BMC Genomics 2016, 17(Suppl 7):513 Page 186 of 325

http://www.cbioportal.org/


Fig. 2 K-means clustering on the embedded patients , revealing a subtype of breast cancer patients enriched with triple-negative patients.
a: K = 3, Red: Group 1, Blue: Group 2, Green: Group 3. b: K = 5, Group 2 from panel A was further clustered into three groups (blue,
magenta and red)
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normal breast tissue samples RNA-seq data instead of breast
cancer data. Finally, we tested randomly selected “pseudo-
SMGs” for the patients. Basically for each patient, we ran-
domly select the same number of genes as her SMGs,

applying the same workflow and the result is shown in
Fig. 3b. Similar results are observed as in Fig. 3a.
In order to gain insight on this distinctive group of pa-

tients, we examined the status of the known molecular

Fig. 3 The results of the distance correlation workflow on control data. a: Applying the workflow using normal breast gene expression data. The
three groups from K-means clustering do not enrich specific subtypes of breast cancers. b: Applying the workflow on randomly selected
“pseudo-SMGs”. No subtype enriched patient cluster can be observed
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markers for breast cancers, namely estrogen receptor
(ER), progesterone receptor (PR), and HER2. Statistical
analysis revealed that this group is significantly enriched
with ER-negative, PR-negative, HER2-negative, or triple
negative breast cancer (ER-, PR-, HER2- or TNBC) pa-
tients. Specifically, while it contains 41 patients consist-
ing only 9.2 % of the total cohort, it includes 34 % of the
total TNBC patients (Table 1). To examine if this group
can be differentiated easily from the cohort using other
genes, we repeated the process using randomly selected
“pseudo SMGs” of the same sizes for every patient. The
clustering result was not able to separate the patients
into groups with such enrichment of the ER- or TNBC
patients. Since both ER- and TNBC patients are known
to have worse prognosis then the ER+ patients, our fur-
ther analysis was focused on this specific group, and we
refer it as the “Group 1” in the rest of the paper.
Group 1 contains 201 SMGs that are specifically present

in Group 1 patients (Fig. 4, Additional file 1: Table S1). En-
richment and pathway analysis using IPA showed that these
SMGs are highly enriched with cancer-related genes, genes
for embryonic development, cell morphology and organ de-
velopment, indicating this group of genes are more in-
volved in the early stage of cancer cell development and
differentiation process (Fig. 5). Several upstream regulator

drugs are found to regulate multiple genes in this group,
among them, Ethinyl estradiol, an orally bioactive estrogen,
regulates ABCB11, CCR7, CD97, CYP2D6, CYP7B1, SGK1,
suggesting although being ER-negative, estrogen may still
play a role in this group of patients; the drug, which is used
to treat myelodsyplastic syndromes and acute myeloid
leukemia, regulates BMP4, CCR7, MAGEC1, METAP2,
MGMT, RARB, RARRES1, SGK1, SNRPN, and TGFBR2
[10, 11]. This may be a direction for future therapeutic re-
search on this specific subtype of triple-negative breast can-
cer. Interestingly, the narcotic substance amphetamine
regulates BMP4, DCC, SGK1, and TGFBR2.
In addition, analysis using cBioPortal shows that the

group of 201 SMG genes is found frequently altered
(mutated, or contain copy number variance) in almost
all types of cancers available in TCGA database (Fig. 6).
We further tested if this unique group of 201 SMGs

(Additional file 1: Table S1) or its subsets is associated
with patient outcome (survival time to be specific in this
paper) using multiple publicly available breast cancer
gene expression data. The results are shown in Fig. 7.
The subsets were selected based on the IPA pathway an-
notation. Our test on NKI data suggested that the 201
SMGs are able to separate patients (based on K-means
algorithm with K = 2) into two groups with significant
survival time difference but cannot effectively separate
the ER-negative patients. The 201 SMGs can be clus-
tered into several functional/pathway groups based upon
gene enrichment analysis using Ingenuity Pathway Ana-
lysis (IPA®). Among these groups, we found that the
group of 27 genes with embryonic development func-
tions performed the best, which can separate the ER-
negative breast cancer patients into two groups with sig-
nificantly different survival times (Fig. 6 Middle). In
addition, this 27-gene set can also separate patients in
the other dataset (GSE1456) as shown in Fig. 7 Right.
Given the high enrichment of ER-negative patients in
the Group 1, these results suggest that the 27 genes may
form the core of the Group 1 SMGs. As a comparison,
the SMGs unique to Group 2 were not able to separate
the ER-negative patients with significantly different sur-
vival outcomes, and it does not performs as good as
Group 1 SMGs on general population survival test (data
not shown).

Table 1 Statistical tests on the patient subtypes enriched in each group from K = 3 clustering results. No statistic test was performed
for HER2 (and TN) status, due to the fact that more than 25 % patients do not contain HER2 status

Total ER+ ER- χ2 adj-P value PR+ PR- χ2 adj-P value HER2+ HER2- Triple -

Group1 41 14 26 0.00075 13 26 0.00658 8 23 16

Group2 304 233 68 0.700 205 95 0.488 55 158 28

Group3 100 85 12 0.0619 68 30 0.6476 15 53 5

Total (with sig mutation and matching RNAseq) 445 332 106 286 151 78 235 49

Total in TCGA 876 634 187 548 267 136 447 90

Fig. 4 Venn diagram showing the genes shared/unique among the
three groups from K = 3 clustering results
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Discussion
With recently rapid development in next-generation se-
quencing technology and computing capacity, huge
amount of data in different modalities for cancer speci-
mens have been accumulated in an amazing speed in
public databases. Therefore, integrating and mining
these data becomes a major challenge in the bioinfor-
matics field currently. In this work, we developed a
novel approach to integrate genomic, transcriptomic and
clinical data of cancer patients, specifically to compare
somatic mutations of patients based on their functional
relationships in the context of gene expression profiles,
thus tackling the challenge of low overlapping of

mutated genes among cancer patients. By introducing
the distance correlation metric to directly measure the
relationship between two sets of genes affected by som-
atic mutations, we not only can cluster the patients into
different groups with different clinical subtypes, but also
visualize the clusters and identify group specific muta-
tions. The power of using distance correlation freed us
from comparing only gene pairs, but directly compar-
ing gene list to list. The distance correlation captures
not only linear relationship of the two lists as Pearson
correlation does, but also reveals non-linear relation-
ship as well, which covers the biological interaction in
far more and deeper extent.

Fig. 5 Pathway analysis showing the top 10 biological functions enriched in the genes specifically to Group 1 isolated from K = 3 clustering

Fig. 6 Group 1 specific genes are altered in multiple cancer types (TCGA data). AML: acute myeloid leukemia; ACC: adenoid cystic carcinoma; BC:
bladder cancer; BUC: bladder urothelial carcinoma; BLGG: brain lower grade glioma; BIC: breast invasive carcinoma; CSCC &EAC: cervical squamous
cell carcinoma & endocervical adenocarcinoma; GBM: glioblastoma multiforme; HNSCC: head & neck squamous cell carcinoma; KRCCC: kidney
renal clear cell carcinoma; KRPCC: kidney renal papillary cell carcinoma; LAC: lung adenocarcinoma; LSCC: lung squamous cell carcinoma; OSCC:
ovarian serous cystadenocarcinoma; Prostate AC: prostate adenocarcinoma; SCM: skin cutaneous melanoma; SAC: stomach adenocarcinoma; TC:
thyroid carcinoma; UCEC: uterine corpus endometrial carcinoma; LHC: liver hepatic carcinoma; Pancreatic AC: pancreatic adenocarcinoma
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Fig. 7 Survival analysis using the Group 1 specific genes and its subset on separate breast cancer microarray data. Left: one NKI all cohort; Middle:
on NKI ER-negative cohort; Right: on GSE1456 all cohort

Fig. 8 Group 1 genes enriched with embryonic development, organ development and morphology function (IPA)
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Applying this approach on TCGA breast cancer pa-
tients reveals a group of patients who are mostly nega-
tive with one or more of the three breast cancer
biomarkers (ER, PR, HER2) [12], and one third of the
group are triple-negative subtype. Triple-negative breast
cancer (TNBC) composes of 12–20 % of breast cancer
patients [13]. It progresses more aggressively and does
not respond well to hormone therapy. The rapid and
aggressive progress of the disease course makes the
prognosis of TNBC very poor [14] and the prediction
difficult. After examining the group of patients we iden-
tified here, they harbor SMGs tightly interlinked each
other and enriched with early stage cancer development.
Among them, the 27 embryonic development genes
form tight interaction networks as shown in the Fig. 8,
and those genes can be used for breast cancer survival
prognosis, especially for the poorly understood ER-
negative cohort. TCGA database has not been curated
long enough for this subtype of patients, therefore we
did not test our findings on TCGA data. Instead, we
chose two older GEO breast cancer microarray datasets.
Unfortunately, the GEO datasets we tested does not
contain enough TNBC patients, so we only tested on
ER-negative cohort. The clustering results indicated that
a portion of the triple negative patients maybe funda-
mentally different from the rest of the breast cancer pa-
tients due to the somatic mutations they harbor. Many
of their genes shared common upstream regulators such
as the drug for acute myeloid leukemia or estrogen, sug-
gesting this group of people may benefit from other type
of treatments that have not been administrated to TNBC
patients. We suggested that the common upstream regu-
lators and drugs interacting with these genes can provide
insight on the development and treatment of TNBC pa-
tients. In addition, while among the 27 genes some of
them are known to be associated with other cancers
such as AFF1 [15], BMP4 [16], and TRIM24 [17], others
such as MED27 is not widely know to be associated with
cancers. Thus our work also generated new hypothesis
on cancer related genes.

Conclusions
In summary, a common challenge in studying complex
diseases such as cancers is the lack of common genetic
mutations among the patients. Besides pursuing com-
monly affected pathways, we provide a complementary
approach for integrating the genotype data with tran-
scriptome data to study the relationships between the
genetic mutations at the functional level. While our
main goal is on exploring the functional relationships of
mutated gene groups, the identified genes may also serve
as potential biomarkers for different subtypes of cancers.
Currently due to the limitation of the data, we focus on
the protein coding genes from the WES experiments.

In the near future, we plan to apply the same workflow
to other cancer datasets in TCGA to further test the ef-
fectiveness of this method as well as identifying diseases
in which such functional relationship can lead to
meaningful stratification of the patients. With the
cost of whole genome sequencing decreasing dramat-
ically, it is expected that more somatic mutations on
the non-coding regions and regulatory regions can be
made available and the approach need to be expanded
to accommodate such mutations.

Additional file

Additional file 1: Supplementary tables. This file contain two tables, the
first table contain the SMGs in group 1 patients and their mutation
frequencies among group 1 patients. The second table contain the patient
IDs and their corresponding SMGs from TCGA BRCA. (DOCX 117 kb)
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