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Abstract

Background: Gene co-expression network analysis (GCNA) is widely adopted in bioinformatics and biomedical
research with applications such as gene function prediction, protein-protein interaction inference, disease markers
identification, and copy number variance discovery. Currently there is a lack of rigorous analysis on the
mathematical condition for which the co-expressed gene module should satisfy.

Methods: In this paper, we present a linear algebraic based Centralized Concordance Index (CCI) for evaluating
the concordance of co-expressed gene modules from gene
co-expression network analysis. The CCI can be used to evaluate the performance for co-expression network
analysis algorithms as well as for detecting condition specific co-expression modules. We applied CCI in detecting
lung tumor specific gene modules.

Results and Discussion: Simulation showed that CCI is a robust indicator for evaluating the concordance of a
group of co-expressed genes. The application to lung cancer datasets revealed interesting potential tumor specific
genetic alterations including CNVs and even hints for gene-fusion. Deeper analysis required for understanding the
molecular mechanisms of all such condition specific co-expression relationships.

Conclusion: The CCI can be used to evaluate the performance for co-expression network analysis algorithms as
well as for detecting condition specific co-expression modules. It is shown to be more robust to outliers and
interfering modules than density based on Pearson correlation coefficients.

Background
Gene co-expression network analysis (GCNA) is widely
adopted in bioinformatics and biomedical research. It has
many biomedical applications such as gene function predic-
tion [1–4], protein-protein interaction inference [1, 5–7],
disease markers identification [3, 8], and copy number vari-
ance discovery [9, 10]. Many GCNA algorithms have been
developed to identify gene modules of strongly co-expressed
genes [3, 7, 11–15]. These gene modules can be used to fur-
ther infer co-regulation mechanisms such as common tran-
scription factors as well as genetic mutations such as copy
number alterations in specific chromatin regions.

Mathematically, the co-expression of the genes is often
measured using correlation metrics with Pearson correl-
ation coefficient being the most widely used one [1, 7, 11].
However, there has been a lack of rigorous analysis on the
mathematical condition for which the co-expressed gene
module should satisfy. As to be shown in this paper, the
mathematical condition is a rather straightforward linear
algebra based condition. And the condition can lead to an
effective metric for characterizing the concordance of the
gene expression profiles in the module. With the rigorous
treatment and the effective metric, we can evaluate each
module as well as the algorithm.
In addition, this metric can be used to detect condition

specific co-expressed gene modules. Condition specific
gene co-expression is an interesting problem and many
methods have been developed to detect it [16–20]. How-
ever, most of the methods are based on first detecting
differential correlation at gene-pair level such as the
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Fisher’s transformation and the Expected Conditional F-
statistic (ECF) developed in [17]. Instead, using the new
metric we developed here and the randomized test for
this metric, we can detect condition specific gene co-
expression holistically at the gene module level instead
of just gene pairs. As demonstrated in our example on
lung cancer data, this can lead to new candidates on dif-
ferent mechanisms for co-expression and discovery of
potential new genetic variants associated with diseases
such as cancers. Our preliminary results suggest that
there is rich biological information contained in the co-
expression relationships and the condition specificity
that needs to be uncovered by deeper analysis and bio-
logical validations.

Methods
Rank condition of the expression profile data matrix for
co-expressed genes
Given a set of n (≥2) genes and their expression levels
over N (≥3) samples, the expression profiles can be
expressed using a matrix

G ¼
g11 ⋯ g1N
⋮ ⋱ ⋮
gn1 ⋯ gnN

2
4

3
5 ¼

g1
⋮
gn

2
4

3
5∈ℜn�N ; ð1Þ

with N-dimensional row vector gi = [gi1, gi2,…, giN] be
the expression profile for the i-th gene across the sam-
ples (i = 1, 2,…, n). If two genes i and j are perfectly co-
expressed, ie, |ρ(gi, gj)| = 1 where ρ(⋅,⋅) is the Pearson
correlation coefficient between two vectors, then given
the linear relationship between the two vectors, we have

gik ¼ αij⋅gjk þ βij k ¼ 1; 2;…;Nð Þ ð2Þ

for some constants αij and βij and

gi ¼ αij⋅gj þ βij⋅1
T
N ; ð3Þ

where 1N = [1, 1,…, 1]T ∈ℜN is N-dimensional. There-
fore the matrix G can be re-written as
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⋮
gn

2
64

3
75 ¼

g1
α12g1 þ β12⋅1

T
N

⋮
α1ng1 þ β1n⋅1

T
N

2
664

3
775

¼
g1

α12g1
⋮

α1ng1

2
64

3
75þ

0
β12⋅1

T
N

⋮
β1n⋅1

T
N

2
64

3
75

¼
1
α12
⋮
α1n

2
4

3
5⋅g1 þ

0
β12
⋮
β1n

2
64

3
75⋅1TN : ð4Þ

Thus the matrix G can be decomposed as the sum of
two matrices each has rank 1. Since it has been well

established in linear algebra that given two matrices A
and B of the same size, rank(A + B) ≤ rank(A) + rank(B)
[21], we have the following proposition:

Proposition 1 If the absolute value of the Pearson cor-
relation coefficient (PCC) between every pair of rows
of a matrix G (G ∈ℜn ×N, n ≥ 2, N ≥ 3) is 1, then
rank(G) ≤ 2.
Furthermore, if any of the rows of G is shifted or

scaled (e.g., gik
' = λ ⋅ gik + ε), the PCC value between them

will still have absolute value 1 and thus the Proposition
1 still holds.

SVD based methods for estimating the rank of G
Given the matrix G, its singular value decomposition
(SVD) is G =USVT where U ∈ℜn × n, V ∈ℜN ×N are both
orthonormal matrices and S is a diagonal matrix with
all the elements being zero except for the ones on
the diagonal line which are non-negative and sorted
in descending order (ie, S11 ≥ S22 ≥… ≥ SKK ≥ 0, where
K =min(n, N)). In addition, let ‖G‖ be the Frobenius

norm of G such that Gk k2 ¼
Xn
i¼1

XN
j¼1

g2ij , then it is well

known that

Gk k2 ¼
Xn

i¼1

XN

j¼1
g2ij ¼

XK

i¼1
S2KK ;

K ¼ min n; Nð Þ:
ð5Þ

If G satisfies the condition of Proposition 1, then the
rank of G is 2 which implies S33 = S44 =… = SKK = 0.
Thus

R12 ¼ S211 þ S222
Gk k2 ¼ 1: ð6Þ

In reality, given the expression profile matrix of a
set of co-expressed genes, the perfect PCC value can
never be reached and thus G is never really rank 2,
but instead it can be approximated with a rank 2
matrix. Thus in theory, given an expression profile
matrix G, we can examine if the genes (row vectors)
are co-expressed by testing if the ratio R12 defined in
(6) is close to 1. We refer R12 as the concordance
index.

Data transformation and centralized concordance index
While the concordance index R12 can be used as a
potential indicator for the concordance of the rows of
G and thus for evaluating co-expressed modules, it is
difficult to set a hard threshold for it. This is even
more challenging for real data due to noise, batch ef-
fects, and background signals that may skew the PCC
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values. In addition, since SVD is based on the L2

-norm, it can be biased by any specifically large out-
lier or just a few genes with high expression levels.
Thus the data needs to be transformed before pro-
cessing. The transformation of the data we proposed
involves two steps: centralization and standardization.
First, each row of G needs to be centralized by sub-
tracting its average such that

�G ¼
g11− �g1 ⋯ g1N− �g1

⋮ ⋱ ⋮
gn1− �gn ⋯ gnN− �gn

2
4

3
5

¼
gc1
⋮
gcn

2
4

3
5; where �gi ¼

XN

k¼1
gik

N
f or i ¼ 1; 2;…; n:

ð7Þ
Next, each row of �G is standardized to have norm 1, ie

Ĝ ¼ ½ g
1
c
= gc1k k
⋮

gn
c
= gcnk k
� ¼

ĝ 1
⋮
ĝ n

2
4

3
5; where ĝ k ¼ g

kc
�

gckk k;

k ¼ 1; 2;…; n:

ð8Þ

The centralization step aims to mitigate the back-
ground signal while the standardization step avoids bias
towards any particularly highly expressed genes. Interest-
ingly, since the Pearson correlation coefficient between
gi and gj is defined as

ρ gi; gj
� �

¼
XN

k¼1
gik−�g i
� �

⋅ gjk−�g j
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1
gik−�g i
� �2q

⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
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gjk−�g i

� �2
r

¼
gci ⋅ gcj

� �T

gci
�� ��⋅ gcj

��� ��� ¼ ĝ i⋅ ĝ j

� �T

ð9Þ
and ‖ĝk‖ = 1 (k = 1, 2,…, n), therefore |ρ(gi, gj)| = 1
implies ĝk = ĝ1 or ĝk = − ĝ1. In other words,

Ĝ ¼
α1
⋮
αn

2
4

3
5ĝ1; where αi∈ þ1; −1f g f or i ¼ 1; 2;…; n:

Therefore we have the following proposition:

Proposition 2 If the absolute value of the Pearson
correlation coefficient (PCC) between every pair of rows
of a matrix G (G ∈ℜn ×N, n ≥ 2, N ≥ 3) is 1 and Ĝ is the
centralized matrix of G with each row standardized as

in (8), then rank(Ĝ) = 1. In addition, the inner product
between every pair of rows equals the Pearson correlation
coefficient of the two rows.
Thus the singular value decomposition (SVD) for Ĝ is

Ĝ ¼ Û ŜV̂ T where Û∈ℜn�n; V̂ ∈ℜN�N are both ortho-
normal matrices and Ŝ is a diagonal matrix with all the
elements being zero except for the ones on the diagonal
line which are non-negative and sorted in descending
order (ie, Ŝ11 ≥ Ŝ22 ≥… ≥ ŜKK ≥ 0, where K =min(n, N)).
In fact, given that Ĝ is rank 1 and Ĝ = n, we have

Ŝ2
11 ¼ n and Ŝ22 ¼ … ¼ ŜKK ¼ 0: ð11Þ

We therefore define a centralized concordance index
(CCI) as

CCI ¼ Ŝ2
11

n
:

Estimate the significance of the CCI
We examine two approaches for determining if the ob-
served CCI is significantly large to reflect co-expression
relationship among the n genes over the entire whole
genome dataset. First, we randomly permute the entries
of every row of Ĝ and calculate CCIp. This process is re-
peated M times (usually we choose M = 1000). Then we
set

ppermute ¼ CCIp≥CCI
� �

=M:

Conceptually this gives a measurement on how signifi-
cant is the observed concordance index in the back-
ground of the same data distribution.
Next, we randomly choose n genes from the whole

genome gene expression data and calculate the CCIr.
This process is repeated M times. We then calculate the
z-score ZCCI for the CCI based on the random sampling

such that ZCCI ¼ CCI−mean CCIrð Þ
std CCIrð Þ . The significance is then

estimated from the z-score. This gives a measurement
on how significant is the observed CCI for the tested
gene module in the entire genome. We choose z-score
instead of the percentile of the CCI due to three reasons:
1) simulation and tests on real data shows that CCIr fol-
low a bell-shaped distribution which can be reasonably
approximated by a Gaussian distribution as shown in
Figs. 1 and 2) even with 1000 times sampling, it is still
relatively small comparing to all the possible combina-
tions, thus sometimes although CCI is larger than all
CCIr, it is not reasonable to assume that the p-value
(significance) is extremely small, instead z-score gives a
reasonable estimate on the deviation of the observed
CCI from the random samples; and 3) last but not the
least, one of our goals is to use the metric to compare
results from different conditions, z-scores are
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standardized with the same distribution and thus allows
us to compare with different conditions.

Simulation
To evaluate the performance of the concordance index,
we generate a matrix of 50 × 100 with absolute value of
PCC between every pair of rows being 1. The base vec-
tor is generated as a 100-dimensional row vector using

uniform distribution from 0 to 1. The scaling factors (α)
and shifts (β) are also generated using uniform distribu-
tion from 0 to 1. The matrix G is calculated using
Eq.(4). Then Gaussian noises with zero mean at different
levels (σ = 0.01, 0.02, 0.05, 0.07, 0.1, 0.15, 0.2, 0.3, 0.5, 1)
are added to the matrix and corresponding concordance
indices are calculated. This process is repeated 1000
times for each noise level. In addition, for each test the

Fig. 1 Simulation on the distribution of CCI and its relationship with noise in the data. Top: Relationship between CCI and noise level. The x-axis
reflects the effects of the noise on the centralized matrix. Middle: The distribution of CCI calculated from 1000 randomly selected gene lists (with
220 genes) in the 41 lung cancer tumor samples (using GSE18842). Bottom: The distribution of CCI calculated from 1000 random permutation of
the data from the correlated gene module
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Fig. 2 (See legend on next page.)

The Author(s) BMC Genomics 2016, 17(Suppl 7):519 Page 307 of 325



centralized matrix Ĝr was compared with the original Ĝ

using ratio RF ¼ Ĝr−ĜFk k
Ĝk kF , where ‖ ⋅ ‖F is the Frobenius

norm of the matrix.

Comparison with density metric
Since a focus of mining co-expression network is to iden-
tify densely connected gene modules, the metric density
defined for network mining is often used. For a module
with n in weighted network, its density is defined as

d ¼
Xn−1

i¼1

Xn

j¼iþ1
wij

n n−1ð Þ=2 :

For co-expression networks, the weight wij is
often defined as the correlation coefficient |ρ(gi, gj)|

or its transformation. In order to examine the rela-
tionship between CCI and density, we compare
CCI with the density defined using |ρ(gi, gj)| as
weights. Specifically, we consider two scenarios.
The first is to test the responses of the metrics to
outliers. We first generate the simulated matrix G
as described above. Then outlier (independently
generated vectors) will be added. We calculate
both metrics under different number of outliers
and different noise levels for G. The second sce-
nario is to consider the possibility that two mod-
ules sometimes can be erroneously linked together.
To test this, we generate two gene modules and
test the responses of the two metrics with respect
to different sizes and noise levels of the modules.
Each test is repeated 100 times.

(See figure on previous page.)
Fig. 2 Comparison between CCI and density metrics. a The CCI versus density metrics with the increases of number of outliers under two
different noise levels. b The boxplots for the two metrics with different number of outliers and noise levels. The values are normalized to the
values with zero outlier. c The CCI versus density metrics with the increasing size of the interfering module. d The boxplots for the two metrics
with different number of outliers and noise levels with the values normalized to the values without interfering module

Fig. 3 Examples of the gene modules in tumor samples (left column) and control samples (right column). The top two modules show significant
difference in co-expression between control and tumor samples with high CCIs and z-scores in tumor and low CCIs as well as low z-scores in
control samples. The bottom module has high CCIs and z-scores in both tumor and control samples

The Author(s) BMC Genomics 2016, 17(Suppl 7):519 Page 308 of 325



Datasets
We test the concordance index and its significance
using a large gene expression dataset. The dataset
was downloaded from NCBI Gene Expression Omni-
bus (GEO). The dataset is GSE18842 containing gene
expression microarray data from 46 non-small cell
lung cancer (adenocarcinoma) tumor samples and 45
non-cancer control tissue samples [22]. The
GSE18842 dataset was generated using Affymetrix
HU133 2.0Plus GeneChip. The normalization of the
dataset was verified by inspecting the boxplot and
data distributions. We also tested some of the

findings using TCGA non-small cell lung cancer
adenocarcinoma [23] and squamous cell tumor data
[24] from cBioPortal (http://www.cbioportal.org/).

Weighted co-expression network analysis
While the R package WGCNA developed by the Hor-
vath’s group is a widely adopted co-expression gene
module discovery tool, it has some limitation as it is
based on hierarchical clustering algorithm that does
not allow overlap between modules and does not con-
trol the density of the detected modules [11]. In this
paper, we apply a recently developed algorithm called

Table 1 Enrichment analysis of the 15 gene modules that are specific to tumor samples in lung cancer

Module Size GO BP term (p-value) Cytoband (p-value) TF (p-value)

4 162 Epidermis development (p = 8.762E-23); 1q21-q22 (p = 3.354E-06); AP1 (p = 2.177E-04, 22 genes);

2p24.3 (p = 5.021E-06) AREB6 (p = 9.900E-04, 8 genes)

5 159 neuron differentiation (p = 1.516E-07); 6q14.2 (p = 1.796E-04); PAX4 (p = 1.046E-05, 9 genes);

generation of neurons (p = 2.105E-07) 5q33 (p = 2.686E-04) MSX1 (p = 2.088E-04, 7 genes)

9 98 Neurogenesis (p = 1.490E-06); MSX1 (p = 2.875E-06, 7 genes);

central nervous system development
(p = 2.543E-06)

RNGTGGGC UNKNOWN
(p = 3.383E-05, 11 genes)

17 62 meiotic nuclear division (p = 1.035E-04); 7p15.3-p15.1 (p = 1.676E-03);

meiotic cell cycle (p = 1.349E-04) 12q22-q24.1 (p = 1.676E-03)

19 55 cellular glucuronidation (p = 2.634E-05); 4q13 (p = 2.202E-04);

uronic acid metabolic process (p = 3.005E-05) 4q31.3-q32 (p = 1.474E-03)

25 48 glutamate decarboxylation to succinate
(p = 4.577E-06);

4q21.22 (p = 1.646E-06);

glutamate catabolic process (p = 9.526E-05) 8p11.22 (p = 1.485E-04)

38 36 calcium ion export (p = 2.626E-05) 7q21.3 (p = 8.602E-06);

9p21.3 (p = 2.647E-04)

44 33 vasodilation of artery involved in baroreceptor
response to increased systemic arterial blood
pressure (p = 2.381E-06);

7p12.2 (p = 1.729E-05); RORA1 (p = 6.429E-03, 3 genes);

baroreceptor response to increased systemic
arterial blood pressure (p = 1.424E-05)

11p15.2-p15.1 (p = 9.241E-04) ERR1 (p = 7.357E-03, 3 genes)

50 30 fatty acid derivative metabolic process
(p = 1.751E-07);

4q28-q32 (p = 1.673E-03) WGTTNNNNNAAA UNKNOWN
(p = 2.278E-03, 4 genes);

icosanoid metabolic process (p = 1.751E-07) FOXO4 (p = 1.168E-02, 6 genes)

66 21 4p16.3 (p = 2.197E-9, 5 genes);
13 genes on 4p13-16

E2F1 (p = 9.854E-4, 3 genes)

67 21 9q21.33 (p = 5.973E-05); RACTNNRTTTNC UNKNOWN
(p = 3.031E-05, 3 genes)

9q22.32 (p = 1.652E-04);
18 genes on 9q21-34

70 20 1q22-q23.2 (p = 5.196E-04)

8q22-q23 (p = 1.038E-03)

81 18 21q22.3 (p = 2.655E-05)

84 18 4q31.23 (p = 6.329E-06);
4q31 (p = 1.242E-05);
12 genes on 4q23-31

CREB (p = 1.568E-04, 3 genes)

116 13 Xp11.23 (p = 6.422E-04) MEIS1 (p = 1.089E-03, 3 genes)
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Normalized lmQCM [15]. This algorithm takes a net-
work mining approach allowing overlaps between
modules and also is guaranteed to have a lower
bound on the density of the detected modules.

Using CCI to detect condition specific modules
The concordance index and its significance evaluation
provide us a means to evaluate if a co-expressed gene
module (CGM) in one condition is also strongly co-
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Fig. 4 The OncoPrint plots for different types of mutations on the genes in module 66 in the lung adenocarcinoma patients. Top: OncoPrint for
genes in Module 66 (with 21 genes) in the lung adenocarcinoma study in TCGA generated generated by cBioPortal. Bottom: Oncoprint for the
same gene module in lung squamous cell tumors in TCGA. The genes circled in red are all on cytobands 4p13-16 and the ones circled in blue
are on cytoband 8p11.23
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expressed in another condition. We first apply the
Normalized lmQCM to each conditions (normal and
disease) in both datasets using selected parameters (to
be discussed in the Results section). For each gene mod-
ule, we then calculated two CCIs, one using the data
from the condition it was generated and one using the
data from the opposite condition. For instance, if the
module was generated from the Parkinson’s disease

patients, CCIs for the same gene module is calculated
for both Parkinson’s disease samples and the control
sample. Then the ppermute and ZCCI are calculated for
both conditions too. Gene modules that are significant
(ZCCI ≤ τ) in one condition but not significant (ZCCI > τ)
in the other condition are reported for further analysis.
The threshold τ is determined based on the signifi-
cance requirement. For instance, τ is often chosen such

Fig. 5 Correlations between the copy number measurements and the gene expression levels (measured using RNA-seq) of gene MRFAP1. Top:
The box plot for the expression levels of gene MRFAP1 with respect to inferred copy number variation. Bottom: The correlation between the
expression levels of MRFAP1 with the measurement for copy number values is 0.726 (PCC)
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that the one-tail p-value for the ZCCI is less than 0.05
for single gene module or 0.05/m if m gene modules
are being tested (for multiple test compensation).

Enrichment analysis for gene modules
For the reported modules, we carry out enrichment ana-
lysis using TOPPGene (https://toppgene.cchmc.org/

Fig. 6 Examples of co-expressed genes on the same cytobands from the same gene module. Top: The correlation between expression levels of
MRFAP1 and GRPL1 is 0.650 (PCC). Bottom: The correlation between the expression levels of SLBP and GRPL1 is 0.606 (PCC)
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enrichment.jsp). We specifically pay attention to signifi-
cantly enriched Gene Ontology (GO) terms, cytobands,
transcription factor binding sites, and human/mouse
phenotypes.

Results
Simulation on the relationship between CCI
As described in the Methods section, we generated
the matrix with correlated rows. The matrix G was
then calculated using Eq. (4). Then Gaussian noises
with zero mean at different levels (σ =
0.01, 0.02, 0.05, 0.07, 0.1, 0.15, 0.2, 0.3, 0.5, 1) were
added to the matrix and corresponding concordance indi-
ces were calculated. This process is repeated 1000 times
for each noise level. In addition, for each test the central-
ized matrix Ĝr was compared with the original Ĝ using

ratio RF ¼ Ĝr−ĜFk k
Ĝk kF , where ‖ ⋅ ‖F is the Frobenius norm of

the matrix. The relationship between the CCI and the dif-
ference between the noisy matrix with the original matrix
is plotted in Fig. 1 Top.
We then tested the distribution of the CCI in random

gene lists using real data. As shown in Fig. 1 Middle,
1000 randomly selected gene lists with 220 genes (based
on a real module with CCI 0.4957 generated from the
co-expression analysis) in 41 lung cancer tumor samples
from GSE18842 were generated and the distribution of
the CCI follow a bell shaped curve with a mean of
0.1974 and standard deviation of 0.0117. Thus zCCI is
25.49. In addition we carried out 1000 times of random
permutation of the data from the co-expressed gene
module with 220 genes and the distribution is shown in
Fig. 1 Bottom. The permutation results follow a tight
distribution with mean of 0.0482 and standard deviation
of 0.00176. While this clearly shows that the observed
CCI (0.4957) is not associated with the data distribution,
the fact that these permutation results are much lower
than randomly picked gene sets from the original dataset
(as shown in Fig. 1 Middle) suggests the permutation
test practically cannot provide new information regard-
ing the significance of the modules. Therefore in the rest
of the paper we focus on the z-score based approach from
random gene list to evaluate the modules. Similar distribu-
tions were observed in multiple datasets with different
number of genes or sample sizes (data not shown).

Comparison with density metric
As described in the Methods section, we first consider
the scenario when the different numbers of “outlier vec-
tors” were added to the correlated matrix G with 50
rows and 100 columns. Figure 2a shows two instances of
the simulation for different choices of the noise level. In
both cases, the metrics (CCI and density) decrease as
the number of outliers increases. However, it can be seen

that the curve for the CCI is smoother than the curve
for the density, suggesting that CCI is more robust in re-
sponse to outliers. This is further confirmed in Fig. 2b
when the ranges of the values for both metrics over the
100 times simulation are plotted. In Fig. 2b, the values
of the metrics are normalized according to the value of
zero outlier. It is clear that the ranges for CCI are always
tight when the density values span a wide range. Similar
results are observed for the two-module scenario as
shown in Fig. 2c and d. In addition, it is clear that with
the increase of size of the interfering module, the density
is no long sensitive when the size of the interfering mod-
ule is more than half of the original module while the
CCI consistently decreases.

Identify tissue specific co-expressed modules in lung
tumor
We first carried out weighted gene co-expression net-
work mining using the normalized lmQCM algorithm
on the lung tumor data (41 samples) using parameter
γ = 0.4. γ is a major parameter for the normalized
lmQCM algorithm. The larger its value, the higher is the
density of the identified gene modules. Our previous study
suggested γ = 0.4 is a reasonable values for such dataset.
The algorithm yielded 168 gene modules with at least

five genes (ranging from five to 891). We then calculated
the CCI and z-score based on 1000 randomly selected
gene lists of the same size for every module. Then we
calculated the CCI and z-score for the same set of gene
lists in the control samples. We selected the threshold
for z-score to be 3.433 such that the one-tail p-value is
less than 0.05/168 = 0.000298. Among the 168 gene
modules, all the z-scores derived from the tumor sam-
ples are higher than the threshold while 15 of the gene
modules have z-scores lower than the threshold in con-
trol samples. Figure 3 shows the heatmaps of three ex-
amples of the gene modules. Two (Figure 3 Top and
Middle) have high z-scores in tumor samples but lower
than threshold z-scores in control samples. This is also
reflected in the heatmap. In the tumor samples (Fig. 3
Left), the expression levels of the samples show clear
consistent patterns across the samples while there is no
clear pattern in the control samples. The last module in
Fig. 3 (bottom) has high CCIs and z-scores in both tumor
and control samples and it is clear the expression levels of
the genes show consistent patterns in both cohorts.
These 15 gene modules are further analyzed for

enriched biological processes, cytobands and transcription
factor binding sites. Table 1 summarizes the findings from
these 15 gene modules.

Discussion
One important issue is the biological mechanism leading
to the differences in co-expression structures between the
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tumor and the control samples. As shown in Table 1, it is
clear that there are multiple possible mechanisms. From
the functional point of view, the first gene module (Module
4) is highly enriched in epidermis development function.
This is consistent with the fact that lung cancer is an epi-
thelial cancer. However the molecular mechanism for such
difference is still not clear. While it is often expected that
such difference may be due to difference in transcription
factors (TFs) which co-regulate the co-expressed genes,
our analysis (data not shown) on the enriched TFs shown
in Table 1 did not reveal any statistically significant in-
crease in level of the TFs in tumor samples.
Another possible mechanism of co-expression is that

the genes may lie on the same cytoband with copy num-
ber variations (CNV) among the tumor samples. We
have indeed observed a few such gene modules in-
cluding modules 66 (13 genes on 4p13-13), 67 (18
genes on 9q21-34), and 84 (12 genes on 4q23-31).
The difference between the tumor and control sam-
ples implies that the potential CNV may be specific
to the tumor. We tested the module 66 on TCGA
lung cancer data using cBioPortal. In addition to the
lung adenocarcinoma data with 230 patients, we also
tested on the lung squamous cell data with 178 pa-
tients. Figure 4 shows the OncoPrint plots for the
distribution of different types of mutations on the
genes in module 66 in the patients.
As shown in Fig. 4, the majority of the genes identified

in Module 66 on cytobands 4p13-16 showed consistent
CNV in lung cancer patients of both types. However,
they are all amplifications in adenocarcinoma while
mostly deletion in squamous cell tumors. To verify the
relationship between the CNV and gene expression
levels, we examined the correlations between the copy
number measurements and the gene expression levels
(measured using RNA-seq) of these genes and they all
show positive correlations with an example (for the
MRFAP1 genes) showing Fig. 5.
In addition, the genes which are on close cytobands

with similar CNV distribution in patients show strong
co-expression as shown in Fig. 6 while the ones not on
the same cytobands do not (data not show, the correl-
ation ranges from 0.3 to less than 0). These observations
suggest that the expression levels and co-expression of
the genes on these cytobands are strongly associated
with the CNV status of these bands. However, we also
observed difference in correlation in the original dataset
GSE18842 and the testing TCGA dataset. This could be
partially due to difference in sample selections and
measurement methods (GSE18842 data were generated
using Affymetrix genechips while TCGA expression data
were generated using RNA-seq).
An additional interesting observation is that in both

lung adenocarcinoma and squamous cell tumor samples,

two genes from cytoband 8p11.23 show consistent copy
number aberrations in the patients. While the mechan-
ism for their co-expression with the ones on cytoband
4p1 is not clear, literature review shows that the gene
TACC3 in Module 66 on cytoband 4p16 is known to
have a gene fusion with FGFR1 gene in 3 % of glioblast-
oma multiforme patients [25]. FGFR1 gene happens to
locate on 8p11.23-22. It is of great interest for future re-
search to investigate if the relationship between the
4p16 and 8p11.23 is partially due to a gene fusion event.

Conclusion
In summary, we have developed a linear algebraic based
index CCI for evaluating the concordance of co-expressed
gene modules from gene co-expression network analysis.
The CCI can be used to evaluate the performance for co-
expression network analysis algorithms as well as for
detecting condition specific co-expression modules. It is
shown to be more robust to outliers and interfering mod-
ules than density based on Pearson correlation coeffi-
cients. We applied CCI in detecting lung tumor specific
gene modules. The application revealed interesting poten-
tial tumor specific genetic alterations including CNVs and
even hints for gene-fusion. Deeper analysis required for
understanding the molecular mechanisms of all such con-
dition specific co-expression relationships.
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