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Abstract

Background: This study is to explore the key genes and signaling transduction pathways related to the survival
time of glioblastoma multiforme (GBM) patients.

Results: Our results not only showed that mutually explored GBM survival time related genes and signaling
transduction pathways are closely related to the GBM, but also demonstrated that our innovated constrained
optimization algorithm (CoxSisLasso strategy) are better than the classical methods (CoxLasso and CoxSis strategy).

Conclusion: We analyzed why the CoxSisLasso strategy can outperform the existing classical methods and discuss
how to extend this research in the distant future.

Keywords: Least absolute shrinkage and selection operator (Lasso), Sure independence screening (SIS), Cox
proportional hazards model (Cox), Glioblastoma multiforme (GBM), Signaling transduction pathway

Background
Glioblastoma multiforme (GBM) is the most common
and malignant brain tumor [1–3]. Since GBM is high
invasive and is mixed together with the healthy brain tis-
sue, it is almost impossible to remove the tumor without
causing serious consequences [4]. Moreover, GBM is
very easy to relapse [5, 6]. The median survival and
progression free survival time of GBM are 14.6 and
6.9 months, respectively. And the 5 year survival rate
was 9.8 %[7]. Previous studies [8–10] indicated that gene
mutation is one of the most important factors for GBM
development. Therefore, gene expression analysis can
not only be used to discover the underlying abnormality
of gene expression associated with the GBM gene

mutation, but also be employed to discover gene
signatures which could help us to investigate the related
signaling transduction pathways. Results from the
pathway analysis can lay the foundation for the GBM
cancer targeted drug research in the future.
As one of the important survival analysis methods, the

cox proportional hazards model [11] is broadly
employed to investigate the connections between various
covariates and the length of life. However, the classical
cox proportional hazards model [12] can only process
such survival data that the dimension of the factors (P)
are less than the number of samples (N) [13] (we call it
as P < <N type of data), but it is not able to handle the
survival data that the dimension of the factors are
greater than the number of samples such as the gene
expression data [13] (we call it as P> > N type of data).
To process P> > N type of data, Tibshirani et al., [14]
integrated the Lasso algorithm, one of the constrained
optimization methods, into the classical Cox
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proportional hazards model [15] to select the key predic-
tors. However, Fan et al., [16] pointed out if the number of
predictors is much greater than the sample size (P> > N),
a pre-cleaning step by a computationally expedient
screening procedure is often preferred to increase the ac-
curacy of the algorithm. Thus, Fan et al., [16] developed
the sure independence screening (SIS) method by fitting
marginal Cox regression models for each covariate and
screening out several covariates by a pre-specified thresh-
old. Nevertheless, reported by Hong et al., [17], marginal
screening may encounter the difficulty in identifying these
hidden and jointly important variables to incur false nega-
tives. Therefore, Hong et al., [17] proposed a conditional
SIS method to explore the potential predictors for the
regular linear system, but not consider the survival data.
On the other hand, developing a systematic approach to
identify the target generic drug for the cancer treatment
already becomes a popular research field [18, 19].
However, to our knowledge, there is no recent research
discussing the incoherent connection between survival
time and the target generic drug in detail.
To overcome the shortcomings of these previous

research, this study proposed a multi-scale genes and
signaling transduction pathways exploration platform
(Fig. 1) with the following three innovations. Firstly, we
innovatively analyzed the clinical GBM gene expression
and survival time data [20] to investigate the incoherent
relation between the signatures of genes and the survival
time of GBM patient. Secondly, we not only integrated

the constrained optimization method such as Lasso [15]
into classical Cox proportional hazards model [13] to ex-
plore survival time related key genes by processing the
P> > N type of data, but also used the SIS algorithm to
improve the predictive accuracy. Thirdly, we employed
KOBAS database [21] and hypergeometric test [22] to
investigate the correlated GBM signaling transduction
pathways regarding the explored survival time related
key genes. And then, these survival time related
signaling transduction pathway could help us to bridge
the relation between the targeted drugs and the survival
time for GBM patients.
The clinical GBM gene expression and survival data

set used in this study is downloaded from the
Georgetown Database of Cancer G-DOC [20], which has
54,675 features (P) and 227 samples (N). To handle such
a P> > N type of data, we developed the CoxSisLasso
strategy. It firstly integrated constrained optimized
methods such as Lasso into the classical cox regression
model to select the prior genes with potentially great im-
pact on the patients’ survival time. Secondly, conditioned
on these genes selected by Lasso, conditional SIS
method [23] is used to re-select the possible genes from
these genes screened out in the first step. To bridge the
relation between the targeted drugs and the survival
time for GBM patients, we employed the KOBAS [21]
application and the explored GBM survival time related
key genes to investigate which signaling transduction
pathways closely correlate with the GBM survival time.

Fig. 1 Flow chart of the gene and signaling transduction pathway platform
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In general, this study developed a multi-scale genes
and signaling transduction pathways exploration
algorithm that can not only investigate the molecular
mechanism between the key genes and cancer patients’
survival time, but also employ hypergeometric distribu-
tion based database (KOBAS) to look for the related sig-
naling pathways in the proteomics level for the future
targeted cancer therapy [24, 25]. Manually-reviewed
experimental evidences showed that mutually explored
GBM survival time related genes [26–38] and signaling
transduction pathways [39–52] are closely related to the
GBM. In addition, the research results demonstrate that
our proposed CoxSisLasso strategy has the best predict-
ive power and model fitting capacity compared to the
CoxLasso and CoxSis strategy developed by Tibshirani
et al.,[14] and Fan et al., [16], respectively. Finally, we
theoretically analyze why the CoxSisLasso strategy out-
performs CoxLass and CoxSis and discuss the further
research.

Methods
Materials
We used a multi-study microarray database of GBM
expression profiles (n = 227) from the Georgetown Data-
base of Cancer G-DOC [20], based on the Affymetrix
U133 plus 2.0 GeneChip microarray platform. The
microarray datasets of GBM are listed by Table 1.

Data filtering
The original microarray datasets are normalized and
preprocessed by R software package [53]. After prepro-
cessing step, there are 227 samples and 54,675 genes left
in the data matrix. Next, the interquartile range (IQR)
threshold [54] is employed to screen out the genes with
small variance value. After that, there are only 227

samples and 10,992 genes left in the GBM gene expres-
sion and survival time data matrix.

Cox proportional hazards model
Survival analysis [11, 55] works for the analysis of time
duration until one or more events happen. As one of the
widespread used survival analysis methods, the Cox
proportional hazards model [13] is used to analyze the
time-to-event data with both censored data and
covariates, which assumes a semi-parametric form for
the hazard as Eq. 1.

hi tð Þ ¼ h0 tð Þ exp xTi β
� � ð1Þ

where hi(t) is the hazard for patient i at time t, h0(t) is a
shared baseline hazard function, β is an unknown p-di-
mensional regression coefficient vector and xi is a vector
of potential predictors for the ith individual. Based on
the available samples, the estimator of the unknown par-
ameter coefficients β̂ , can be obtained by maximizing
the log-partial likelihood function as Eq. 2

β̂ ¼ argmax logPL

¼ argmax
X
k∈D

xTk β− log
X

j∈Rk
exp xTj β

� �� �h i
ð2Þ

where D is the set of indices of the events and Rk denotes
the set of indices of the individuals at risk at time tk.
Since this study encounters the P> > N type of data, it

is impossible to employ classical Cox proportional
hazard regression method [13] to analyze the GBM gene
expression data matrix directly. Therefore, the following
sections propose three variable selection strategies to
obtain the sparse regression coefficient.

Table 1 The illustration of microarray datasets of GBM

Data set name Source site Affymetrix platform Sample size

GBM DANA-FARBER CANCER INSTITUTE HG-U133_Plus_2 2

GBM NABTT/H. LEE MOFFITT CANCER CENTER HG-U133_Plus_2 30

GBM HENRY FORD HOSPITAL (RETRO) HG-U133_Plus_2 62

GBM M. D. ANDERSON CANCER CENTER HG-U133_Plus_2 6

GBM MSKCC/NEW YORK HG-U133_Plus_2 2

GBM NABTT/HENRY FORD HOSPITAL HG-U133_Plus_2 7

GBM NABTT/JOHNS HOPKINS HG-U133_Plus_2 2

GBM NIH NEURO-ONCOLOGY BRANCH HG-U133_Plus_2 48

GBM TJU HG-U133_Plus_2 30

GBM UCLA SCHOOL OF MEDICINE HG-U133_Plus_2 7

GBM UCSF HG-U133_Plus_2 17

GBM UNIV OF PITTSBURGH HG-U133_Plus_2 9

GBM UNIVERSITY OF WISCONSIN HG-U133_Plus_2 5
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Combined Cox and Lasso (CoxLasso) strategy
To obtain the sparse solution for the parameter β in the
Cox proportional hazards model (Eq. 1), we have to inte-
grate constrained optimization methods such as Lasso
proposed by Tibshirani et al.,[14] into classical Cox pro-
portional hazards model to minimize the negative log
partial likelihood subject to the sum of the absolute
values of the parameters being bounded by a constant as
Eq. 3.

β̂ ¼ argmin−
X
k∈D

xTk β− log
X

j∈Rk
exp xTj β

� �� �h i( )

subject to
Xp
j¼1

βj

��� ���≤t
ð3Þ

It is equivalent to the following optimization problem

β̂ ¼ argmin−
X
k∈D

xTk β− log
X

j∈Rk
exp xTj β

� �� �h i( )
þ λ

Xp
j¼1

βj

��� ���
ð4Þ

where λ is the tuning parameter to control the sparsity
of the estimator. This research used the R package tool
glmnet developed by Friedman et al.,[56] to implement

the combined Cox and Lasso (CoxLasso) strategy
(Fig. 2a) by using cross validation to choose the tuning
parameter.

Combined Cox and SIS (CoxSis) strategy
Though directly integrating Lasso method into Cox
model can process P> > N type of data, it may encounter
problems with speed, stability, and accuracy, once the di-
mension of the covariates is ultra-high [23] . Therefore,
it is often preferred to employ a simple and computa-
tionally efficient screening procedure to reduce the data
dimensionality to a moderate size before using Lasso
method. The combined Cox and SIS (CoxSis) strategy is
illustrated by the following steps:

Step 1: Fit a marginal Cox regression model for each
covariate xm to obtain β̂m by Eq. 5.1

β̂m ¼ argmax
X
k∈D

xkmβm− log
X

j∈Rk
exp xjmβm

� �� �h i
ð5:1Þ

Step 2: Rank the magnitudes of β̂ j; j ¼ 1; 2;…; p in
decreasing order and keep the number of d top ranked
covariates.
Step 3: Denote the index of selected covariates by Θ.
Implement Lasso with the selected d covariates by
minimizing Eq. 5.2

A

B C

Fig. 2 Flow chart of the strategy a CoxLasso, b CoxSis and c CoxSisLasso
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min
βΘ

−
X
k∈D

xTk;ΘβΘ− log
X

j∈Rk
exp xTj;ΘβΘ

� �� �h i
þ λ

X
j∈βΘ

βj

��� ���
8<
:

9=
;

ð5:2Þ

This study employs R package of SIS developed by Fan
et al., [16] to implement the combined Cox and SIS
(CoxSis) strategy (Fig. 2b).

Combined Cox, SIS and Lasso (CoxSisLasso) strategy
Recently, Barut et al., [57] proposed a conditional
screening approach (Conditional SIS) to enhance the ac-
curacy of SIS by using the prior knowledge of the key
factors to select the predictors. Regarding to our P> > N
type of data and the limitation of Lasso method in the
stability and accuracy, this study proposed a combined
Cox, SIS and Lasso (CoxSisLasso) strategy (Fig. 2c) to
increase the predictive accuracy of the model as follows:

Step 1: Implement Lasso for the data. Denote the index
of selected covariates with Lasso by C0.
Step 2: Conditioned on the selected subset of covariates
C0, for each covariate xm, m ∉ C0, fit the following Cox
regression model by maximizing Eq. 6

β̂m ¼ argmax
βmX

k∈D

xTk;C0
βC0

þ xk;mβm− log
X

j∈Rk
exp xTj;C0

βC0
þ xj;mβm

� �� �h i( )

ð6Þ
Step 3: For a given threshold γ, keep the variables xm,
m ∉ C0 if β̂m

��� ���≥γ. Denote C1 ¼ m∉C0; β̂m
�� ��≥γn o

. Then
the augmented selected predictors are C0∪ C1.
Step 4: Implementing Lasso with the covariates in the
set C0∪ C1 to select the final predictors.

For the threshold γ, Barut et al.,[57] proposed two pro-
cedures by controlling FDR and random decoupling to
choose the proper level of threshold. Motivated by Zhao
and Li [23], this study sets the threshold γ = 1/p, and p is
the total number of all the covariates. Once the p-value
of the Z-test of the covariate xm, m ∉ C0 is less than the
γ, we keep it as one of the important predictors.

Investigate potential signaling pathway regarding to the
candidate genes related to the GBM survival time
After obtaining the explored GBM survival time related
key genes by previous strategies, it is interesting for us
to investigate which potential signaling pathways are
closely related to these genes. And the potential path-
ways will be employed for the targeted drug therapy to
treat the GBM cancer in the future.

KOBAS is a signaling transduction pathway database to
identify statistically significantly enriched pathways using
hypergeometric test [11]. In statistics, the hypergeometric
test uses the hypergeometric distribution (Eq. 7) to calcu-
late the statistical significance.

p X ¼ kð Þ ¼
K
k

� �
N−K
n−k

� �
N
n

� � ð7Þ

where N is the population size, K is the number of suc-
cess states in the population, n is the number of draws,
k is the number of observed successes.

Results
The explored GBM survival time related key genes by
CoxLasso, CoxSis and CoxSisLasso strategy, respectively
Here, Table 2 shows the explored GBM survival time re-
lated key genes by CoxLasso, CoxSis and CoxSisLasso
strategy, respectively. Also, the Venn plot (Fig. 3) indi-
cates there are four common genes (AEBP1, GDNF,
IL17RC and EIF3A) mutually selected by these three
strategies, which closely correlate with the survival time
of GBM patient validated by the manually-reviewed ex-
perimental evidences [26–38].
Firstly, AEBP1 (Adipocyte enhancer binding protein 1)

was discovered as a transcriptional repressor [26]. It not
only expresses at different levels in different organ and tis-
sue types and its expression is relatively strong in brain
[27], but also it can interact with tumor suppressor pro-
tein PTEN and inhibit its tumor-suppressing function
[28]. AEBP1 can also negatively regulate IkB, resulting in
the up-regulation of NF-kB and enhanced inflammatory
response [29]. It is well known that both PTEN and NF-
kB, closely related to the AEBP 1, are important players in
GBM cancer progression. Moreover, previous research
identified several genomic targets of AEBP1 playing vital
roles in the survival of glioma cells [30].
Secondly, GDNF is a Glial Cell derived neurotrophic fac-

tor which promotes survival of neurons [31]. GDNF is not

Table 2 The explored genes for strategy CoxLasso, CoxSis and
CoxSisLasso

Method Key genes

CoxLasso ARIH2, ZNF786, AEBP1, FOXG1, INTS1, GDNF,
CUTC, SGCD, CCM2, IL17RC, EIF3A, CBLN1

CoxSis YAP1, TRAF3IP2, AEBP1, GDNF, EAF2, ST5,
IL17RC, EIF3A

CoxSisLasso ARIH2, ZNF786, AEBP1, FOXG1, INTS1, GDNF,
SGCD, IL17RC, EIF3A, CBLN1, SLC35D1, ELOVL2,
CDCA7L, SNTB1, TELO2

CoxLasso, CoxSis
and CoxSisLasso

AEBP1, GDNF, IL17RC, EIF3A
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only identified as an important factor in macrophage infil-
tration into GBM, contributing to GBM progression [32],
but also it can promote glioma cell invasion through its re-
ceptors that are present on invasive GBM cells [33].
Thirdly, EIF3A (Eukaryotic translation initiation factor

subunit 3A) is not only expressed in all tissue types in
human body and its expression is up-regulated in some
type of cancers [34], but also it is important in regulating
the expression of proteins involved in DNA repair path-
way which is essential in drug sensitivity and resistance
in cancer treatment [35, 36]. Especially, EIF3A is found
to be overexpressed in some glioma patients [37].
Fourthly, Inlerleukin-17 receptor C (IL17RC) is a key

molecule mediating interleukin 17 signaling. It is im-
portant in immune response and inflammation which
are important in GBM progression [38].

Predictive performance comparison of survival time for
each strategy
This study employs the idea of time-dependent receiver
operating characteristic curve (ROC) for the censored

data and the area under the curve (AUC) [58, 59] to
quantify the predicative accuracy for each strategy, when
the outcome of interest is the survival time. The ROC
curve depicts the sensitivity (Eq. 8.1) versus 1-specificity
(Eq. 8.2) at each time t for any risk score function xTβ

sensitivity c; tjxTβ� � ¼ Pr xTβ > cjδ tð Þ ¼ 1
	 
 ð8:1Þ

specificity c; tjxTβ� � ¼ Pr xTβ≤cjδ tð Þ ¼ 0
	 
 ð8:2Þ

with c being the cut-off value and δ(t) is the event in-
dicator at time t.
Figures 4 and 5 depicts the ROC curve at a specific

predicted time 30 and AUC over a period of time re-
spectively to quantify the performance of the three strat-
egies to predict the survival time of the GBM patients. It
demonstrates that CoxLasso and CoxSis strategy shares
the similar predictive performance, whereas our pro-
posed CoxSisLasso strategy has the best predictive ac-
curacy since it not only has the greatest value of the
sensitivity and 1-specificity (Fig. 4), but also the largest

Fig. 3 Venn plot for the explored GBM genes

Fig. 4 ROC curves for strategy CoxLasso, CoxSis and CoxSisLasso
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AUC value (Fig. 5). Furthermore, to assess the
generalization ability of the proposed model, we ran-
domly select 120 samples as the training samples and
the rest 68 samples as the test samples. Figure 6 shows
the AUCs of the three strategies for the testing samples.
Both Figs. 5 and 6 turn out that our proposed
CoxSisLasso method provides the largest AUC value
with the best performance.

Model fitting performance comparison for each strategy
Table 3 summarizes the Cox regression results with the
key genes selected by three strategies. R2 is the statistic
of the goodness of fit measure [60]. The concordance
index [61] is a valuable measure of model discrimination
in analyses involving survival time data. Greater R2 and
concordance index value imply better model fitting per-
formance. Table 3 shows that R2 and concordance index
value of CoxSisLasso strategy (Table 3C) outperforms
the other two (Table 3A & B). Moreover, by comparing
results of Table 3C (CoxSisLasso) with the results of
Table 3A (CoxLasso) and Table 3B (CoxSis), we found
that CoxSisLasso not only can preserve the genes se-
lected by the CoxLasso and CoxSis, but also it can intro-
duce several statistically significant genes, which are
potential for us to explore their relationships with GBM
in the distant future.

The explored GBM survival time related signaling
transduction pathways by CoxLasso, CoxSis and
CoxSisLasso strategy, respectively
Here, Table 4 lists the explored GBM related signaling
transduction pathways by CoxLasso, CoxSis and CoxSi-
sLasso strategy, respectively. Also, the Venn plot (Fig. 7)
indicates three explored GBM related signaling trans-
duction pathways mutually selected by these three
strategies.
And then, we employed the manually-reviewed experi-

mental evidences [39–52] to demonstrate that these mu-
tually explored signaling transduction pathways closely
correlate with the survival time of GBM patient as
following.
Firstly, mTOR (Mammalian target of rapamycin) is an

important mediator of phosphatidyl-inositol-3 kinase
(PI3K) pathway. And previous research turned out that
constitutive activation of PI3K signaling is found in the
majority of GBM patients [39]. Moreover, PI3K-akt-
mTOR axis plays essential role in cell growth and prolif-
eration [40]. Signaling of mTOR pathway is vital for can-
cer cell growth and survival in GBM patients [41].
Currently mTOR pathway inhibitors are under active in-
vestigation in preclinical experiments and in clinical tri-
als for GBM treatment [42].
Secondly, TGF-beta (Transforming growth factor beta)

is a secreted cytokine which signals through specific

Fig. 5 AUCs for strategy CoxLasso, CoxSis and CoxSisLasso

Fig. 6 AUCs for test samples for strategy CoxLasso, CoxSis and CoxSisLasso
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receptors and exerts its effect via intracellular Smad
family proteins [43]. TGF-beta pathway controls GBM
cell proliferation [44]. Its signaling contributes to the
maintenance of tumor-initiating cells in GBM [45].
TGF-beta pathway is also involved in tumor invasion
and metastasis in GBM patients [46]. Inhibition of TGF-
beta pathway signaling reduced GBM cell proliferation
and invasion in preclinical cell-based assays [47]. TGF-
beta pathway inhibitors showed promising results in im-
proving GBM patient survival in clinical trials [48].
Thirdly, IRE (Internal Ribosomal Entry) pathway is in-

volved in the synthesis of some proteins during which
protein synthesis is initiated from a start codon near an
IRE site rather than by scanning the Kozak sequence.
This IRE pathway is used in the translation of many
eukaryotic genes including growth factors such as VEGF,
FGF2 and PDGF [49] and transcription factors such as
c-myc and hypoxia induced factor [50, 51] . Indeed, up-
regulated expression of proto oncogene c-Jun in human
GBM is mediated through a potent internal ribosomal
entry site (IRES) in the 5′UTR of the c-Jun mRNA, and
the upregulation of c-Jun contributes to the malignant
properties of GBM cells [52].

Discussion
This study developed a multi-scale gene and signaling
transduction pathway exploration platform based on the
classical Cox proportional hazard model [12], constrained
optimization method [14–16] and hypergeometric test to
analyze P> >N type of GBM gene expression and survival
time data (Table 1). Compared to the previous research

Table 3 Model fitting results for strategy (A) CoxLasso, (B)
CoxSis and (C) CoxSisLasso

Key genes coef exp(coef) se(coef) z p-value

A

ARIH2 0.28827 1.33412 0.20957 1.376 0.1690

ZNF786 0.73967 2.09524 0.31849 2.322 0.0202*

AEBP1 0.09910 1.10418 0.09315 1.064 0.2874

FOXG1 0.14722 1.15861 0.06712 2.193 0.0283*

INTS1 0.19661 1.21726 0.27385 0.718 0.4728

GDNF −0.33054 0.71854 0.29059 −1.137 0.2553

CUTC −0.03165 0.96885 0.27837 −0.114 0.9095

SGCD 0.12861 1.13724 0.20752 0.620 0.5354

CCM2 0.29707 1.34591 0.28104 1.057 0.2905

IL17RC 0.51024 1.66569 0.21579 2.364 0.0181*

EIF3A −0.27131 0.76238 0.23337 −1.163 0.2450

CBLN1 −0.29685 0.74316 0.30079 −0.987 0.3237

R2 = 0.338, Concordance = 0.687

B

YAP1 −0.28804 0.74973 0.12372 −2.328 0.019902*

TRAF3IP2 −0.39514 0.67358 0.20318 −1.945 0.051805

AEBP1 0.33103 1.39239 0.09268 3.572 0.000354***

GDNF −1.09305 0.33519 0.30549 −3.578 0.000346***

EAF2 −0.53363 0.58647 0.21472 −2.485 0.012949*

ST5 −0.26305 0.76870 0.26139 −1.006 0.314240

IL17RC 1.02690 2.79240 0.22954 4.474 7.69e-06***

EIF3A −0.40494 0.66702 0.21963 −1.844 0.065216

R2 = 0.375, Concordance = 0.696

C

ARIH2 0.27310 1.31403 0.20654 1.322 0.186080

ZNF786 1.17873 3.25025 0.31923 3.692 0.000222***

AEBP1 0.20724 1.23027 0.09558 2.168 0.030151*

FOXG1 0.32694 1.38672 0.09262 3.530 0.000416***

INTS1 0.85607 2.35388 0.34015 2.517 0.011844*

GDNF −0.48393 0.61636 0.35170 −1.376 0.168835

SGCD −0.53359 0.58650 0.22601 −2.361 0.018233*

IL17RC 1.23644 3.44332 0.23552 5.250 1.52e-07***

EIF3A −0.08224 0.92105 0.22885 −0.359 0.719339

CBLN1 −1.06495 0.34474 0.38400 −2.773 0.005548**

SLC35D1 −0.44547 0.64052 0.21196 −2.102 0.035579*

ELOVL2 −0.16161 0.85077 0.08395 −1.925 0.054210

CDCA7L −0.38939 0.67747 0.11097 −3.509 0.000450***

SNTB1 −0.61372 0.54133 0.16747 −3.665 0.000248***

TELO2 −1.28721 0.27604 0.48148 −2.673 0.007507**

R2 = 0.515, Concordance = 0.747

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Table 4 The explored signaling transduction pathways for
strategy CoxLasso, CoxSis and CoxSisLasso

Method Key pathways

CoxLasso 1. internal ribosome entry pathway

2. mtor signaling pathway

3. TGF-beta signaling pathway

4. p38 MAPK signaling pathway

5. FoxO signaling pathway

CoxSis 1. Hippo signaling pathway

2. internal ribosome entry pathway

3. mtor signaling pathway

4. TGF-beta signaling pathway

CoxSisLasso 1. internal ribosome entry pathway

2. mtor signaling pathway

3. TGF-beta signaling pathway

4. Fanconi anemia pathway

CoxLasso, CoxSis and CoxSisLasso 1. internal ribosome entry pathway

2. mtor signaling pathway

3. TGF-beta signaling pathway
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[14–16, 62], we proposed a novel CoxSisLasso strategy to
investigate relationship between genes and GBM patients’
survival time in molecular level as well as used KOBAS
database [21] to look for the survival time related signaling
transduction pathways.
On the one hand, manually reviewed experimental evi-

dences validate that both mutually explored key genes [26–
38] (Table 2) and signaling transduction pathways [39–52]
(Table 4) are closely related to GBM. On the other hand,
since CoxLasso strategy may encounter problems with
speed, stability, and accuracy for processing high dimen-
sional data [23], the CoxSis strategy is developed by
employing a simple and computationally efficient screening
procedure to reduce the dimensionality of the data to a
moderate size before using Lasso method based on the pre-
vious work of Fan et al., [16]. Though classic marginal
screening approach based CoxSis is theoretically proved to
be capable of selecting all important predictors [56], it is
difficult to identify these hidden predictors which jointly
correlate with the response variable but not marginally. For
this reason, we proposed the CoxSisLasso strategy, which
not only uses the CoxLasso strategy to obtain a prior set of
important predictors, but also incorporates the SIS [16] ap-
proach to select the important predictors regarding to the
previous results. Figure 5 and 6 turned out that CoxSi-
sLasso strategy has the best predictive power and model fit-
ting capacity than both CoxLasso and CoxSis.

Conclusions
In general, this study innovatively developed a CoxSi-
sLasso strategy to interrogate the connections between
GBM gene expression and GBM patients’ survival time as

well as employed the KOBAS database [21] and hypergeo-
metric test [21] to investigate the incoherent signaling
transduction pathways and the survival time of GBM pa-
tient. Though the research results demonstrated the ad-
vantages of our algorithm, the current research still has
several shortcomings such as the theoretically proof for
the CoxSisLasso strategy, simulation study for the gene
and pathway selection platform and so on. In the distant
future, we will not only need improve our current CoxSi-
sLasso algorithm, but also will employ the related pathway
analysis theory [63] to explore the GBM survival time re-
lated proteins for the target drug study.
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