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Abstract

Background: Alternative splicing plays important roles in many regulatory processes and diseases in human. Many
genetic variants contribute to phenotypic differences in gene expression and splicing that determine variations in
human traits. Detecting genetic variants that affect splicing phenotypes is essential for understanding the functional
impact of genetic variations on alternative splicing. For many situations, the key phenotype is the relative splicing
ratios of alternative isoforms rather than the expression values of individual isoforms. Splicing quantitative trait loci
(sQTL) analysis methods have been proposed for detecting associations of genetic variants with the vectors of
isoform splicing ratios of genes. We call this task as composite sQTL analysis. Existing methods are computationally
intensive and cannot scale up for whole genome analysis.

Results: We developed an ultra-fast method named ulfasQTL for this task based on a previous method sQTLseekeR.
It transforms tests of splicing ratios of multiple genes to a matrix form for efficient computation, and therefore can
be applied for sQTL analysis at whole-genome scales at the speed thousands times faster than the existing method.
We tested ulfasQTL on the data from the GEUVADIS project and compared it with an existing method.

Conclusions: ulfasQTL is a very efficient tool for composite splicing QTL analysis and can be applied on whole-
genome analysis with acceptable time.
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Background
The human genome contains about 3 billion base pairs,
and there are only about 0.1% differences between two
individuals’ genome [1]. These genetic variants largely
contribute to human multiple phenotypes [2]. Genome-
wide association studies (GWAS) have identified many
genetic loci that are associated with diseases. Under-
standing how these variants exert their effects still
remains to be a big challenge [3]. It has been observed
that many of the effects are through variations in the
expression of genes and pathways, especially RNA spli-
cing [4].

Alternative splicing is an important mechanism in the
regulation of gene expression. High-throughput RNA-
sequencing (RNA-seq) data have shown that most human
genes undergo alternative splicing [5, 6], and it has been
reported that many alternative splicing events are associ-
ated with many complex diseases [7–10]. Expression
quantitative trait loci (eQTL) analysis is an effective
approach for studying the association between genetic var-
iants and gene expression [11–16]. This strategy has been
extended to the analysis of association of alternative spli-
cing genes with genetic variants [15, 17–29]. This is called
splicing quantitative trait loci (sQTL) analysis, including
exon-level sQTL and isoform-level sQTL. For exon-level
sQTL study, researchers take exon expression, exon inclu-
sion level or junction expression as the quantitative
phenotype to perform sQTL analysis against genetic vari-
ants [15, 17, 20, 23–26, 28, 29]. Exons in one gene are not
independent and they compose multiple isoforms through
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alternative splicing. In some cases, changes in the splicing
pattern of a gene cannot be observed by changes in inclu-
sion levels of individual exons [27]. The expression of each
individual isoform can also be used as the quantitative
phenotype for sQTL study [18, 20, 21]. Coulombe-
Huntington et al. [19], Lappalainen et al. [23] and Battle
et al. [22] used the isoform ratio as the quantitative trait
for sQTL analysis, which controls the effects of overall
gene expression and tests the relative abundances of iso-
forms. But they took each isoform ratio as a phenotype
and did not consider the correlations between isoforms of
the same gene. In many situations, besides the expression
of each isoform, compositions and relative proportions of
alternative isoforms of the same gene play important roles.
Monlong et al. [27] proposed to use the splicing ratios of
all isoforms of the same gene as a composite phenotype to
take into consideration such correlations. In this way, the
studied phenotype is not only the relative abundance of
each isoform but also the correlated structure of the alter-
native splicing gene. We call this as composite splicing
QTL analysis. They developed an R package sQTLsee-
keR to implement this strategy, which describes
alternative splicing events by a vector of splicing ra-
tios [27]. They compared their method with other
univariate sQTL methods that are based on exons or
isoforms, and showed that sQTLseekeR is more
capable of detecting associations that cannot be found
by univariate exon-based method [27].
sQTLseekeR is based on tests on every gene-variant

pair. Considering the tens of thousands genes and
millions of genetic variants on the whole genome, the
computational speed of sQTLseekeR prohibits it to be
applied for analyzing all the genes and variants at the
whole-genome scale. In their original work, they only
applied it for analyzing variants located within 5 kb of
each gene [27]. This largely limits the scope of questions
that can be addressed with the method. Alternative spli-
cing is regulated by both cis-elements and trans-factors
[30]. More computationally efficient methods are in
critical need for building the full picture of both cis- and
trans-regulations of alternative splicing.
In this paper, we developed a method named ulfasQTL

for ultra-fast composite sQTL analysis. It transforms
vectors of splicing ratios to a spherical coordinate
system and uses a matrix-based computation to test
multiple genes and variants at the same time. This can
dramatically boost the computational speed. We applied
the proposed method and compared it with sQTLseekeR
on data from the GEUVADIS project [23] to evaluate its
performance and test its feasibility for genome-scale
computation. Results show that ulfasQTL is several or-
ders faster and can be readily used for genome-wide
studies for associations between the alternative splicing
structures of all genes and all variants in the genome.

Methods
Definition of splicing-QTL
Suppose a gene has n isoforms, and their expressions are
x1, x2,…, xn. The splicing ratios of isoforms are their
proportions in the total expression of the gene:

pi ¼ xi=
Xn

1
xi; i ¼ 1; 2;…; n:

Let a variant’s genotype be g, and g = 0, 1 or 2. Our
goal is to detect associations between the genotype of a
variant (the value of g) and the splicing pattern of a
gene. For splicing pattern of a gene, we focus on the
splicing ratios pi, i = 1, 2,…, n of the isoforms but not
the gene’s total expression ∑1

nxi.
The splicing pattern of a gene is described by the vec-

tor (p1, p2,…, pn). Figure 1 shows a simple example of a
gene with 3 isoforms. The patterns of the splicing ratios
are very different among samples of different genotypes
of the variant, which indicates that the variant is a
splicing-QTL or sQTL of the gene.

The sQTLseekeR method
The sQTLseekeR method by Monlong et al. [27] uses a
distance-based approach to detect composite sQTLs for
each gene-variant pair. For one gene, each sample’s
phenotype is the vector of the splicing ratios of all its
isoforms. So each sample can be treated as a point in
this vector space. All samples of a dataset are divided
into the three or two groups according to their geno-
types at a variant locus. sQTLseekeR calculates the vari-
ability of splicing ratios of a gene between and within

Fig. 1 An example case of splicing-QTL. The gene has 3 isoforms. The
splicing ratios of the three isoforms of the same sample are shown as
points of different colors linked by a dashed line. Samples with the same
genotype are shown together. We can see that the distribution patterns
of splicing ratios are different between different genotypes,
which indicates that this variant is associated with the alternative
splicing pattern of this gene, and therefore it is a sQTL of the gene
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groups using the Hellinger distance. For a gene contain-
ing n isoforms, the Hellinger distance between sample a
and b is defined as

dH a; bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ffiffiffiffiffiffi
pia

p
−

ffiffiffiffiffiffi
pib

p� �2q
;

where pia is the splicing ratio of isoform i in sample a,
and pib is the splicing ratio of isoform i in sample b. The
variability is defined as the sum of squared distances
(SS) between the samples and their centroid,

SS ¼
XN

j¼1
d2
H j; cð Þ;

where c is the centroid, and N is the number of samples in
this group. The within-group variability SSw is defined as

SSW ¼ SS ¼
XN

j¼1
d2
H j; cð Þ:

The between-group variability SSB can be obtained by

SSB ¼ SST−SSW ;

where SST is the total variability SST = ∑i = 1
L dH

2 (ci, c), L is
the number of variant’s genotype groups, ci is the
centroid of each genotype group, and c is the overall
centroid of all samples.
The Anderson test [31] is used to compute a pseudo

F-ratio score to measure the relative differences between
within-group and between-group distances,

F ¼ SSB= L−1ð Þ½ �= SSW=
XL

i¼1
Ni−L

� �h i
;

where L is the number of groups and Ni is the number
of samples in group i. They used a direct method to cal-
culate the pseudo F-ratio score by considering matrix of
distances between every pair of samples instead of using
centroids in the definition [31]. The null distribution of
the F-score is approximated via simulation to get the
FDR (false discovery rate) of the tests.
Different genes contain different numbers of isoforms

so their splicing ratio vectors are of different dimensions.
Also different genetic variants divide samples with differ-
ent grouping. Therefore, sQTLseekerR needs to test
each gene against each variant individually. It is very
time-consuming and infeasible for analyses at whole-
genome scales.

The ulfasQTL method
The goal of our ulfasQTL method is to detect composite
sQTLs for all gene-variant pairs on the whole genome
efficiently. The core strategy is to compute the statistics
of associations for a large number of gene-variant pairs
concurrently within a single run of the test. A matrix-
based test for multiple independent phenotype-variant
pairs is adopted to achieve the high computational

efficiency, and we introduced a coordination transform
on the splicing ratio vector to make the tests in the
matrix independent. The test results on the ratios belong-
ing to the same gene are then combined to produce the
final statistics on the gene. We describe the details below.
Suppose there are n isoforms in a gene, and their spli-

cing ratios are p1, p2,… pn, respectively. There is the
constraint that ∑i = 1

n pi = 1, and so the degrees of freedom
of the vector (p1, p2,… pn) is n − 1. Thus, we cannot dir-
ectly perform association analysis for all isoforms in a
gene by adding the statistics up as the test for the gene
because of their dependence. We need to transform the
n splicing ratios to a set of n-1 independent variables.
We propose to do this transformation using the idea of
“n-sphere”. Firstly, let

qi ¼
ffiffiffiffi
pi

p
; i ¼ 1; 2;…; n;

then one sample can be represented by the vector
q1; q2…; qnð Þ ¼ ffiffiffiffiffi

p1
p

;
ffiffiffiffiffi
p2

p
;…;

ffiffiffiffiffi
pn

p� �
in a n-dimensional

Cartesian coordinate system. We convert it to coordinates
in a spherical coordinate system (ρ,ϕ1,ϕ2,…,ϕn− 1), where

ρ is the length of the vector, defined as ρ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 þ q22 þ…þ q2n

p
, and ϕ1,ϕ2,…,ϕn− 1 are the angles

between the vector and n-1 of the Cartesian axes, defined as

ϕ1 ¼ arccos
q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q21 þ q22 þ…þ q2n
p ;

ϕ2 ¼ arccos
q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q22 þ q23 þ…þ q2n
p ;

…;

ϕn−1 ¼ arccosqn−1ffiffiffiffiffiffi
qn−1

p 2þq2n
:

In this way, the original n splicing ratios are converted to
n-1 independent variables ϕ1,ϕ2,…,ϕn− 1. We call them
converted splicing components for convenience. The order of
the q1, q2,…, qn in the above transformation can be arbitrary.
We order them from the largest to the smallest mean values
across the samples in our implementation.
Figure 2 illustrates how the spherical coordinate

system works with an example gene. In the example,
the gene contains three isoforms. The original con-
straint ∑i = 1

3 pi = 1 on the splicing ratios becomes

q21 þ q22 þ q23 ¼ 1

on the qi’s. In the spherical coordinate system, we al-
ways have ρ = 1 regardless of the values of p1, p2, and p3.
The two angles in the spherical coordinate system, ϕ1

and ϕ2, on the other hand, are independent from each
other.
In [32], Shabalin proposed a matrix-based method

Matrix eQTL for fast eQTL computation. It can test all
gene-variant pairs together by choosing appropriate test
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statistics and applying matrix operations to calculate
their test statistics values in parallel. It implements both
linear regression model and ANOVA model for eQTL
analysis. Matrix eQTL can detect associations between
two variables, but our goal is to detect associations be-
tween vectors and variables. After spherical coordinate
transformation, we converted a vector into a set of mu-
tually independent variables, and then adopted this
matrix-based strategy in ulfasQTL to implement massive
tests on the converted splicing components ϕi ’ s in a
matrix. Suppose we want to do tests on m genes and k
variants of l samples in a single run, the expression of
these genes can be represented by a matrix Gm*l

and the
genotypes of the variants can be represented by a matrix
Vk*l

. Now we do the tests on the converted splicing com-
ponents instead of the expression values. So we build the
matrix Φ of all converted splicing components of the m
genes. The dimension of this matrix is t*l, where t is the
total number of independent splicing components of the m
genes, which equals to the total number of isoforms of
these genes minus the number of genes. The columns
(samples) of the matrix Φt*l

and matrix Vk*l
are matched

with each other.

Here is the detailed method of Matrix eQTL for linear
regression model, and the method of Matrix eQTL for
ANOVA model is similar to linear regression model
[32]. We assumed that the association between splicing
component ϕ and variant v is linear.

ϕ ¼ αþ βvþ �; where �∼i:i:d: N 0; σ2
� �

For linear regression model, Matrix eQTL chose the
absolute value of sample correlation |r| = |cor(ϕ, v)| as
the test statistic which can has equal power and can be
computed faster than other test statistics. Then Matrix
eQTL performed standardization preprocessing proce-
dures which do not change the correlation.

X
ϕi ¼ 0;

X
ϕ2
i ¼ 1;

X
vi ¼ 0;

X
v2i ¼ 1

So Matrix eQTL computed the test statistics by the
inner product 〈g, v〉 between vectors ϕ and v as follows.

rgv ¼ cor g; vð Þ ¼
X

gi−g
� �

vi−vð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
gi−g
� �2

vi−vð Þ2
q ¼

X
givi ¼ g; vh i

Matrix eQTL can greatly simplify the computation of
test statistics by the multiplication of the two preprocessed
matrices Φt ∗ l Vk ∗ l

T [32]. In this way, the computational
load can be reduced dramatically. The key assumption for
this fast computation is the rows (components) in the matrix
are independent with each other, which is guaranteed by the
spherical coordinate transformation.
Matrix eQTL can conduct either linear regression or

ANOVA based on the obtained correlations, and report
the t-test statistics or F-test statistics of all associations be-
tween each converted splicing component and each vari-
ant. After getting all test statistics for each component-
variant pair, we combine results from all components of
the same gene-variant pair to get the test statistic for the
gene-variant pair. We convert t-test statistics or F-test
statistics of the component-variant pairs to z values that
follow the standard normal distribution. Finally, we get
the test statistic s for each gene-variant pair by

s ¼
Xn−1

i¼1
z2i :

It follows a chi-square distribution with degrees of
freedom n-1, i.e., s ~ χn − 1

2 , and the p-value for each
gene-variant pair can be obtained accordingly. We can
then convert the p-values to false discovery rates (FDRs)
using the q-value method [33]. We developed a software
package ulfasQTL to implement the above method,
which calls for the MatrixEQTL package [32] in the
matrix calculation. Figure 3 shows the basic flowchart of
the whole method (the left panel) and a detailed illustra-
tive example (the right panel).

Fig. 2 An illustrative example of spherical coordinate system
application. The example gene contains 3 isoforms, and their
splicing ratios in a sample are p1, p2, p3 with the constraint ∑i = 1

3 pi = 1.
We let qi ¼ ffiffiffiffi

pi
p

; i ¼ 1; 2; 3 and present this sample as a point (the
red point in the plot) in the 3-dimensional rectangular coordinate
system. We then apply spherical coordinate system in which this sample
can also be regarded as a point (ρ, ϕ1, ϕ2) in a spherical coordinate
system. Because of the constraint that ∑i= 1

3 pi= 1, the spherical coordinates
of this sample is (1, ϕ1, ϕ2), in which ϕ1 and ϕ2 are independent from
each other
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When applying the method on very large datasets like
genome-wide analyses, the dataset can be too large to be
fit into computer memory. In such cases, we split data-
set into smaller subsets and calculate them in multiple
runs. For example, in the experiments reported below,
we take all genes together but split the variants into
smaller files, each containing 1000 variants.
The ulfasQTL package was developed using R and C++.

It includes C++ codes for data preprocessing and the
spherical coordinate transformation, and R codes for
Matrix eQTL analysis and the calculation of p-values and
FDRs. The package can be downloaded at http://bioin-
fo.au.tsinghua.edu.cn/software/ulfasQTL/.

The computational complexity
The computing time of ulfasQTL is consumed mostly by
two major steps. One is the computation with
MatrixEQTL for calculating the correlation matrix of
components and variants. The dimension of component
matrix is t*l, the dimension of variant matrix is k*l. So the
time complexity of this step is O(k*t*l), where k is the total
number of variants, t is the total number of converted
splicing components and l is the total number of samples.
The second major step is that after getting the
MatrixEQTL output, we need to sort the component-
variant pairs by both splicing components and variants to
make sure pairs from the same gene and the same variant

stay together. We need to sort the pairs twice for that pur-
pose. We use the mergesort method as it is one of the
fastest stable sorting method. The time complexity of
mergesort is O(t*k*log(t*k)). Therefore, the total time com-
plexity of ulfasQTL is O((l + log(t*k))*t*k).
For large datasets that need to be split into multiple

smaller datasets, the computation on the multiple data-
sets can be assigned to multiple kernels or computers,
which provides an easy and efficient way of doing large-
scale sQTL analysis in parallel.
For each gene-variant pair, sQTLseekeR calculates the

within-group variability and the between-group variabil-
ity to get the Anderson test statistic for the pair. The
complexity for this step is O(l2). The test method used
by sQTLseekeR is sensitive to the homogeneity of the
variabilities or dispersions of the compared groups. The
test power may decrease when dispersions of the groups
are very different. So sQTLseekeR needs an extra step to
filter such variants to avoid potential false sQTLs. The
method for this filtering is similar to ANOVA, but the
distance measurement is different from Euclidan dis-
tance. They applied principle component analysis (PCA)
to the data and calculated the Euclidan distances be-
tween group members and the group centroid on the
principal components. The time complexity of comput-
ing the eigenvalue in PCA of a l*l dimensional matrix is
O(l3), and computing the within-group variability is

Fig. 3 The diagram of ulfasQTL. The left panel is basic flowchart and the right panel shows an illustrative example of core steps. There are in
seven steps in the flowchart and the 3 steps shown in purple are core steps of ulfasQTL. We have two matrices after data preprocessing. One for
the genotype data (genotypes of each sample at loci a and b) and one for the isoform expression data (isoforms A1, A2, A3 of gene A and
isoforms B1, B2 of gene B of each sample). Then isoform expression matrix is converted to splicing components matrix (ϕA1, ϕA2, ϕB1 for each
sample) by the spherical coordinate system. We then send genotype data and splicing components matrix into MatrixeQTL (ANOVA model) to get the F
statistics (FA1,a, FA2,a, FA1,b, FA2,b, FB1,a, FB2,b) for each component-variant pair. Finally, we apply statistical transformations and get corresponding Z statistics
according to F statistics, and merge Z statistics into S statistics (SA,a, SA,b, SB,a, SB,b) for each gene-variant pair
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O(l2). For all phenotype-variant pairs of m genes and k
variants, the total time complexity of the above steps is
O(l3*m*k). After getting the F score of a candidate pair
and this filtering step, sQTLseekeR performs an approxi-
mation of permutations for each gene to calculate the
significance of the F score. The computational complex-
ity of this step is O(l3*m). So the overall complexity of
sQTLseekeR is at the level of O(l3*m*k).

Results
Data
We applied ulfasQTL on the data of lymphoblastoid cell
lines of 462 individuals published in [23] to study its
performance. The transcripts expression data are from
the GEUVADIS project [23] and the genotype data are
from 1000 Genomes Project Phase I dataset 1 [1]. The
dataset includes individuals from European population
(CEU, FIN, GBR, TSI) or African population (YRI). For
isoform expression data, at first we added a small num-
ber to the expression data to avoid the occurrence of 0’s
in the denominator. Next we computed the splicing
ratios of each isoform of all genes, and only considered
active isoforms with splicing ratios larger than a given
threshold. Genes with less than two active isoforms after
this step were filtered out. Then we calculated the spli-
cing variability for each gene and removed genes whose
splicing variability are less than 0.01. For each gene, we
used samples whose gene expression is over 0.01 RPKM.
For genotype data, we kept variants that have at least 2
genotype groups in the samples and each group has at
least 5 samples. Groups with less than 5 samples are set
to NA to make sure that they are not taken into consid-
eration in the test. We picked up samples which have
both expression data and genotype data, and made the
samples’ order identical in two data files.
We conducted 3 experiments, Experiments I, II and III.

Experiments I and II were on small-scale datasets to study
the performance of ulfasQTL and to compare it with
sQTLseekeR. Experiments III was on a genome-scale
dataset to test the feasibility of ulfasQTL on big data. The
experiments were done on a desktop computer with CPU
of Intel Core i7-4790 k(4GHz) and 16GB DDR3 RAM,
running 64 bit Ubuntu and 64 bit R 3.2.3.

The computational efficiency
Experiments I and II were on a small dataset on which
both ulfasQTL and sQTLseekeR can work. In Experiment
I, we randomly picked 1000 variants and 407 genes
containing a total of 1000 isoforms in Chr.1. We per-
formed sQTL analysis using both methods to compare the
computational efficiency and results of the two methods.
It took 13,680 s (3.8 h) for sQTLseekeR to complete the
computation, while the ulfasQTL only used 2.3 s to

complete the computation. ulfasQTL works about 6000
times faster than sQTLseekeR.
In Experiment II, we choose 400 genes and 180,446

variants which are all located at 1–13,000,000 in Chr.1.
After preprocessing on the expression data and variant
data, 160 genes and 76,779 variants were kept, which
gave 12,284,640 candidate gene-variant pairs. ulfasQTL
accomplished all the computation in 901 s (15.0 min).
We applied sQTLseekeR on these 160 genes with only
the variants that are located within 5 kb of each gene as
in the original work. This gave a total of 8560 candidate
gene-variant pairs. sQTLseekR used 4492 s (~1.25 h) to
complete these computations.
Experiment III was on all genes and genetic variants

on Chr.1 to test the feasibility of ulfasQTL for genome-
scale analyses. There are in total 5172 genes and
1,900,188 variants after screening. The total number of
gene-variant pairs which need to be tested are 9.8x109.
On the same desktop computer as in the first experi-
ment, ulfasQTL can give the result of a split subset of
5172 genes and 1000 variants in about 45 s. The analysis
on the whole task took 87,112 s (~24.20 h).
Applying sQTLseekeR on the data of Experiment III is

impractical due to the heavy computing cost. In the ori-
ginal sQTLseekeR paper [27], the authors reported that
they ran sQTLseekeR separately in each sub-population
on this dataset, and each sub-population contains about
10,012 genes and 140 variants per gene on average. The
analysis of ~1,400,000 gene-variant pairs took about 4 h
using 16 cores (2Gb 2.70GHz nodes). Based on these re-
ports, we can estimate that it would take about 1169 days
or 3.2 years on a similar cluster if sQTLseekeR were to
be used to analyze the data in Experiment III.

Comparison of p-values
We compared the results of ulfasQTL and sQTLseekeR
in Experiments I and II to obtain better understanding
on the similarities and differences between the tests used
by the two methods. In Experiment I, after data prepro-
cessing there were 359 candidate variants and 140 candi-
date genes that were analyzed by both ulfasQTL and
sQTlseekeR. They composed 50,260 candidate associa-
tions to be tested by ulfasQTL and sQTLseekeR.
sQTLseekeR adopted some further filtering on the genes
and only tested 47,069 of the candidate associations. We
used these 47,069 candidate associations to study the re-
lationship of p-values reported by the two methods.
Figure 4 shows the scatter plots of the p-values of the
two methods on the same points (candidate associations)
in the range of p < 0.1, p < 0.05 and p < 0.01. The
Spearman correlations of the two p-values are 0.58,
0.56 and 0.73, respectively, for candidate associations
with p-values less than 0.1, 0.05 and 0.01. We can
observe that ulfasQTL tends to be more conservative
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and tends to produce slightly larger p-values for most
of the data. Note that the data in this experiment
were a randomly selected subset of genes and SNPs
on Chr.1. We can expect that most of the candidates
would not be significant. The more conservative p-value
obtained with ulfasQTL presents an advantage over
existing method not only on the higher computational ef-
ficiency, but also on the possible lower false discoveries.
In Experiment II, 160 candidate genes and 76,779

candidate variants were analyzed by ulfasQTL, and 160
candidate genes and variants located within 5 kb from
them were analyzed by sQTLseekeR. After preprocess-
ing, we got a total of 8560 candidate associations that
have p-values reported by both methods. Figure 5 shows
the scatter plots of the p-values of the two methods on
the same points in the range of p < 0.1, p < 0.05 and p <
0.01. The Spearman correlations of the two p-values are
0.60, 0.69 and 0.67, respectively, for candidate associa-
tions with p-values less than 0.1, 0.05 and 0.01. We can
see that the general trends of relations of the p-values

are the same in Experiments I and II, while the correl-
ation between the results of the two methods is higher
in Experiment II. Experiment I was on randomly se-
lected genes and variants so it can be expected that most
of the gene-variants pairs are not significantly associated.
On the other hand, candidate variants compared in Fig. 5
in Experiment II were all within 5 kb of the candidate
genes, which are more likely to have significant sQTLs.
The higher correlation between p-values of the two
methods implies that the two methods agrees better with
each other on true association signals.

Discussion
There are several directions that need further investigation.
We used ANOVA to test the hypothesis in the method
based on two underlying assumptions. The first one is the
distribution of data should be normal distribution or close
to normal distribution. We can see that the distribution of
converted splicing components may not always meet the as-
sumption. The other one is ANOVA assumes homogeneity

Fig. 4 P-values of the two methods on the same points (candidate associations) in the range of p < 0.1, p < 0.05 and p < 0.01 in Experiment I. The
horizontal axes are p-values of associations detected by ulfasQTL and the vertical axes are p-values of associations detected by sQTLseekeR

Fig. 5 P-values of the two methods on the same points (candidate associations) in the range of p < 0.1, p < 0.05 and p < 0.01 in Experiment II.
The horizontal axes are p-values of associations detected by ulfasQTL and the vertical axes are p-values of associations detected by sQTLseekeR

The Author(s) BMC Genomics 2017, 18(Suppl 1):963 Page 7 of 9



among groups, which may be violated when the sample size
of one group is small. Such situations can cause false
positives. The preprocessing to add a small value to the de-
nominator also may cause false results for some special
cases when all isoforms are not expressed in some samples.
Therefore, after applying ulfasQTL on genome-wide candi-
dates, users may use slower single-gene based methods only
on the reported results to further validate the significance if
necessary, or to check homogeneity (such as using Bartlett’s
test) of different genotype groups.
Composite splicing QTL involves the collaborative

regulation of multiple isoforms. Comparing to the trad-
itional univariate isoform- or exon-based splicing QTL
analysis, golden-standard validation data is less available.
Monlong et al. [27] illustrated a few examples of
composite splicing QTLs, but due to the small scale of
their work, the examples cannot be taken as standard.
Actually, when applied on a larger range of candidate
variations with sQTLseekeR on fewer genes, we ob-
served that some examples became no longer significant
after multiple test correction. This may be due to the na-
ture that splicing composite variation is associated by
the multiple genetic factors. The ability to conduct
genome-wide study of composite sQTL by ulfasQTL can
help to better investigate both cis- and trans- factors
that can be associated with splicing composite variation,
and it will be of great interest if methods can be devel-
oped for finding associations of composite splicing phe-
notypes with multiple genomic variation loci.

Conclusions
We developed a new method ulfasQTL for ultra-fast
splicing QTLs analysis of splicing patterns that are asso-
ciated with genetic variants. This is the first time that
coordination conversion is used for decomposing com-
posite splicing pattern to a set of independent compo-
nents. This conversion allows for the simultaneous
computation on many genes in a matrix form. Experi-
ments on small- and large-scale data show that it is sev-
eral thousand times faster than the existing method for
splicing QTL, and is efficient for splicing QTL analysis
at the whole-genome scale.
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