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Abstract

Background: DNA methylation is the major form of epigenetic modifications through which the cell regulates the
gene expression and silencing. There have been extensive studies on the roles of DNA methylation in cancers, and
several cancer drugs were developed targeting this process. However, DNA co-methylation cluster has not been
examined in depth, and co-methylation in multiple cancer types has never been studied previously.

Results: In this study, we applied newly developed lmQCM algorithm to mine co-methylation clusters using
methylome data from 11 cancer types in TCGA database, and found frequent co-methylated gene clusters exist in
these cancer types. Among the four identified frequent clusters, two of them separate the tumor sample from
normal sample in 10 out of 11 cancer types, which indicates that consistent epigenetic landscape changes exist in
multiple cancer types.

Conclusion: This discovery provides new insight on the epigenetic regulation in cancers and leads to potential
new direction for epigenetic biomarker and cancer drug discovery. We also found that genes commonly believed
to be silenced via hypermethylation in cancers may still display highly variable methylation levels among cancer
cells, and should be considered while using them as epigenetic biomarkers.

Keywords: DNA co-methylation, Pan-cancer methylation, Frequent network mining, Epigenetics

Background
DNA methylation is the most extensively studied form
of epigenetic modification in the cell. The reversible
addition of a methyl group to the cytosine residue on
large clusters of CpG dinucleotides (called CpG islands)
can result in chromatin structural changes or physical
barriers for proteins binding to DNA [1]. Therefore
DNA methylation level regulates gene transcription ac-
tivities and expression levels, exerting an important role
in programming cell development and differentiation
[1]. The genome-wide DNA methylation pattern (DNA

methylome) is affected by cell age, tissue types, and
many environmental factors such as nutrients and car-
cinogen exposure [2]. Aberrant DNA methylation pat-
tern is a hallmark of cancer [3], and it has been
speculated that DNA methylation change may play a
role in cancer initiation, development [4], and drug re-
sistance [5, 6]. Studies on DNA methylome in cancers
have been a focus of cancer research for more than a
decade [7]. It is generally believed that in cancer cells
tumor suppressor genes are hypermethylated in the pro-
moter region and are repressed, while oncogenes are
hypomethylated and abnormally active [8]. Researchers
applied this notion to cancer drug designs, and devel-
oped cancer drugs targeting DNA methyltransferases,
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attempting to correct the abnormal methylation pattern
of tumor suppressors and oncogenes [9]. Also quite a
few genes have been associated with certain phenotypes
(CpG island methylator phenotype, CIMP [7, 10, 11]) or
identified as prognosis/diagnosis biomarkers in cancer
due to the ease of detection and analysis in body fluid,
and the events may happen in the early or premalignant
stage of tumor development [1].
Currently, the studies on multiple DNA methylome in

cancers are mostly carried out as differential methylation
analysis or supervised/unsupervised clustering to look for
distinct methylation signature on a specific type of cancer
[12, 13]. There is a lack of systematic study on genome-
wide coordinated DNA methylation events and the implica-
tions in multiple cancers. Recently, analysis on co-
methylation patterns has been performed on human brain
and blood samples [14] using the same method as the
weighted gene co-expression analysis [15]. This approach
has led to discovery of an interesting module of co-
methylated CpG islands and genes that are strongly associ-
ated with aging. Due to many factors that heavily affect
DNA methylation levels and patterns, it is generally be-
lieved that cancer methylome is specific to specific tissue
type [3]. However, the co-methylation study by Horvath
[14] provides a new angle suggesting the possible existence
of ubiquitous methylation patterns in multiple tissues.
Therefore an important question is: are there such ubiqui-
tous methylation patterns in cancers? If they exist, what are
their roles? To be more specifically, do co-methylation
clusters ever exist in different cancer tissue types in popula-
tions with mixed ages? If so, how they are related to cancer
physiology, development and patient clinical outcomes?
In this study, we performed the first pan-cancer co-

methylation cluster mining using our newly developed

lmQCM algorithm [16], which has been successfully ap-
plied to gene co-expression analysis. For the first time,
we identified four co-methylated clusters in multiple
cancer types. Among the four clusters identified, two of
them clearly separate the cancer from normal samples in
10 out of 11 cancer types. We also found that although
the majority of tumor suppressors and oncogenes may
be stably repressed/active in cancer cells as indicated by
stable methylation levels, some genes that are commonly
believed to be silenced are not universally silenced in
mixed cancer-type populations.

Results
Compare co-methylation clusters in different cancer types
DNA methylation is known to be heavily affected by en-
vironmental factors [17], such as age, cell type and cell de-
velopmental stages [1, 18]. And cancer genome were often
thought to be generally hypomethylated [19, 20]. However,
despite the generally low methylation, highly diverse back-
grounds of the TCGA cancer patients, as well as the highly
diverse cell types, by applying our two-step frequent clus-
ter mining workflow as described in the Methods section,
we are able to identify recurring co-methylated clusters in
different cancer types with different data platforms and
different tumor to normal compositions using 17 datasets
from 11 tumor types from TCGA (for details, see Table 1).
These frequently identified co-methylation clusters may
indicate common gene regulations in different cancer
types. Among them, 17,181 pairs of co-methylated probe-
sets are detected in over 50% of the cancer datasets we an-
alyzed, which involve over 800 genomic regions. The array
platform difference has minimal effect on the identified
co-methylation clusters for AML, LUSC, STAD and
UCEC data, but it showed some discrepancies for GBM

Table 1 TCGA multiple cancer DNA methylation dataset and co-methylation mining summary. The last column displays “number of
clusters in common cluster pairs from platform 1/number of clusters in common cluster pairs from platform 2/number of common
cluster pairs”

Dataset Total
Sample#

Total
Normal#

HM-27 sample
(normal)

lmQCM clusters Probe pair
(unique pair)
in all clusters

HM-450
Sample
(normal)

lmQCM clusters Probe pair
(unique pair)
in all clusters

Common clusters
between platforms

GBM 450 2 295(0) 11 812429(807245) 155(2) 11 968165(967951) 5/4/5

COAD 555 75 203(37) 13 1685392(1683052) 352(38) 8 917282(916822) 4/4/4

CESC 312 3 0 NA NA 312(3) 13 812354(811157) NA

OVCA 623 30 613(30) 24 351921(350936) 10(0) NA NA NA

LIHC 430 50 0 NA NA 430(50) 9 1059318(1057998) NA

LUSC 573 69 161(27) 11 2735398(2735122) 412(42) 16 1402241 8/10/11

BRCA 343 27 343(27) 9 692142(688536) 0 NA NA NA

STAD 470 27 73(25) 7 6184477(6174821) 397(2) 11 2113303(2112253) 4/6/7

THCA 571 56 0 NA NA 571(56) 9 116820(116799) NA

UCEC 591 35 118(1) 8 1482759(1476728) 473(34) 17 629431(629159) 7/11/12

AML 388 0 194(0) 13 841743(839045) 194(0) 14 433671(430841) 11/13/14
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and COAD data (Table 1). Since there is no data from the
Illumina-27 platform for CESC, LIHC and THCA,
lmQCM mining on that platform was not performed for
these three datasets (listed as “NA” in Table 1).
Different cancer types also show distinctive co-

methylated clusters of their own kind. To identify the
cancer type specific co-methylation clusters and as well
as common co-methylation clusters in multiple cancer
types, we took a two-step approach. First, we were inter-
ested to find which cancer type is more unique in terms
of co-methylated modules as compared to the other can-
cer types. By computing the Jaccard indices between
every pair of cancer types coerced co-methylated clus-
ters, we found that, in general, co-methylation clusters
are mostly unique for OVCA and AML; while digestive
system cancers STAD, COAD and LIHC co-methylation
clusters are more similar to each other (Fig. 1a). How-
ever, Jaccard indices only compare co-methylation
probe-pair lists between each pair of cancer types, thus
will not reflect the commonality between cluster from
each cancer type and the universal co-methylation clus-
ters. Instead, we applied an additional step of frequent
cluster mining using the same algorithm in the second
step.

Common co-methylated pan-cancer clusters
We pooled the co-methylated network edges (probe
pairs) identified from all of the co-methylation clusters
in 17 pan-cancer datasets for frequency counting (for
the probe pair frequency distribution, please see Fig. 1b).
By using the frequency as weight, we identified for the
first time that universal co-methylation modules exist in
different cancer types and we identified four such clus-
ters in 11 cancer types studied (for a complete list of the
four cluster genes, please see Additional file 1: Table S1).
Cluster 1 contains genomic locations that involved 81

genes or gene families, and is the largest cluster in the
four. IPA analysis showed that genes in this cluster are
mostly involved in cellular movement, cell signaling, tis-
sue morphology and cellular development (Fig. 2a). This
cluster contains one methyltransferase BHMT and a
group of kinases, kinase receptors and other membrane
proteins, which are more likely to be involved in tumor
microenvironment. However, only one gene CDH1 has
been considered previously as cancer gene in Sanger
Institute Cancer Gene Census.
Cluster 2 marked 31 gene/gene family regions that are all

located on X chromosome. This is not surprising. Since
many homologous genes on X chromosome are methylated
for repression, especially for women where one of the X
chromosomes is condensed and genes on it are repressed
(X-chromosome inactivation), the QCM algorithm will
naturally identify co-methylated clusters from those
randomly hypermethylated regions on X chromosome. Five

of our 17 datasets consist only female patients, which are
UCEC (two datasets), OVCA, BRCA and CESC. These
datasets will contribute X-chromosome methylation clus-
ters to the pan-cancer study. Still inside the X-chromosome
cluster, there are a few cancer-related genes (ATRX,
MTCP1, PHF6), but the majority of the genes should be
just the results of the X-chromosome inactivation. Mainly
housekeeping biological functions are enriched in this clus-
ter, and since all genes are from X-chromosome, the cluster
is enriched with X-linked hereditary diseases. Although
Cluster 2 may not provide too much information in term
of cancer, it serves as a great internal positive control to
demonstrate that our lmQCM workflow performed well on
DNA co-methylation cluster mining.
Cluster 3 marked 26 genes/gene families, which in-

cludes cell signaling genes and immune response genes
(Figs. 2b and 3a). Cluster 4 with 25 genes/gene families
contains mostly nervous system genes and cell-to-cell
signaling genes (Figs. 2c and 3b). However, only about
one third of the genes from either cluster form known
networks, as seen from Fig. 3ab. Majority of them were
not functionally linked previously.
In every cancer type, the methylation levels of the

genes in these four clusters are summarized into four
eigengenes using the method described in the Methods
section. Figure 1c shows the highly correlated beta
values of DNA methylation from Cluster 4 among
COAD-450 patients, with each color line representing
one gene from Cluster 4.
Previous studies showed that DNA methylation in can-

cer is usually low on tumor suppressors and high on on-
cogenes [1, 18, 21, 22]. In our co-methylation study, we
are looking for co-varied methylation regions, therefore
not many tumor suppressor or oncogenes showed up in
the pan-cancer co-methylation clusters, presumably due
to lack of methylation variability of those genes among
patients. Using available tumor suppressor database, we
found only 2–6% of the tumor suppressors are found in
any of the cancer-specific clusters in BRCA, COAD,
LUSC, THCA and UCEC (Additional file 1: Table S2).

Relationships between frequent co-methylation clusters
and cancer types
We also studied how different types of cancer differ in
their contributions in the four frequent co-methylation
clusters. The results are shown as a clustered heatmap
in Fig. 4. We found that THCA has the most unique co-
methylation pattern than all other cancer types and
contributes the least to the four frequent co-methylation
clusters, followed by OVCA and AML. The relatively
younger age of THCA patients may partially account for
the methylation difference (Fig. 5). It was reported that
AML methylation was different from the solid tumor,
and this study confirmed that finding [23]. In contrast,

The Author(s) BMC Genomics 2017, 18(Suppl 1):1045 Page 3 of 14



Fig. 1 Similarity of co-methylation clusters among multiple cancer types, cluster edge frequency distribution among all cancer types, and an example of
correlated methylation level within one cluster in COAD. a Clustered heatmap of Jaccard indices among co-methylation clusters in 11 cancer types, for the
cancer types with two different methylation data platforms, only the common cluster probe pairs were used for comparison, as indicated by common after
cancer type names. b The frequency distribution of the cluster edge (probe-pairs) in all 17 cancer datasets. c The centralized methylation beta values of
Cluster 4 probes for all COAD-450 cohort. Colored lines represent different probes
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most of the pan-cancer clusters can be found in COAD
co-methylated clusters, so is in STAD. Especially for
Clusters 3 and 4, over 90% of probes are found in
COAD and STAD clusters mined from HM 27 K array
data.

Co-methylated pan-cancer clusters show difference between
normal and cancer samples
The most interesting findings are that in 10 out of the 12
cancer datasets with normal samples, the samples were
clearly separated by tumor and normal type according to
the methylation levels of the eigengenes for probe regions
of the Clusters 3 and 4 (Fig. 5a and b). In Fig. 5a and b, we
sorted the methylation levels from high to low for the
eigengenes of these two clusters. As shown in Fig. 5a,
Cluster 3 marked genes are heavily methylated in the nor-
mal samples, but less methylated in tumor samples,
whereas in Cluster 4 it is the opposite — the tumor

samples are heavily methylated, and the normal samples
are less methylated. This separation appears to be univer-
sal in epithelial cancer types, since nine out of ten cancer
type showed this trend. Unfortunately, there is no normal
samples in AML and very few in GBM, so it will be our
future work to test if this holds true for non-epithelium
derived cancer.
This separation also depends on how many probes are

shared between Cluster 3 (or Cluster 4) with the cancer-
specific clusters in each cancer type. For example, for
STAD and COAD, which over 90% of their co-
methylation clusters are shared with the pan-cancer
clusters, have the most clear-cut separation, while
THCA samples, which has the minimal overlap (0 and
2.85%) with Clusters 3 and 4 showed no separation of
tumor and normal along the eigengenes’ values.
Since tumor suppressors are believed to be highly

methylated while oncogenes to be least methylated in

Fig. 2 Top enriched biological functions for Cluster 1, 3 and 4 marked genes using Ingenuity Pathway Analysis (IPA). a Cluster 1 genes
enriched biological functions. b Cluster 3 genes enriched biological functions. c Cluster 4 genes enriched biological functions
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Fig. 3 (See legend on next page.)
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cancer cells [18, 21, 22], we checked if any of these two
categories of genes in Clusters 3 or 4 following that pat-
tern. There was only one tumor suppressor (CSF2) and
one cancer census gene in Cluster 3 (USP6); there are
four tumor suppressors (GALR1, IRF4, PTPRT and
SOX11) and one more cancer census gene in Cluster 4
(NRG1). This may indicate that the majority of the
cancer-related genes (suppressors or oncogenes) are sta-
bly methylated/unmethylated among the tumor samples
or only differentially methylated in some specific type of
cancers, therefore not present in the frequent co-
methylation clusters. However, the majority of genes we
identified in Clusters 3 and 4 are not linked with cancer.
They may be the potential biomarkers to differentiate
cancer from normal tissue as well stratify patient disease
subtypes/stages, or provide directions for future cancer
research.

Relationship between co-methylation clusters and aging
Since age is a major factor affecting DNA methylation
patterns, we also examined the age distribution in all an-
alyzed cancer datasets and found that THCA and AML
datasets consist of the youngest population of patients,
which may partially explain the unique co-methylation
patterns in these two datasets when compared to all
other cancer types (Fig. 6). However, CESC data also
contain relatively young population of patients, the co-
methylation pattern is not as distinctive as those in
THCA and AML. We speculate that other factors such

as cell type may also play a role in the co-methylation
profile in AML and THCA. TCGA normal samples are
usually adjacent normal tissues from the same cancer
patient. Therefore age is not likely to contribute to the
separation of tumor/normal samples as we observed in
the Clusters 3 and 4 sorted methylation profiles
(Fig. 5ab). To investigate if age is involved in the sample
differentiation as observed in Fig. 5, we plotted the aver-
age ages of entire cohort as well as normal cohort for
each type of cancer. Not surprisingly, we did not find
significant age difference between entire cohort and nor-
mal sample cohort, therefore our findings of tumor vs.
normal separation in cluster 3 and 4 genes were not due
to age factor (Fig. 6).
In addition, we examined if any of the four pan-cancer

clusters’ methylation level correlates with age. We
checked all of the cancer types analyzed in this project.
The results showed no correlation of age with the level
of methylation of the four clusters. Three of them in
BRCA and THCA are shown in Fig. 7.

Discussion
It is widely accepted that tumor suppressors are hyper-
methylated in their promoter region and repressed in
tumor samples [8, 21, 22]. The hypermethylation usually
leads to silencing of the genes and a list of commonly re-
pressed and silenced genes from five types of cancer
(BRCA, LUCA, PC, Leukemia and CRC) can be found
in literature [1]. However, in this study, we found that

(See figure on previous page.)
Fig. 3 Top networks identified with IPA for cluster 3 and cluster 4 marked genes. a Cluster 3 cell signaling, molecular transport, vitamin and
mineral metabolism network. Names in red: genes involved in cell signaling and cancer. b Cluster 4 cell signaling and interaction, nervous system
development and function, neurological disease network. Names in red: genes involved in cell signaling and neural signal transmission. Grey:
genes from Cluster 3 or 4. White: molecules not present in Cluster 3 or 4

Fig. 4 Contributions of edges to the four frequent co-methylation clusters from each of the 11 cancer types. The percentages of shared edges
with respect to the total number of edges in each of the four clusters are plotted in the heatmap
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Fig. 5 Samples differentiated by the transformed methylation level of Cluster 3 and 4 eigengene. Green: normal samples; Red: tumor samples. a
sorted by Cluster 3 eigengenes for the methylation beta value from high to low. b sorted with Cluster 4 eigengenes for the methylation beta
value from high to low
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majority of them showed highly variable methylation
level in cancer cells, even without normal control
(Table 2). This is not surprising, since many cancers
were found to have distinctive CIMP subgroups [3]. Our
findings confirmed this and expand the knowledge from
the current view of a few genes’ methylation patterns
change to more coordinated changes of methylation
changes in a network fashion which is universal to mul-
tiple cancer types. On one hand, this result implies clini-
cians should be cautious when using the methylation
genes as biomarkers for diagnosis, while on the other
hand, it provides new directions to apply these genes for
tumor subtyping.
One of the major finings in this study is the existence

of pan-cancer co-methylation clusters. Co-methylated
gene clusters from normal cell lines [24] have been stud-
ied using the WGCNA package [15] recently, which is
complementary to our pan-cancer study. Pan cancer
study of DNA methylation patterns [12] were also car-
ried out using differential methylation analysis. However,
our work described the first co-methylation cluster min-
ing with correlated variable methylation states on a pan-
cancer scale. The finding of two tumor suppressor genes
BVES and PRDM1 shared by all 15 cancer types in [12]
was not found in any co-methylation clusters of the 11
cancer types, presumably due to these sites being
constant hypermethylated and lack of variation.
There are four major co-methylation clusters among the

11 types of cancer studied. In the largest frequent
co-methylation Cluster 1, many genes (such as BHMT,
CSNK1E, CTSZ, CXCL1, CXCL17, CDH1, ERBB2, GAK,
GGT1, GPR56, HBEGF, HNF1A, ICAM3, IL17RC,
IL22RA1, NCOR2, OSM, PHKG1, PTPRCAP,
TNFAIP8L2) encode enzymes, ligands, receptors or tran-
scription factors/repressors that are involved in DNA

methylation, cell-to-cell signaling and development. How-
ever, the 81 genes in this cluster are not tightly connected
based on current knowledge (Query in STRING database,
Additional file 1: Figure S1). The methylation levels of
these genes were not correlated with available patient clin-
ical traits or age either (Fig. 7a). Thus the underlying cor-
related methylation pattern and the underlying molecular
mechanism is yet to be elucidated. Among them, only
CDH1 was previously considered to be cancer epigenetic-
biomarkers, and reported silenced by hypermethylation in
breast, colon, lung, leukemia and prostate cancer (Table 2,
[1]). However, a highly variable methylation level of CDH1
was observed in this study in multiple cancers by its pres-
ence in frequent co-methylation cluster, as well as in
cancer-specific co-methylation clusters from AML, BRCA,
CESC, STAD, LUSC, LIHC, THCA, OVCA and UCEC,
especially it is present in AML, CESC and STAD where
there is zero or 2 to 3 normal tissue samples.
The most exciting discovery of the frequent co-

methylation clusters is the separation of tumor versus
normal samples by Clusters 3 and 4, which shows op-
posite methylation trends between tumor and normal
samples. Again this pattern is not correlated with age at
all in any cancer type (Fig. 7bc). This finding suggests
that despite distinctive tissue specific epigenomic pat-
terns, there are consistent and ubiquitous changes
between tumor and normal tissues. Interestingly,
currently there is no known methylation biomarkers for
cancer in Cluster 3 or 4, nor were majority of those
genes linked with cancer previously. Our results thus
provide new insights and potential candidates for
cancer patient stratification biomarkers and therapeutic
targets.
In colon cancer, DNA methylation was linked to

phenotype stratification more than fifteen years ago [7]

Fig. 6 Age average in multiple cancer datasets used for co-methylation cluster mining. Blue: age average for all samples. Red: age average for
normal samples
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and quite a few genes have been identified as DNA
methylation biomarkers since then [25]. Among them,
CRABP1, FLNC, IGFBP3, MIR34B, MYOD1, RUNX3,

SFRP1 and SFRP2 are found to be co-methylated in the
same cluster in both of the TCGA colon adenocarcin-
oma datasets. However, none except CDH1 of the above

Fig. 7 Patient ages sorted according to the transformed methylation values of the eigengenes for Cluster 1 and Cluster 4 of BRCA and THCA. a
patient age sorted according to methylation levels of the eigengene for Cluster 1 from high to low in BRCA. b patient age sorted according to
Cluster 4 eigengenes' methylation level high to low in BRCA. c patient age sorted according to Cluster 4 eigengenes' methylation level high to
low in THCA
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biomarkers was found in the frequent co-methylation
clusters, suggesting these DNA methylation biomarkers
are more specific for colon cancer type.
The loss of imprinting of IGF2 and H19 from parental

alleles were previously linked to cervical cancer; Loss of
imprinting of H19 was also linked to lung cancer and
hepatoblastoma [26]. In our study, we found IGF2 and its
receptor IGF2BP2/3 in co-methylation clusters from 12 out
of 17 datasets (BRCA, LUSC, CESC, STAD, THCA, UCEC,
AML, OVCA), and H19 in the co-methylation cluster from
STAD and BRCA. The variable level of methylation levels of
these two genes along with CDH1 gene may indicate the
heterogeneity of cancer population in most cancer types in
TCGA database. Indeed, it has been reported that different
DNA methylation patterns can be used to subtyping TCGA
breast cancer patients [26, 27], and in AML [28, 29]. In
AML, when we compared the published gene list of 45 genes
that are aberrantly methylated in all AML subtypes, there is
no overlap between those genes and the frequent co-
methylation clusters, and only four genes out of 1109 genes
were shared between that list and our AML-specific co-

methylation clusters (BTBD3, CYP26C1, MCTS1, ZFP161),
indicating that most of the AML-linked genes are either not
highly variable in their methylation levels or not part of the
co-variation network in the TCGA cohort we examined.

Conclusion
To summarize, with the accumulation of large genomic
datasets such as TCGA, we are able to carry out pan-
cancer and comparative studies on epigenetic markers,
which have not been previously examined. By applying the
newly improved lmQCM algorithm and the similar work-
flow as in gene frequent co-expression network mining, we
successfully identified four frequent co-methylation clusters
from 11 cancer types, and two of them can clearly separate
the tumor samples from normal samples based on their
methylation levels. It demonstrated from the first time that
consistent epigenetic landscape changes exist in multiple
cancer types. The results from this study lead to interesting
biological question on the molecular mechanism for co-
methylation, while at the same time will provide insights

Table 2 Crosscheck of cancer-specific co-methylation clusters with genes silenced by promoter hypermethylation in multiple cancer
[1, 2, 25, 33, 34]

AML BRCA COAD CESC GBM LIHC LUSC STAD THCA OVCA UCEC

APC X

BMAL1

BRCA1 X X

CDH1 X X X X X X X X X

CDH13 X X X

CDKN2A X

CDKN2B X

COX2

CRABP1 X

DAPK1 X X

ESR1 X

GATA5 X X

GSTP1 X X X

HIC1

IGFBP3 X

MGMT X X X X

MLH1

NORE1A

P14

PYCARD X

RARB2

RASSF1A

TLE1

TP73 X X X

X indicates a hit in corresponding cancer-specific co-methylation clusters
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and new directions for potential cancer epigenetic marker
and therapeutic target findings.
Currently, we are extending the same workflow to

other cancer DNA methylation data to verify the find-
ings of these frequent co-methylation clusters and exam-
ining the predictive power of differentiating cancer and
normal samples by clusters 3 and 4.

Methods
Data acquisition and processing
Seventeen (17) DNA methylation datasets and the corre-
sponding clinical data for 11 different cancer types were
downloaded from The Cancer Genome Atlas (TCGA)
data portal (https://tcga-data.nci.nih.gov/tcga/) in January
2016. The details of sample information for each cancer
dataset are summarized in Table 1. Level-3 DNA methyla-
tion beta values were consolidated and filtered for each
cancer dataset. To remove noise and probesets with low
information content, probesets without values or with
variance lower than 30 percentile of the variance across
the entire probesets in each dataset were removed, then
probesets with average values across the entire cohort
lower than 20 percentile of all the mean values were re-
moved. Among the 11 cancer types, colon adenocarcin-
oma (COAD), acute myeloid leukemia (AML), lung
squamous cell carcinoma (LUSC), stomach adenocarcin-
oma (STAD), uterine corpus endometrial carcinoma
(UCEC) and glioblastoma multiforme (GBM) each contain
two sets of DNA methylation data, namely the Illumina
Infinium HumanMethylation 27 K Beadarray and 450 K
Beadarray datasets. They were processed separately, and
annotated with “−27” or “−450” after the cancer types. In
Illumina 450 K array data, only probes with matching
27 K array probes were used, so clusters obtained can be
compared with each other. Datasets with fewer than 50
samples were excluded from the analysis. Also if both
platforms are present for any specific cancer, since the pa-
tients and samples are different in different platforms, we
consider each dataset separately and include both to con-
struct a larger data pool for frequent network mining,

Frequent co-methylation cluster mining in multiple cancer
datasets
The workflow to mine frequent co-methylated clusters
was adapted from our previously established workflow for
frequent gene co-expression clusters in multiple cancers
using quasi-clique merging (QCM) algorithm [30]. The
steps are summarized as following:

1. Mine co-methylated clusters on processed DNA
methylation data (including both tumor and normal
data if available) using newly improved lmQCM al-
gorithm [16] on weighted co-methylation network
for each cancer dataset. lmQCM algorithm

decreases the bias towards the high densely con-
nected clusters in QCM by first normalizing the
weight matrix. Specifically, the co-methylation net-
work was established with the absolute values of
the Spearman correlation coefficient (SCC) being
the weight of the edges. Then the weights were
transformed such that the sum of the columns and
the rows are all one using the same iterative pro-
cedure for normalizing the graph Laplacian matrix
(with the sums of rows and columns being 1) as in
spectral clustering [31]. This procedure can reduce
the bias caused by highly connected clusters and
enable the algorithm to detect more subtle clusters.
Then the clusters were mined using a greedy ap-
proach as described in [30]. There are four parame-
ters in the algorithm with γ being the major
parameter controlling the threshold for the weight
of the initial edge for new clusters. If among all the
edges that have not been any part of the identified
clusters, none of them has weight more than γ, the
algorithm will stop. Two other parameters λ (λ ≥ 1)
and t (t ≥ 1) controls the decreasing rate of the
densities of the detected clusters. While the dens-
ities of the clusters keep decreasing, the algorithm
guarantees a lower bound of the cluster density
[30]. The parameter β decides the maximum
allowed overlap ratio between any two clusters. If
two clusters have overlap ratio higher than β, they
will be merged into one cluster. Here the overlap
ratio is defined as the ratio between the size of the
intersections between two clusters and the size of
the smaller cluster. Previously we found that for
most of the networks we tested (including both
gene co-expression networks and co-methylation
networks), the number of output clusters is relatively
stable between γ = 0.4 to 0.6, while choosing γ = 0.6
controls the size of the clusters. Similarly β = 0.4
balances between number of clusters and cluster
sizes. The other two parameters λ and t do not have
significant impact on the cluster number so we chose
λ = 1.0, t = 1.0. In addition, we focus on relatively large
clusters and thus set the minimum cluster merging
size to be 20.

2. Generate probe pairs for each cluster obtained
from each cancer dataset, assuming within each
cluster every two probes were connected, then
merged all of the probe pairs from all 17 datasets
together and compute the frequency of every
probe pair in the combined data. Use frequencies
as weights we established a weighted network,
which was mined to identify frequently co-
methylated clusters. The clusters identified are
called pan-cancer co-methylation clusters in this
study. The parameter settings are the same as in
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step 1, except γ = 0.5 to ensure that every fre-
quent cluster was initiated with at least one edge
that appears in at least half of the datasets.

Calculating “eigengene” using singular value
decomposition for every cluster for each cancer dataset
The probes from each of the four identified clusters in
step 2 in the workflow above were mapped back to each
cancer dataset to obtain corresponding DNA methyla-
tion values. The values for each cluster were then sum-
marized into an “eigengene” using the singular value
decomposition approach as described by Langfelder and
Horvath [32] based on singular decomposition. We im-
plemented this procedure in MATLAB. The resulted
eigengene represents a weighted average of the methyla-
tion levels for the probesets over the patients. It concen-
trates along the highest variable direction of the data
vectors. Patient information was then extracted and
compared between the tumor and normal samples. The
values of each eigengene were also sorted in the order
from high to low and displayed with tumor and normal
annotations labeled in different colors (Fig. 5). Twelve
datasets from 10 cancer types were analyzed. AML and
GBM-27, which have no normal control samples, and
STAD-450, which has only 2 normal samples, were not
included in this sorting and comparison.

Gene ontology enrichment analysis
Ingenuity Pathway Analysis (IPA) was used for probe-
matched genes from the pan-cancer co-methylation
clusters. For each of the four identified clusters, the
probe corresponding genes were combined to generate a
gene list. If a family of genes were matched to a single
probe ID, only the first member of that family was in-
cluded in the gene list to avoid enrichment bias. A core
analysis was performed on each gene list in IPA.
STRING database (http://string-db.org) was used to
query protein-protein interactions for genes in frequent
co-methylation clusters using the default settings.

Comparison of co-methylation clusters between different
platform and different cancer types
Co-methylation clusters identified from each cancer
dataset were mapped to genes. The genes marked by
such clusters of each cancer dataset were coerced to a
single gene list to compare across different cancer types.
Jaccard indices were generated for each pair of cancer
type gene lists. For clusters generated from different data
platforms (Illumina HumanMethylation 27 K or 450 K
array) from the same cancer type, the genes marked by
each cluster are compared, and the clusters with overlap
genes 25% or more were considered to be common clus-
ters (Table 1), and the common genes were pooled to-
gether and used to compute Jaccard indices between

different cancer types. Here “-common” is used after the
cancer type to denote the common clusters between two
platforms in a specific cancer type (Fig. 1a).
The edges from the four pan-cancer co-methylation

clusters were mapped back to original clusters identified
from each cancer type to obtain the overlapping percent-
age with respect to the cluster edge number in a particu-
lar cancer clusters (Fig. 4). To visualize the clustering of
cancer types using heatmaps, hierarchical clustering tool
clustergram from MATLAB is used on original values of
percentage (Fig. 1a) or Jaccard indices (Fig. 4) with de-
fault average linkage.

Crosscheck with tumor suppressor gene, oncogenes,
cancer gene census and published cancer methylation
biomarkers
One thousand two hundred seventeen protein coding and
non-coding tumor suppressor genes were obtained from
Tumor Suppressor Gene Database, (https://bioin-
fo.uth.edu/TSGene/). 208 oncogenes were obtained from
Ingenuity Pathway KnowledgeBase, and 571 genes of
Cancer Gene Census were downloaded from COSMIC
(Catalogue of Somatic Mutations in Cancer) website
(http://cancer.sanger.ac.uk). Cancer type specific DNA
methylation biomarkers were obtained from corresponding
publications and crosschecked with both frequent co-
methylation clusters and cancer-specific co-methylation
clusters. If two types of array data for the same cancer type
were studied, the common clusters between the two types
were used for crosscheck with these lists [1, 2, 25, 33, 34].

Additional file

Additional file 1: Table S1 Frequent co-methylation clusters. Table S2.
Cross-check of known tumor suppressor with corresponding cancer
co-methylation clusters. The numbers indicate the overlaps between
co-methylated clusters and known tumor suppressor in each corresponding
cancer type. Freq≥ 9 genes were obtained from combined co-methylated
clusters from all 17 cancer datasets and extracted the genes appeared in
over 9 datasets. Figure S1. Protein-protein network query on STRING
database for Cluster 1 genes. (DOCX 375 kb)
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