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Abstract

Background: Gastrointestinal microbiota, particularly gut microbiota, is associated with human health. The biodiversity
of gut microbiota is affected by ethnicities and environmental factors such as dietary habits or medicine intake, and
three enterotypes of the human gut microbiome were announced in 2011. These enterotypes are not significantly
correlated with gender, age, or body weight but are influenced by long-term dietary habits. However, to date, only
two enterotypes (predominantly consisting of Bacteroides and Prevotella) have shown these characteristics in previous
research; the third enterotype remains ambiguous. Understanding the enterotypes can improve the knowledge of the
relationship between microbiota and human health.

Results: We obtained 181 human fecal samples from adults in Taiwan. Microbiota compositions were analyzed using
next-generation sequencing (NGS) technology, which is a culture-independent method of constructing microbial
community profiles by sequencing 16S ribosomal DNA (rDNA). In these samples, 17,675,898 sequencing reads were
sequenced, and on average, 215 operational taxonomic units (OTUs) were identified for each sample. In this study, the
major bacteria in the enterotypes identified from the fecal samples were Bacteroides, Prevotella, and Enterobacteriaceae,
and their correlation with dietary habits was confirmed. A microbial interaction network in the gut was observed on
the basis of the amount of short-chain fatty acids, pH value of the intestine, and composition of the bacterial
community (enterotypes). Finally, a decision tree was derived to provide a predictive model for the three enterotypes.
The accuracies of this model in training and independent testing sets were 97.2 and 84.0%, respectively.

Conclusions: We used NGS technology to characterize the microbiota and constructed a predictive model. The most
significant finding was that Enterobacteriaceae, the predominant subtype, could be a new subtype of enterotypes in
the Asian population.

Keywords: Enterotype, 16S rDNA, Next-generation sequencing, Gut microbiome, Predictive model

* Correspondence: bryan@mail.nctu.edu.tw
†Equal contributors
1Institute of Bioinformatics and Systems Biology, National Chiao Tung
University, HsinChu, Taiwan
4Department of Biological Science and Technology, National Chiao Tung
University, HsinChu, Taiwan
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The Author(s) BMC Genomics 2017, 18(Suppl 1):932
DOI 10.1186/s12864-016-3261-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-3261-6&domain=pdf
mailto:bryan@mail.nctu.edu.tw
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Microorganisms inhabit various sites of the human body
[1]. The largest number of microorganisms is found in
the gut [1]. The gut microbiome is associated with
human health [2]. For example, the gastrointestinal
microbiome affects human physiological functions such
as immune function and inflammation suppression, food
decomposition and nutrient absorption, regulation of
blood substrate via the nervous and/or endocrine sys-
tem, and recovery rate from bacterial infection [3]. How-
ever, some of the underlying mechanisms remain
unclear. Enterotypes of the human gut microbiome are
not associated with gender, age, or body weight but are
influenced by long-term dietary habits. Therefore, we
aimed to identify the enterotypes of adults in Taiwan by
next-generation sequencing (NGS).
Since the Human Microbiome Project (HMP) was

launched by the National Institutes of Health in 2008,
NGS has been widely used to study the human microbiome
[4]. One of the benefits of NGS is that it is a culture-
independent method that can be used to characterize mi-
crobial community profiles by sequencing of 16S ribosomal
DNA (rDNA). In addition, hundreds to thousands of
bacteria can be identified at a time on sequencing 16S
rDNA by NGS. Thus, variations in bacteria among
different samples can be determined by comparing
their quantitative profiles [5].
In 2011, three enterotypes of the human gut micro-

biome were identified from 261 human fecal samples
from European individuals. The major bacteria in these
enterotypes were Bacteroides, Prevotella, and Ruminococcus
[6]. This finding was subsequently validated by another ap-
proach using the same HMP dataset [7]. However, after
identifying the long-term dietary habits in subjects, another
study only observed Bacteroides and Prevotella enterotypes
in their dataset and reported that Ruminococcus was an
ambiguous enterotype [8]. The HMP dataset included gut
microbiota that was rich in saturated fats and animal pro-
tein, whereas the latter study included microbiota from
individuals with plant-based diets that were low in meat
and high in carbohydrates [9]. In 2012, two other groups
also reported that Ruminococcus could not be clearly classi-
fied in their datasets, and Firmicutes were identified as the
dominant species in those studies [10, 11].
Based on the data from these previous studies, we

were interested in determining if Ruminococcus is an
enterotype in the gut microbiota of Taiwanese individ-
uals. To this end, 181 human fecal samples from adults
in Taiwan were collected, and the V4 regions of the 16S
rDNA gene were sequenced through paired 150-cycle
reads using the Illumina MiSeq system. A total of
17,675,898 sequencing reads were sequenced in 181
samples, and 215 operational taxonomic units (OTUs)
were identified in each sample on average. The most

abundant bacteria identified in the fecal samples were
Bacteroides, Prevotella, and Enterobacteriaceae, and their
correlation with dietary habits was confirmed. A decision
tree model of these three enterotypes was constructed.
The accuracies of this model in training and independent
testing sets were 97.2 and 84.0%, respectively.
The most significant finding in our study was the identi-

fication of Enterobacteriaceae as one of the predominant
subtypes in the gut microbiota. This species may be a new
subtype of enterotypes in the Asian population.

Results and discussion
Sequencing data statistics
We conducted 17,675,898 sequencing reads on 181 stool
samples. After filtering the sequences that did not fit the
criteria, we further analyzed 16,474,959 sequencing reads.
After taxonomy assignment, 9,133,183 sequencing reads
were aligned to genes in the 16S rDNA database that had a
sequence similarity of at least 97%; 215 OTUs for each
sample were identified on average. Detailed information on
the sequencing reads is listed in Additional file 1: Table S1.

Enterotype identification in the fecal samples
Nine β-diversity matrices were used to identify the entero-
types in fecal samples via three clustering methods: hier-
archical clustering (HC), partitioning around medoids
(PAM), and k-means (Table 1). The optimal number of
clusters was two using unweighted UniFrac distance. Prin-
cipal coordinate analysis (PCoA) was also used to observe
patterns in the stool samples. According to the Euclidean
distance matrix, two clusters were shown in opposite areas
(Fig. 1a, green and red dots), the major bacteria in which
were Bacteroides and Prevotella. In contrast, the other
samples (black dots in Fig. 1a) were scattered. Compared

Table 1 Summary of optimal cluster numbers

HCac PAMa PAMb Kmeansb

Weighted UniFrac 3 (0.339) 3 (0.350) 3 (0.353) 3 (0.354)

Altgower 2 (0.280) 2 (0.161) 2 (0.305) 2 (0.309)

Bray 2 (0.302) 2 (0.297) 2 (0.309) 2 (0.309)

Jaccard 2 (0.221) 2 (0.216) 2 (0.225) 2 (0.225)

Kulczynski 2 (0.302) 2 (0.297) 2 (0.309) 2 (0.309)

Maximum 2 (0.459) 2 (0.451) 2 (0.464) 2 (0.468)

Pearson 8 (0.571) 2 (0.614) 2 (0.622) 2 (0.622)

Horn 2 (0.494) 2 (0.596) 2 (0.600) 2 (0.600)

Euclidean 2 (0.267) 2 (0.418) 2 (0.419) 2 (0.418)

The first number of each cell is the optimal cluster number and the second
number is the Silhouette score. The optimal cluster number corresponding to
the maximum score was picked from a limited series of cluster
numbers (k ≤ 10)
aBeta matrix was applied as the input
bCoordinate (PC1–PC3) of each sample was applied as the input. Coordinate
was generated by the classical multidimensional scaling method from the
beta matrix
cHC, Hierarchical clustering
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with the PCoA results of weighted UniFrac distance
(Fig. 1b), the samples were grouped into three clusters,
and the predominant bacterium in the third cluster was
identified as Escherichia. Figure 2 shows the results of HC
of the stool samples. The unsupervised classification
method produced a dendrogram of the clustering results
(Fig. 2a), and the results of four clustering algorithms of
weighted UniFrac showed high concordance (Fig. 2b).
Then three enterotypes were classified as containing
Escherichia (enterotype 1), Bacteroides (enterotype 2), and
Prevotella (enterotype 3) (Fig. 2c), and two small uncon-
ventional regions were found. One region was located in
the Prevotella-predominant group (“star region” in Fig. 2b)
and contained six samples. The abundance of Prevotella
and Bacteroides showed a high positive correlation within
the samples. In addition, nine samples, with a relatively
high abundance of Bacteroides and low abundance of
Escherichia, were classified into the Bacteroides-predom-
inant group using the PAM method (“triangle region” in
Fig. 2b). Moreover, the abundance of bacteria at the family
level was similar to that at the genus level (Fig. 2d). Hence,
the results of clustering may be improved on the basis of
the family level.

Characteristics of the enterotypes
The bar charts (Fig. 3a) illustrate the relative abundance
of bacteria among the three enterotypes. In enterotypes
1 and 3, the major bacteria were Bacteroides, Escheri-
chia, and Prevotella, which accounted for over half of
the bacteria. In contrast, in enterotype 2, Prevotella were
not the most abundant bacteria; the most abundant

bacteria in this enterotype were Bacteroides, which
accounted for almost half of the bacteria. In enterotypes
2, the abundance of Bacteroides was at least twofold
higher than that of Prevotella. The relative abundance of
Escherichia and Bacteroides in enterotype 1 was almost
equal. Figure 3b shows the predominance of the three
most abundant bacteria in the three enterotypes. The
abundance of Escherichia was almost similar in both
enterotypes 2 and 3, the abundance of Bacteroides in
enterotype 1 was higher than that in enterotype 3, and
the abundance of Prevotella in enterotype 1 was higher
than that in enterotype 2. The proportion of Bacteroides
was inversely correlated with that of Prevotella (p <
0.001, R = − 0.85) (Fig. 4). These results correspond to
the bacterial abundance in enterotypes 2 and 3.
The Shannon diversity index and composition of facul-

tative, anaerobic, and aerobic bacteria in the three enter-
otypes are shown in Figs. 5 and 6, respectively. The
Escherichia-predominant enterotype (enterotype 1) had
a higher Shannon index than the other enterotypes
(p < 0.001). Facultative and anaerobic bacteria showed an
overwhelming majority (abundance of 98.3% on average)
with a strong negative correlation (p < 0.0001, R =
−0.94). It has been shown that anaerobic bacteria are the
predominant bacteria at the endpoint of the gastrointes-
tinal tract [12]. In our study, loss of anaerobicity was
observed in the Escherichia-predominant enterotype, in
which the abundance of facultative bacteria was signifi-
cantly higher than that of the other enterotypes (p <
0.0001, fold change > 2.5) and significantly corresponded
with a lower number of anaerobic bacteria (p < 0.0001).

Fig. 1 PCoA results based on different algorithms: a Euclidean and b Weighted UniFrac
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Fig. 2 Hierarchical clustering results of the stool samples. a Phylogenetic tree of the stool samples; b enterotype of stool samples based on
different algorithms (1st row: hc_beta, 2nd row: pam_beta, 3rd row: pam_coor, 4th row: kmeans_coor); c proportion of bacteria in the stool
samples at the genus level (blue: Escherichia, green: Bacteroides, red: Prevotella); and d proportion of bacteria in the stool samples at the family
level (blue: Enterobacteriaceae, green: Bacteroidaceae, red: Prevotellaceae)

Fig. 3 Bacterial community of three enterotypes: a bacterial proportion in the three enterotypes and b major bacteria in the three enterotypes
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The facultative/anaerobic ratio (defined as the F/A ratio)
was also significantly larger in enterotype 1 than in the
other two enterotypes (p < 0.0001, fold change = 3.85).

Enterotype phenotypes
The questionnaire given to the study subjects included
questions about three major determinants regarding the
samples. The first was the shape of feces, which was cat-
egorized by participants according to the Bristol stool
scale. Scores of 1–3 represented “hard” stool, a score of
four represented “mid,” and scores of 5–7 represented
“watery” that had a high water content [13]. The second
determinant was the frequency of excretion. At least one
excretion every 2 days was designated “D1+,” excretion
two to three times a week was designated “D05,” and ex-
cretion once a week or less referred to as “constipation.”
The third variable was “protein type,” which referred to
the major source of protein in daily diets: the non-red
meat group included individuals who eat beans/vegeta-
bles, fish, and poultry and the red meat group included
individuals who mostly eat livestock.
Table 2 demonstrates the association between entero-

types and several other factors such as gender, protein,
shape, and stool frequency. Twice as many females as

Fig. 4 Linear regression results of abundance of Bacteroides and
Prevotealla (Multiple R-squares: 0.658, adjusted R-squared: 0.654,
and p-value < 2.2e-16)

Fig. 5 Distribution of the Shannon diversity index of three enterotypes and the correlation of richness and Shannon diversity index
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males were classified as enterotype 2 (T2 vs. T1 + T3,
p = 0.02). In both enterotypes 1 and 3, the gender ra-
tio was close to 1:1 (Table 2. Additional file 2: Figure S1a),
which is similar to the results of previous studies [7, 10].
The number of individuals who consumed large quantities

of red meat was twice the number of individuals who did
not consume red meat consumers in enterotype 1 but half
the number in enterotypes 2 and type 3 (T1 vs. T2 + T3,
p = 0.0081) (Table 2. Additional file 2: Figure S1b). Ac-
cording to the results of the Bristol stool scale, feces shape

Fig. 6 Composition of facultative, anaerobic, and aerobic bacteria of three enterotypes

Table 2 Association between enterotypes and various other factors from the questionnaire

Enterotype Association

Type 1
(n = 30)

Type 2
(n = 36)

Type 3
(n = 40)

Contrast p-value χ2

Gender (global p = 0.047) Type 1 vs Type 2 0.0336 4.52

male 17 (56.7%) 10 (27.2%) 19 (47.5%) Type 1 vs Type 3 0.6046 0.27

female 13 (43.3%) 26 (72.2%) 21 (52.5%) Type 2 vs Type 3 0.1258 2.34

Type 2 vs (Type 1 + Type 3)a 0.0200 5.41

Protein (global p = 0.015) Type 1 vs Type 2 0.0290 4.77

non-red-meat 8 (32.0%) 15 (68.2%) 18 (66.7%) Type 1 vs Type 3 0.0264 4.93

red-meat 17 (68.0%) 7 (31.8%) 9 (33.3%) Type 2 vs Type 3 1 0.01

Type 1 vs. (Type 2 + Type 3)a 0.0081 7.00

Shape (global p = 0.014) Type 1 vs Type 2 0.6133 0.98

Hard 10 (41.7%) 11 (55.0%) 3 (11.1%) Type 1 vs Type 3 0.0356 6.67

Mid 8 (33.3%) 6 (30.0%) 11 (40.7%) Type 2 vs Type 3 0.0320 11.51

Watery 6 (25.0%) 3 (15.0%) 13 (48.1%) (Type 1 + Type 2) vs Type 3a 0.0038 11.15

Stool (global p = 0.064) Type 1 vs Type 2 0.0384 6.52

D1+ 17 (58.6%) 30 (83.3%) 30 (81.1%) Type 1 vs Type 3 0.0711 6.29

D05 11 (37.9%) 4 (11.1%) 5 (13.5%) Type 2 vs Type 3 0.9525 0.10

Constipation 1 (3.4%) 2 (5.6%) 2 (5.4%) Type 1 vs (Type 2 + Type 3)a 0.0133 8.64
aCombining two types based on no significant difference between groups and closed trend
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showed a significantly higher correlation with enterotype
3 than water content (T1 + T2 vs. T3, p = 0.0038) (Table 2.
Additional file 2: Figure S1c). Food digestion time (stool)
in enterotype 1 was significantly higher than that in enter-
otypes 2 and 3 (T1 vs. T2 + T3, p = 0.0133) (Table 2). In
addition, a higher digestion time was strongly associated
with a high red meat diet (D1+ vs. D05, p < 0.0001, χ2 =
12.92) (Additional file 2: Figure S1d).

Enterotype pathway enrichment analysis
Enterotype 1 shows higher pathway activity than entero-
type 2 or enterotype 3 in some KEGG pathways (ko00902,
ko00909, ko05168, ko05416, ko05145, ko05210, ko04115,
ko04610) (Additional file 3: Table S2). Two metabolic
pathways are related to terpenoid biosynthesis; three path-
ways are related to infections such as virus and parasite;
two pathways are associated with cancer and p53 DNA re-
pair system; ko04610 is related to innate immune system.

Classification of enterotypes
To construct the decision tree model for classifying
three enterotypes, 12 features were collected from 106
stool samples. These features include the Shannon
index, F/A ratio, predominant genera and families, and
enterotype-related phenotypes (gender, protein, shape,
stool) (Additional file 4: Table S3). Figure 7 shows the
result of the modeling. This decision tree interpreted five
rules: 1) if the abundance of Prevotellaceae in a sample
was greater than 0.26, the sample was considered enter-
otype 3; 2) if the abundance of Prevotellaceae in a sam-
ple was lesser than 0.26 and the F/A ratio was greater
than 0.2, the sample was considered enterotype 1; 3) if
the abundance of Prevotellaceae in a sample was lesser
than 0.26, the abundance of Bacteroidaceae was greater
than 0.33, and the F/A ratio was lesser than 0.28, the
sample was considered enterotype 2; 4) if the abundance

of Prevotellaceae and Bacteroidaceae in a sample was
lesser than 0.26 and 0.33, respectively, the abundance of
Enterobacteriaceae was greater than 0.10, and the F/A
ratio was lesser than than 0.28, the sample was consid-
ered enterotype 3; and 5) if the abundance of Prevoteal-
laceae, Bacteroidaceae, and Enterobacteriaceae in a
sample was lesser than 0.26, 0.33, and 0.10, respectively,
and the F/A ratio was lesser than 0.28, the sample was
considered enterotype 2. Rules 1–3 categorized 94.3%
samples into three enterotypes. In total, 75 samples were
used as independent testing sets to evaluate the per-
formance of the decision tree model. Table 3 shows the
performance of the training and testing sets, the accur-
acies of which were 97.2 and 84.0%, respectively.

Conclusions
This is the first study to identify enterotypes in stools
from Taiwanese adults. Our findings revealed a new sub-
type of an enterotype predominant by family Enterobac-
teriaceae. The identification of this new subtype may
have been due to the ethnic group, dietary habits, and
locations studied. A decision tree model of enterotypes
was constructed, and the accuracies of the training and
independent test used to fit the model were 97.2 and
84%, respectively, which validated the model. Several
associations between dietary habits and enterotype were
identified in this study. Table 4 shows the predominant
bacteria based on statistical hypothesis tests and several
features. The microbial interaction network showed
three bacteria (Escherichia, Salmonella, and Klebsiella),
which belong to the same family (Enterobacteriaceae). In
contrast to our findings, Enterobacteriaceae was found
in a large number of patients with constipation from
irritable bowel syndrome [14].
Enterotype-related phenotypes provide data for observ-

ing the gastrointestinal tract with the nature of continual

Fig. 7 Decision tree model of the three enterotypes. This model provided five rules. Each rule could classify one of three enterotypes. For instance,
if the bacterial abundance of Prevotellaceae was over 0.26 in one sample, the sample was considered enterotype 3 (1:37 means 37 samples were
successfully classified and one sample failed)
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flux [7], e.g., nutrient substrate, water context, or transi-
tion status. With regard to stool frequency, the amount of
Dialister and Akkermansia in “D05” was higher than that
in “D1 + .” According to previous studies, the amount of
Dialister was higher in individuals with a high protein diet
[15] and the amount of Akkermansia was higher in those
with a fiber-free diet [16]. With regard to shape, the
amounts of Parabacteroides and Prevotella in hard stool
were higher than those in watery stool. Previous studies
also showed that the amount of Prevotella was higher in
ethnic groups that had a high fiber diet and lower in eth-
nic groups that adopted a Western diet [17]. With regard
to protein type, the red meat group had abundance of
Bifidobacterium and Akkermansia and the non-red meat
group had abundance of Megamonas. Higher levels of
lipid in the diet increased the amount of Bifidobacterium
because it has the ability to digest lipids [18]. Enterotype 1
lacks of predominant bacteria such as Prevotella and
Bacteroide, which may lead to a functional imbalance or a

potential infectious risk via KEGG pathways (Additional
file 3: Table S2).
Microflora, enterotype-related phenotypes, and short-

chain fatty acids (SCFAs) were theoretically interwoven
as a large association network [19]. Our study validates
the connections among those factors (Additional file 5:
Figure S2). SCFAs are byproducts of dietary fiber fer-
mentation through microbiota, and they predominantly
include acetic, propionic, and butyric acids. SCFAs can
promote the growth of bacteria and can be absorbed by
humans. Different types of SCFAs are sources of energy
in different organs and are associated with intestinal dis-
eases. Several factors control SCFA production in the
gut, such as the amount and type of bacteria and the
food retention time. The amounts of SCFAs affect pH of
the intestine, for example, a higher concentration of
SCFAs leads to lower pH. The pH value is associated
with the composition of the bacterial community. The
complex interaction network in the gut includes the

Table 3 Performance of classification model in training sets and independent testing sets

T1 T2 T3 Accuracy

Sensitivity Train 93.3% (28/30) 97.2% (35/36) 100% (40/40) 97.2% (103/106)

Test 93.8% (15/16) 79.3% (23/29) 83.3% (25/30) 84.0% (63/75)

Group-specifica specificity Train 98.7% (75/76) 100% (70/70) 97.0% (64/66)

Test 88.1% (52/59) 89.1% (41/46) 100% (45/45)

Group-specifica precision Train 96.6% (28/29) 100% (35/35) 95.2% (40/42)

Test 68.2% (15/22) 82.1% (23/28) 100% (25/25)
aGroup-specific specificity, e.g., T1/non-T1

Table 4 Significant genus lists categorized by enterotype-related metadata

Features Family Genus p. value Mean separation

Enterotype Bacteroidaceae Bacteroides <0.0001 T2 > T1 = T3

Prevotellaceae Prevotella <0.0001 T3 > T1 > T2

Enterobacteriaceaea Escherichia <0.0001 T1 > T2 = T3

Enterobacteriaceaea Klebsiella 0.0006 T1 > T2 = T3

Enterobacteriaceaea Salmonella 0.0060 T1 > T3

Bifidobacteriaceae Bifidobacterrium 0.0394 T1 > T3

Pseudomonadaceae Pseudomonas 0.0198 T1 > T2

Verrucomicrobiaceae Akkermansiab 0.0017 T1 > T2 = T3

Stool Veillonellaceae Dialister 0.0423 D1 + < D05

Verrucomicrobiaceae Akkermansiab 0.0012§ D1 + < D05

Shape Porphyromonadaceae Parabacteroides 0.0106 Hard >Watery

Prevotellaceae Prevotella 0.0056 Hard >Watery

Protein Bifidobacteriaceae Bifidobacterium 0.0170 Red > non-red

Veillonellaceae Megamonas 0.0268 Red < non-red

Verrucomicrobiaceae Akkermansiab 0.0042 Red > non-red

§p value was calculated by ANOVA (not significant in the Kolmogorov–Smirnov test)
aGenus within the same family
bGenus associated with multiple metadata
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amount of SCFAs, pH value of the intestine, and com-
position of the bacterial community.
Our results provide a predictive model for further ana-

lysis and new insights into enterotypes. An individual
may change his/her enterotype by making dietary
changes because the characteristics of enterotypes de-
pend on an individual’s dietary habits. Although some
researchers pointed that the gut microbiome should not
category as ‘Enterotypes or Faecotypes’ since there is no
clearly separation among clusters [20]. The classification
may be blurred, yet the different features are still there.
Thus, knowing one’s enterotype may allow doctors to
outline the best diet for patients and to prescribe the
most effective drugs.

Methods
Feces sample collection
The 181 human feces samples used in this population-
based study were collected by Sigma-Transwab (Medical
Wire). Feces were temporarily stored at 4 °C before
DNA extraction. The exclusion criteria were age less
than 10 years, a history of gastrointestinal tract surgery,
and hospitalization or antibiotic treatment within the
past 2 months. Of the resulting study cohort of 181
individuals, 106 provided complete information on the
questionnaire and 75 omitted some information.

DNA extraction
In this case study, fresh feces were obtained from partic-
ipants, and DNA was directly extracted from stool sam-
ples using the QIAamp DNA Stool Mini Kit (Qiagen). A
swab sample was vigorously vortexed and incubated at
room temperature for 1 min. Then, the sample was
transferred to a microcentrifuge tube containing 560 μl
Buffer ASL, vortexed, and incubated at 37 °C for 30 min.
Following this, the suspension was incubated at 95 °C
for 15 min, vortexed, and centrifuged at 14,000 rpm
for 1 min into pellet stool particles. Extraction was
performed following the protocol of the QIAamp
DNA Stool Mini Kit. The DNA was eluted with 50 μl
Buffer AE and centrifuged at 14,000 rpm for 1 min,
after which the DNA extract was stored at −20 °C
until further analysis.

Library construction and sequencing of the V4 region of
the 16S ribosomal DNA
The PCR primers F515 (5′-GTGCCAGCMGCCGCGG-
TAA-3′) and R806 (5′-GGACTACHVGGGTWTC-
TAAT-3′) were designed to amplify the V4 region of the
bacterial 16S ribosomal DNA as described previously
[21]. PCR amplification was performed in a 50-μl reac-
tion volume containing 25 μl 2X Taq Master Mix
(Thermo Scientific), 0.2 μM of forward and reverse pri-
mer, and 20 ng DNA template. The reaction process

increased the initial temperature to 95 °C for 5 min,
followed by 30 cycles of 95 °C for 30 s, 54 °C for 1 min,
and 72 °C for 1 min as well as a final extension of 72 °C
for 5 min. Next, amplified products were checked by 2%
agarose gel electrophoresis and ethidium bromide stain-
ing. Amplicons were purified using the AMPure XP
beads (Agencourt) and quantified using the Qubit
dsDNA HS Assay Kit (Thermo Fisher Scientific), all ac-
cording to the respective manufacturers’ instructions.
For V4 library preparation, Illumina adapters were at-
tached to the amplicons using the Illumina TruSeq DNA
Sample Preparation v2 Kit. Purified libraries were proc-
essed for cluster generation and sequencing using the
MiSeq system.

Filtering 16S rDNA sequencing data for quality
Sequencing reads from different samples were identified
and separated according to specific barcodes at the 5’
end of the sequence (two mismatches allowed). The
FASTX-Toolkit was employed to process the raw read
data files. There were three steps used for sequence
quality processing: (i) The command was “fastq_quali-
ty_filter –Q33 − q 20 − p 70.” “−q 20” meant that he
minimum quality score to be maintained is 20. “−p 70”
meant that the minimum percent of bases must have
“−q” quality over or equal to 70%. (ii) The command
was “fastq_quality_trimmer − t 20 − l 100 −Q33.” “−t 20”
meant that bases with lower quality (<20) would be
trimmed (checking from the end of the sequence). “−l
100” meant that the minimum acceptable length of se-
quence was 100 after trimming the sequence. (iii) Se-
quences were retained if both forward and reverse
sequencing reads passed the first and second steps.

Taxonomy assignment for bacteria 16S rDNA sequence
To generate taxonomy assignment, the collection of 16S
rDNA sequences was retrieved from the SILVA riboso-
mal RNA sequence database (release 115) [22]. These
sequences were extracted using V4 forward and reverse
primers. Then, UCLUST was used to create representa-
tive sequence clusters over or equal to 97% similarity
[23]. Bowtie2 was used to align sequencing reads against
the clusters of the V4 sequence. A 97% similarity stand-
ard was applied to the V4 sequence clusters.

Bacterial community analysis
After taxonomy assignment, an OTU table was gener-
ated. To normalize the sample size of all samples, a rar-
efaction process was applied to the OTU table. There
are three steps in deciphering the enterotype of stool
samples [24]. The first step is to calculate the distance
matrix of β-diversity. R package “vegan” [25] and Python
software “Pycogent” [26] were employed to calculate
nine types of matrices, namely Alternative Gower, Bray
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Cutris, Jaccard, Kulczynski, Chebyshev, Pearson, Horn,
Euclidean, and Weighted UniFrac. The second step is to
use these matrices as the input data for three cluster al-
gorithms: HC, k-means clustering, and PAM methods.
For PAM, there were two types of inputs: one was the
distance matrix of β-diversity and the other was the
point information of XY axes that were transformed
from the distance matrix. R package was also used to
perform the clustering process. The third step is to
evaluate the quality of clustering results. Silhouette score
was calculated by R package “clusterSim” [27]. A higher
score represents better quality of clustering results. To
explore the association between bacterial community
and factors related to individuals, which were extracted
from the questionnaires, weighted α-diversity (Shannon
index), chi-square test, and analysis of variance
(ANOVA) were performed with R package. There were
three criteria for identifying significant bacteria in the
groups: the first was relative abundance > 1% in at least
one group, the second was fold change in relative abun-
dance between two groups ≥ log2(3) or ≤ log2(1/3). The
third was p value ≤ 0.05. In order to construct a predict-
ive model for classifying the three enterotypes of the
stool samples, 181 stool samples were separated into
two sets: the training set contained 106 samples, which
were from individuals who provided complete informa-
tion on the questionnaire, and the independent testing
set contained 75 samples, which were from those who
did not provide complete information. The decision tree,
which was a rule-based machine learning method, was
used to construct the predictive model for the three
enterotypes. C4.5, which is a well-built decision tree
package, was employed to perform this modeling process
[28]. Tax4Fun was adopted to the pathway enrichment
analysis with ANOVA [29].
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