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Abstract

Background: The mass spectrometry based technical pipeline has provided a high-throughput, high-sensitivity and
high-resolution platform for post-genomic biology. Varied models and algorithms are implemented by different
tools to improve proteomics data analysis. The target-decoy searching strategy has become the most popular
strategy to control false identification in peptide and protein identifications. While this strategy can estimate the
false discovery rate (FDR) within a dataset, it cannot directly evaluate the false positive matches in target identifications.

Results: As a supplement to target-decoy strategy, the entrapment sequence method was introduced to assess the
key steps of mass spectrometry data analysis process, database search engines and quality control methods. Using the
entrapment sequences as the standard, we evaluated five database search engines for both the origanal scores and
reprocessed scores, as well as four quality control methods in term of quantity and quality aspects. Our results showed
that the latest developed search engine MS-GF+ and percolator-embeded quality control method PepDistiller performed
best in all tools respectively. Combined with efficient quality control methods, the search engines can improve the low
sensitivity of their original scores. Moreover, based on the entrapment sequence method, we proved that filtering the
identifications separately could increase the number of identified peptides while improving the confidence level.

Conclusion: In this study, we have proved that the entrapment sequence method could be an useful strategy
to assess the key steps of the mass spectrometry data analysis process. Its applications can be extended to all
steps of the common workflow, such as the protein assembling methods and data integration methods.

Keywords: Proteomics, Tandem mass spectrometry, Entrapment sequence method, Target-decoy search,
Quality control

Background
The development of mass spectrometry has provided a
high-throughput, high-sensitivity and high-resolution
analysis platform for proteomics. Tandem mass spec-
trometry has become one of the most powerful tech-
nologies for protein identification, making possible the

global protein profiling. Meanwhile, using the database
searching strategy allows high-throughput identification
of peptides and proteins in shotgun proteomics. Varied
models and algorithms are implemented by different
search engines, including the early produced engines
SEQUEST [1], Mascot [2] and X!Tandem [3] as well as
some newly developed engines, such as Comet [4],
Tide [5], MS-GF+[6] and MS Amanda [7]. Then such
quality control methods have been applied to achieve
high reliability identifications as PeptideProphet [8–10],
PepDistiller [11], Mfs [12], RockerBox [13], FDRAnalysis
[14] and BuildSummary [15].
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The target-decoy database search strategy is the most
commonly used strategy to estimate false identifications
in target database with the assumption that the number
of false identifications in target database is equal to that
in decoy database [16]. However, this strategy can esti-
mate the false discovery rate (FDR) within a dataset ra-
ther than directly evaluate the false positive matches in
target identifications.
In our previous work, we used the protein sequences

from Archaea species as appended database for standard
dataset analysis to avoid the ambiguous matches caused
by the sequence similarity between control protein se-
quences and searched database sequences [17, 18]. Simi-
lar work had been published in Granholm et al.’s [19]
and Vaudel et al.’s paper [20]. Granholm et al. suggested
a semi-labeled method for evaluating the calibration of a
given score function using dataset of known protein
sample by searching the database composed of a small
number of sample sequences and a large number of en-
trapment sequences. Vaudel et al. proposed constructing
a database that contained both the sample sequences
(true positive) and entrapment sequences (false positive)
and proved that the Pyrococcu furiosus proteome can
provide a method for detecting random hits (comparable
to the decoy database).
All the above-mentioned work reminds us to intro-

duce the entrapment sequence to target-decoy search
strategy as a good supplement. By using different labels,
we can separate the PSMs into different kinds and calcu-
late the false matches in target identifications directly.
Using the entrapment sequence as the objective standard
(pure false positive), we assessed five database search en-
gines and four quality control methods in terms of both
quantity and quality. On the basis of the results of two
datasets, the entrapment sequence method is proved to
be a useful strategy to assess the mass spectrometry data
analysis workflow.

Methods
Datasets
Two previously published datasets were used in this
study. The Pfu dataset was produced by analyzing
Pyrococcus furiosus sample on LTQ Orbitrap Velos
(Thermo Scientific) [20], and used as a standard data-
set here. The LM3 dataset was generated from a shot-
gun analysis of the metastatic human hepatocellular
carcinoma cell line (HCCLM3) using Q-Exactive
(Thermo Scientific) [21].

Protein Sequence Database
Three protein sequences were downloaded from UniProt
database [22]: (1) Pyrococcus furiosus protein sequences
(Pfu2045, containing 2,045 sequences, downloaded on
January 5, 2016). (2) Homo sapiens protein sequences

(Homo20187, containing 20,187 sequences, downloaded
on January 5, 2016). (3) Archaea protein sequences
(Arc20825, containing 20,825 sequences, downloaded on
September 21, 2016). We randomized the Archaea pro-
tein sequences ten times to get (4) The large entrapment
sequences for LM3 dataset (Arc208250, containing
208,250 sequences). The composition of the three target
databases is shown in Table 1. For Pfu dataset, the
Pfu2045 was used as sample sequences and the
Homo20187 was used as entrapment sequences. For
LM3 dataset, the Homo20187 was used as sample se-
quences, while the Arc208250 and the Arc20825 were
used as two different entrapment sequences. Then all
target sequences were reversed to create the decoy data-
base for target-decoy search strategy. The general view
of the construction of searched databases is shown in
Fig. 1.
Both Granholm et al.’s [19] and Vaudel et al.’s [20]

work suggested sufficiently that large entrapment se-
quences should be used, and that the probability that a
random match hits the sample database is negligible, but
the best size hasn’t been examined. Here, about ten
times as many entrapment sequences were used as sam-
ple sequences, which is a similar ratio to Vaudel et al.’s
work. Also, we compared the tryptic peptides of all sam-
ple sequences and entrapment sequences. As shown in
Table 1, the ratios of shared peptides are respectively
low for three constructed databases (0.07%, 0.21% and
0.06%). Thus, very few positive PSMs should hit the
entrapment sequences. A spectrum that matches both
sample and entrapment sequences is considered a
sample identification.

Database Searching
All mzML and MGF files were converted from raw
files using the msconvert module [23] in the Trans-
Proteomic Pipeline (TPP v4.7.0) [24]. The MS/MS
peak list files were searched against the combined
database using Mascot [2] (local server v2.3.2), Comet
[4] (in Curx v2.1.16833 [25, 26]), Tide [5] (in Curx
v2.1.16833), MS-GF+[6] (v10089) and X!Tandem [3]
(TPP v4.7.0) [24]. The monoisotopic mass was used
for both peptide and fragment ions with fixed modifi-
cation (Carbamidomethyl, +57 Da) on Cys and variable
modification (Oxidation, +16 Da) on Met. Tryptic cleav-
age at only Lys or Arg was selected. The miss cleavage
number was set to be 1.

Quality control and protein assembling
Four commonly used quality control methods were
used in this study, including BuildSummary [15],
PeptideProphet [8–10], FDRAnalysis [14] and PepDistiller
[11], all of which produced a rescore of Mascot results for
each PSM: BuildSummary’s ExpectValue, PeptideProphet’s
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probability, FDRAnalysis’s FDRScore and PepDistiller’s
q-value. Comet and Tide results were processed by
Percolator integrated in Crux, which gave a rescore of
q-value. MS-GF+ and X!Tandem results were processed
by percolator-converters (v3-00) followed by percolator
(v2-08) for further quality control. The percolator tools
can be downloaded from (https://github.com/percolator/
percolator) [27]. In this study, we used MAYU for protein
assembling [28]. Peptides less than 7 amino acids were not
taken into account.

False Discovery Rate and False Match Rate
There are two formulas commonly used for false discov-
ery rate estimation in target-decoy search strategy. One
is for seperated database search (formula (1)), and the
other is for concatenated database search (formula (2)).
Ntarget and Ndecoy are the number of target and decoy
matches, respectively.

FDR ¼ Ndecoy

Nt arget
ð1Þ

FDR ¼ 2� Ndecoy

Nt arget þ Ndecoy
ð2Þ

As we introduced the entrapment sequences in the
target database, the entrapment hits in filtered target
identifications can be considered as false positive results.
Thus, we defined a false match rate (FMR) to approxi-
mately estimate the false positive identifications under
given FDR. The FMR can be calculated by formula (3),
where Ntrap is the number of identifications matched
the entrapment sequences in target hits.

FMR ¼ Ntrap

Nt arget
ð3Þ

Results and discussion
With the advance of proteome research, a growing num-
ber of database search engines as well as the subsequent
quality control methods have emerged and played the
key roles in the whole process of MS/MS data analysis.
As shown in Fig. 1, using the entrapment sequences as a
standard, we performed the evaluation of five database
search engines’ original scores and reprocessed scores

Table 1 Construction of the target database for Pfu and LM3 datasets

DataSets Sample
sequences

Entrapment
sequences

Sample tryptic
peptides

Entrapment tryptic
peptides

Shared tryptic
peptide

Shared/Sample
tryptic peptides (%)

Pfu Pfu2045 Homo20187 145358 2338004 102 0.070

LM3 Homo20187 Arc208250 2338004 15344503 4864 0.208

LM3 Homo20187 Arc20825 2338004 1479773 1333 0.057

Fig. 1 Workflow for evaluation of database search engines and quality control methods using the entrapment sequence method. A total of five
search engines (Mascot, X!Tandem, Comet, MS-GF+ and Tide) and four quality control methods (PepDistiller, BuildSummary, PeptideProphet and
FDRAnalysis) were studied on the basis of a standard Pfu dataset and a complex LM3 dataset
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and four quality control methods in the two important
aspects, quantity and quality.

Evaluation of different database search engines based on
both the original scores and reprocessed scores
First, we used the Pfu dataset as a standard dataset to
compare five search engines based on their original
scores, Mascot’s ionscore, X!Tandem’s expect, Comet’s
e-value, MS-GF + 's EValue and Tide’s XCorr. As
shown in Additional file 1 Figure S1A-C, the MS-GF+ far
outperforms the other search engines, and the use of
the MS-GF + 's EValue allows significantly more iden-
tifications at all PSM, peptide and protein levels with
the pre-defined FDR. The same trend has also been
observed in the large LM3 dataset (Additional file 1:
Figure S1D-F).
The original scores of search engines are usually of

very low sensitivity. However, this flaw can be over-
come when combined with the followed quality con-
trol methods by considering the distributions of
target and decoy hits and reanalyzing the original
scores. The SVM-based percolator algorithm has been
proved to be an ideal QC method [11, 29]. Thus, we
further analyzed Mascot’s results by PepDistiller [11]
(a bulit-in Percolator classifier), X!Tandem’s results

and MS-GF+’s results by Percolator [27, 30], Tide’s
results and Comet’s results by Percolator intergrated
in Crux [25, 26]. All the above combinations can pro-
duce a q-value for each identification and be used for
FDR calculation. As shown in Fig. 2, although the
MS-GF+ combined percolator still performs best,
other search engines can also perform quite well, es-
pecially in the large dataset (LM3 dataset) and at the
stringent quality control level (protein level).
In previous studies, the performance of different

search engines and quality control methods were
assessed by the number of results identified with fixed
FDR (e.g. 1% or 5%) estimated by target-decoy hits.
The most productive tool or method is usually con-
sider the best one, which is because only quantity is
used as the criterion. Here, we introduced the entrap-
ment sequence method as a complement to the
target-decoy search strategy. Thus, we can use the en-
trapment hits to calculate the false march rate (FMR)
to assess the quality of the results. As shown in
Fig. 3 (also refer to Additional file 1: Figure S2), obvi-
ously, the FDRs determined by decoy hits remain
stable (0.01 FDR of PSM, peptede and protein level
respectively), while the FMRs vary with search en-
gines and confident levels.

A B C

D E F

Fig. 2 Plot figures of the numbers of PSM, peptide and protein identified by five search engines under the estimated FDRs on Pfu dataset (a-c)
and LM3 dataset (d-f). The reprocessed scores of all five search engines are used
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In gerenal, fewer entrapment hits occur in PSM
and peptide identificaitons and in large dataset (LM3
dataset) than those in protein identificaitons and in
small dataset (Pfu dataset). In most cases, the FMRs
estimated by entrapment hits are roughly equal to
those of FDRs estimated by decoy hits. But in some
cases, the false matches represented by entrapment
hits would far outnumber the expected ones, such as
the Tide (FMR = 3.2%) and X!Tandem (FMR = 2.7%)
searched results in Pfu dataset in 0.01 protein FDR
condition (Fig. 3c), which would remind the re-
searcher that more strict QC should be applied.
Thus, we concluded that the entrapment sequence
can be used as an internal scale for reseachers to
monitor their peptide or protein identifications at
any time.

Evaluation of four quality control methods
As Mascot is one of the most widely used search en-
gines, it has been improved to accommodate the
MS/MS data generated by different instruments with
different accuracy, and most quality control methods
can handle its output result files. Here, Mascot’s
searched files were used as inputs and reprocessed
by four QC methods, including PepDistiller, Build-
Summary, PeptideProphet and FDRAnalysis. As
shown in Fig. 4, the percolator based QC method
PepDistiller identified the most PSMs, peptides and
proteins in both Pfu and LM3 datasets, and other
three methods were not significantly different. The
trends of FMRs of filtered results by differet QC
methods are close to the predefined FDR than those
of search engines (Fig. 5). Using MAYU as the

A D

B E

C F
Fig. 3 Distribution figures of the identification numbers and FMRs under 0.01 FDR of spectrum, peptide and protein level for five search engines
on Pfu dataset (a-c) and LM3 dataset (d-f). The reprocessed scores of all five search engines are used
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protein assembling tool can help four QC methods
to keep confident at the peptide and protein level,
especially in the large LM3 dataset.

Combining identificaitons of different search engines and
quality control methods with an appropriate framework
Varied models and algorithms that are implemented by
different search engines and quality control methods,
which make themselves mutually complementary and
well-performing for different subsets of mass spectrom-
etry data. Each search engine and QC method can
uniquely identify some spectra (Additional file 1: Figure
S3). Indeed, combining the results of multiple database
search engines or QC methods can increase identifica-
tions, however, more false positive hits will be produced
by uniquely identified results.
Take LM3 dataset as an example. Under 1% PSM

FDR, the distributions of PSMs identified by one or
several search engines or QC tools are shown in Fig. 6
and Additional file 1: Figure S4. Obviously, the FDRs
and FMRs of peptides identified by one or two tools
are much higher than those identified by three or
more tools (Fig. 6a and Additional file 1: Figure S4A).
If all these PSMs of five search engine are directly
put together, there are 167,259 PSMs in total, result-
ing in 25.88% ~ 74.61% more hits than any single en-
gine, but the FDR increases to 2.66% with the FMR

of 2.61% too. Here we proposed an alternative inter-
grated method in which further filterings were applied
to the identificaitons according to their overlap condi-
tions. We seperated the PSMs into subgroups by the
number of identified tools, and then filtered each sub-
group hits to keep their sub-FDR lower than the pre-
defined one (Fig. 6b and Additional file 1: Figure S4B).
There are total 137,342 PSMs identified by this intergrated
method, resulting in 3.37% ~ 43.38% more hits than any
single engine, but the FDR decrease to 0.40% with the
FMR of 0.48%.
Thus, combining the results of multiple database

search engines and QC methods with an appropriate
framework would benefit the data analysis process, in-
crease the numbers of identified peptides and improve
the confidence level of identifications.

Using a small size of entrapment sequences to evaluate
the search engines and tools in large dataset
As mentioned in Granholm et al.’s [19] and Vaudel et
al.’s [20] papers, to efficiently separate correct PSMs
from incorrect ones, the size of the entrapment se-
quences is supposed to be many times larger than the
size of the sample sequences. However, the oversize
database would greatly increase the search time while
decreasing the total positive identifications. Thus, an ap-
propriate size database is preferable in practical use.

A B C

D E F

Fig. 4 Plot figures of the numbers of PSM, peptide and protein filtered by four quality control methods under the estimated FDRs on Pfu dataset
(a-c) and LM3 dataset (d-f)
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Here, we used the original Archaea protein sequences
(Arc20825) as a small size entrapment sequence and
reprocessed the LM3 dataset. Then the similar results
are gained as with large size entrapment sequence search
(details are shown in Additional file 1: Figure S5 and S6).
Thus, an easy way to use the entrapment sequence
method is to randomize the sample sequences, label them
and combine them with the sample sequence to construct
a routine target-decoy database search, so that the entrap-
ment hits included in each step can be used to provide a
rough estimation of the confidence of the intermediate or
final results.

Conclusions
In this study, we proposed a complementary use of
target-decoy search strategy for evaluation of proteo-
mics data analysis workflow. The labeled entrapment

sequences are combined with the sample sequences
to construct the target database for search, then the
entrapment hits can be considered as false positive
results and used to access the quality of proteomics
data analysis tools. Based on this method, we assessed
the two key steps of the mass spectrometry data
analysis process, database search engines and quality
control methods. Tested by both standard and experi-
mental datasets, we found that the new search engine
MS-GF+ and the support vector machine model
based quality control method PepDistiller performed
best in all evaluated tools, and the performance of
search engines can be improved after the combination
with efficient quality control methods. We also pro-
posed an alternative intergrated method for results
from different tools. Filtering the identificaitons ac-
cording to their overlap conditions, we can increase

A D

B E

C F
Fig. 5 Distribution figures of the identification numbers and FMRs under 0.01 FDR of spectrum, peptide and protein level for four quality control
methods on Pfu dataset (a-c) and LM3 dataset (d-f)
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the number of identifications and improve the confi-
dence level at the same time.
Moreover, the entrapment sequence method could be

an excellent strategy to assess all steps of the mass spec-
trometry data analysis process. Its applications can be ex-
tended to protein assembling methods, data integration
methods and so on. By objective assessment of all steps of
the common MS data analysis, we can standardize the
analysis pipeline of mass spectrometry data.

Additional file

Additional file 1: This file contains supplementary figures, including
Figure S1-S6. (PDF 477 kb)
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