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Abstract

Background: Cancer is a complex disease driven by somatic genomic alterations (SGAs) that perturb signaling
pathways and consequently cellular function. Identifying patterns of pathway perturbations would provide insights
into common disease mechanisms shared among tumors, which is important for guiding treatment and predicting
outcome. However, identifying perturbed pathways is challenging, because different tumors can have the same
perturbed pathways that are perturbed by different SGAs. Here, we designed novel semantic representations that
capture the functional similarity of distinct SGAs perturbing a common pathway in different tumors. Combining this
representation with topic modeling would allow us to identify patterns in altered signaling pathways.

Results: We represented each gene with a vector of words describing its function, and we represented the SGAs
of a tumor as a text document by pooling the words representing individual SGAs. We applied the nested hierarchical
Dirichlet process (nHDP) model to a collection of tumors of 5 cancer types from TCGA. We identified topics (consisting
of co-occurring words) representing the common functional themes of different SGAs. Tumors were clustered based
on their topic associations, such that each cluster consists of tumors sharing common functional themes. The resulting
clusters contained mixtures of cancer types, which indicates that different cancer types can share disease mechanisms.
Survival analysis based on the clusters revealed significant differences in survival among the tumors of the same cancer
type that were assigned to different clusters.

Conclusions: The results indicate that applying topic modeling to semantic representations of tumors identifies
patterns in the combinations of altered functional pathways in cancer.
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Background
Cancer is a complex disease involving multiple hallmark
processes [1, 2], and aberrations in these processes are
caused by SGAs that perturb pathways regulating these
processes. Different combinations of pathways lead to het-
erogeneous oncogenic behaviors of cancer cells, which
impact patient outcomes and response to treatment.

Identification of patterns of pathway perturbations can
reveal common disease mechanisms shared by a tumor
subtype and such information can guide targeted therapy.
Transcriptomic data have been widely used to reveal

different cancer subtypes among tumors of the same
tissue of origin, and such studies have identified many
clinically relevant subtypes, which have significant
prognostic value [3–11]. However, transcriptomics-
based subtyping does not provide insight into the dis-
ease mechanisms underlying each subtype, that is,
transcriptomics-based subtyping does not reveal the
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causative pathways underlying the development of sub-
types. As such, such subtyping does not provide guid-
ance for targeted therapy. Another limitation of
transcriptomics-based subtyping is that tissue-specific
gene expression prevents discovery of transcriptomic
patterns across cancer types. Recent pan-cancer studies
found that tumors are invariably clustered according to
tissue of origins when using features that are related to
transcriptomics [12, 13]. Therefore, studying common
disease mechanism of cancers should be addressed
from new perspectives.
In order to gain a better insight into cancer disease

mechanisms, an alternative approach is to study patterns
of SGAs that perturb signaling pathways, with the goal
of identifying which combination of perturbed pathways
underlies each of the subtypes. It can be hypothesized
that each cancer subtype is likely driven by a specific
combination of perturbed pathways, and identification
of such common disease mechanisms would provide
guidance for targeted therapy.
However, the direct use of SGA data to identify these

signaling pathways is challenging. This is because path-
ways are composed of multiple genes, and in different
tumors the same pathway can be perturbed by distinct
SGAs affecting different members of the pathway. As
such, two tumors sharing common pathway perturba-
tions may exhibit completely different sets of SGAs,
making it difficult to detect similarities between tumors.
Thus individual tumors may present itself with different
genomic alterations, while undergoing the same pathway
perturbations [14]. This effect is amplified by the fact
that multiple pathways need to be perturbed for cancer
to develop. All of this results in highly heterogeneous
mutation patterns in tumors with common pathway
perturbations.
In order to tackle this problem, we have developed a

novel semantic representation of genes that captures the
similarity of functions of distinct genes. This representa-
tion would help us identify functionally related genes
whose alterations result in similar changes in signaling
pathways. We also chose to use topic modeling to iden-
tify patterns in these altered signaling pathways based on
the semantic representations. The tumors were clustered
based on these patterns, and survival analysis was
performed on the results. The conceptual overview of
our research is shown in Fig. 1.

Methods
Data processing
Cancer genomic data
Cancer somatic mutation data was downloaded (July,
2013) from The Cancer Genome Atlas (TCGA) and
copy number variation and gene expression data was
downloaded from The UCSC Cancer Genomics Browser

[15, 16]. Data from five different cancer types was used:
breast invasive carcinoma (BRCA), head and neck squa-
mous cell carcinoma (HNSC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), and
ovarian serous cystadenocarcinoma (OV). The LUAD
and LUSC data was combined into one large lung cancer
(LUNG) dataset for processing.

Somatic mutations
PolyPhen-2 was used to determine which single-
nucleotide-substitution mutations in a tumor had a
potential effect on protein function, where each tumor
was a different cancer tumor [17]. We considered a
mutation event that was labeled either “possibly dam-
aging” or “probably damaging” to be a functional muta-
tion. The frame shift, nonsense, splice site, and multiple
nucleotide mutations were considered functional muta-
tions, because of their tendency to have a larger impact
on protein function. This analysis was used to deter-
mine the functionally mutated genes for each tumor for
each cancer type.

Copy number variation
We only considered the genes whose copy number vari-
ations resulted in an altered gene expression. In order to
determine if the expression of a sample was altered, we
first calculated the mean and variance of the samples
with no copy number variation. These values were then
used to calculate the probability of a gene to be differ-
entially expressed using a one-tailed test on a normal
distribution. If the probability fell below the threshold,
then we considered the expression to be altered and
kept the sample for further analysis. In this analysis, we
only considered the instances where the gene was
marked as +/− 2 in copy number, and a probability
threshold of 0.01 was used. For each cancer type, we
utilized the gene expression data that contained the
most samples.

Combined data
The somatic mutation and copy number variation data
were combined in order to get a more comprehensive
view of the genes that are altered in each tumor. For
each tumor, a gene that was either functionally mutated
or affected by a copy number variation that resulted in
an altered gene expression was considered an SGA
event. In order to reduce the sizes of the datasets and
decrease the chances of including passenger mutations,
SGAs that occurred in less than 20 tumors were
discarded.
The combined somatic mutation and copy number

variation data resulted in datasets of the following
sizes: BRCA with 779 samples and 15,517 genes;
HNSC with 324 samples and 14,548 genes; LUAD with
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398 samples and 11,851 genes; LUSC with 331 samples
and 10,874 genes; and OV with 562 samples and
10,235 genes. This resulted in a dataset with 2,396
samples and 20,760 genes after combining all four
cancer datasets, and 2,396 samples with 2,733 genes
after applying the threshold.

Semantic representation of SGAs
Function descriptions of each gene were obtained from
GeneRIFs and gene summaries, which were downloaded
from NCBI Gene on September 16, 2013. This text was
preprocessed by removing stop words, tokenization, and
Porter stemming [18]. Word vectors were created using

Fig. 1 Conceptual Overview of Research. a Somatic mutations, copy number alteration and gene expression data for each tumor were collected.
b GeneRIF and gene summaries associated with genes were collected. c The semantic data associated with each gene was processed to create
a word vector representation (note the differences in the word frequency profile for different genes). d A document representation for each
tumor was created by combining the word vectors of each SGA associated with the tumor. e The document representations were used as input
for a hierarchical topic model, which identified topics associated with each tumor. f The tumors were represented in topic space, and clustering
analysis was applied to group tumors with similar topic allocations. g These clusters were then used to perform survival analysis on tumors of the
same cancer type
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GeneRIFs and gene summaries combined. The vocabu-
lary size of the resulting word vectors were 57,035
words.
We calculated the term frequency-inverse document

frequency (tf-idf ) of each word to determine which
words contained information pertinent to a gene. To do
so, we treated the entire list of genes as one large corpus
when calculating tf-idf score. Text from corresponding
GeneRIFs and gene summary were pooled and repre-
sented as a document. The term frequency (tf ) and
document frequency (df ) were calculated for each word
for each gene document, with the term frequency being
the number of times the word is associated with the
document, and the document frequency being the num-
ber of gene documents the word is associated with.
Using these values, we then calculated the tf-idf for a
specific word with:

tfidf w; d;Dð Þ ¼ tf w; dð Þ � log10
Dj j

df w;Dð Þ

where w represents the word, d is the tumor (or
document), and D is the entire corpus. Thus |D| rep-
resents the total number of tumors. The cumulative
tf-idf for each word was calculated by summing the
tf-idf score across all documents. These cumulative
tf-idf scores were used to limit the vocabulary size
across the entire dataset. Only the 20,000 words with
the highest cumulative tf-idf scores were included in
the vocabulary.

Semantic representation of SGAs and tumors
We created a word vector to represent each gene,
consisting of words and their frequencies. A word
vector was then created for each gene by including
the 200 words with the highest tf-idf scores. Since a
gene name and its aliases contains a large amount of
information with respect to a gene, we set the tf-idf
score for each gene name and alias in a word vector
equal to the highest tf-idf score associated with that
gene. In this way, an SGA event is not simply repre-
sented as a single gene name, which does not reflect
the functional impact of the SGA, but rather it is
represented by a word vector, such that the profile of
words describing its function provides information of
its functional impacts.
We further represented the SGAs observed in a tumor

as a “text document” by pooling the word vectors associ-
ated with the SGAs. In this way, the functional themes
of the SGAs are presented in the document, and tumors
with similar pathway alterations are similar even though
they may host quite different SGAs.

Nested hierarchical dirichlet process
The nested hierarchical Dirichlet process (nHDP) is a
hierarchical topic model [19], which uses Bayesian non-
parametric prior to model the covariance of topics in a
training corpus. nHDP represents the relations among
topics using a tree, in which a node represents a topic
and a path in a tree indicates that the topics on the path
have a high tendency to co-occur in documents. When
modeling the topics present in a text document, nHDP
allows each document to access the entire tree [19]
(considering all possible topics) and places a high prob-
ability on multiple paths. The nHDP algorithm was
applied to a corpus of text documents representing
tumors, and it returned a topic matrix, which defined
the probability that a word is associated with a topic,
and a document-topic distribution matrix, which defined
how the words in a document are distributed among the
topics. We used the parameter value β0 = 0.01, and we
define the maximal level of the tree to be 3 and initial-
ized the branching factor for a node at different levels
(from root to leaf ) to 10, 5, and 3. The nHDP algorithm
was run 10 times to generate 10 different topic models
for each dataset. The model that had the highest cumu-
lative document likelihood was selected as the best-
fitting topic model for further analysis.

Mapping SGAs to topics
Since the topics in our setting reflect the functions
that are repeatedly perturbed by SGAs among all tu-
mors, it would be interesting to know which SGAs
are associated with each functional theme. However,
the nHDP model only captures the association of
words with topics. Further calculations were needed
to determine the SGAs associated with each topic.
Utilizing the topic-to-document association and topic-
to-word association matrices generated by the topic
model, we represent the strength of association of an
SGA with respect to a topic using p(g|t), which is cal-
culated as follows:

p gjtð Þ∝
X

d

X
w
count wjgð Þ � p wjtð Þ � p tjdð Þ

where count(w|g) is the word count for the word w in
the word vector associated with the gene g; p(w|t) is the
conditional probability of a word w given a topic t;
p(t|d) is the probability that a word is assigned to topic t
in document d.

Clustering tumors
In order to find the tumors that share common disease
mechanisms, we represented a tumor either as a vector
spanning the SGA space, or as a vector spanning the
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topic space. We then performed consensus clustering
to group the tumors. We used partitioning around
medoids (PAM) as the base-line clustering method.
For cluster sizes 4–6, the algorithm was run with 10
repetitions on the SGA space representations; for
cluster sizes 4–10, the algorithm was run with 20
repetitions on the topic space representations. Con-
sensus clustering was performed using the cluster-
Cons package version 1.0 in R [20].

Visualization of tumor clusters
In addition to consensus clustering, we also visualized
the tumors (documents) in order to see how clearly
our topic model was able to separate the different sam-
ples. The t-Distributed Stochastic Neighbor Embedding
(t-SNE) technique of dimensionality reduction was
used to plot the points in a two-dimensional space
[21]. We used the Matlab implementation downloaded
from http://homepage.tudelft.nl/19j49/t-SNE.html.

Calculating cluster to topic associations
The proportion of samples (documents) in a cluster
associated with each topic was calculated to see how
topic associations vary between different clusters. In
order to determine which documents are associated with
each topic, the proportion of words from each document
associated with each topic was calculated. Any topic that
was associated with at least 0.01 of the words in a docu-
ment was considered to be associated with the docu-
ment. This threshold was used to remove associations
that are the result of noise. We then obtained the
proportion of documents in each cluster that are associ-
ated with each topic.

Survival analysis
We performed survival analyses to evaluate the clinical
impact of subtyping the tumors based on clustering.
Tumors of the same cancer type were separated into sub-
sets based on the clustering results obtained previously.
Survival data for the tumors were obtained from the clin-
ical data available on TCGA. The analysis was performed
twice for each cancer type: once using all tumors, and
once after excluding all clusters that contained less than
25 samples. We used the survival package version 2.38.3
in R to conduct the analysis [22, 23].

Results
Semantic representation reveals functional similarity
among genes
We first examined whether word vectors representing
SGAs highlight the similarities and differences between
two genes. A subset of words and their tf-idf scores from
the word vectors of three genes are shown as examples
in Table 1. TP53 is a tumor suppressor that is involved

in apoptosis and DNA repair, and MDM2 is a proto-
oncogene that inhibits TP53. As expected, the word vec-
tor representing these two genes share common words
and profiles. On the other hand, the TTN gene encodes
for a protein that is important in muscles, which shows
quite a different word profile.

nHDP identifies biologically sensible topics
The goal of using topic modeling is to capture recur-
rent semantic themes (defined by a set of commonly
co-occurring words) that exist in text documents repre-
senting SGAs in a collection of tumors. Presence of
such a theme in the corpus usually is due to the
repeated occurrence of SGAs in tumors that share a
common functional description (although containing
different genes). We trained 10 nHDP models and
selected the one that fit the input data the best. The
model contains 205 topics that were allocated to at
least one document.
We inspected the words that constitute the topics and

the SGAs associated with them, and an example topic is
shown in Fig. 2. It is clear this topic is related to
BRCA1/2 genes and their relationship to cancer, particu-
larly breast and ovarian cancers. The main function of

Table 1 Subset of words from word vectors for three different
genes

TP53 MDM2 TTN

Word Tf-Idf Word Tf-Idf Word Tf-Idf

p53 4,084 hdm2 629 ttn 88

tp53 4,084 mdm2 629 titin 88

cell 1,443 hdmx 629 domain 31

cancer 890 p53 363 pevk 18

express 887 cell 150 region 17

mutat 788 cancer 136 protein 16

activ 683 associ 117 muscl 15

gene 615 regul 113 mutat 15

associ 614 activ 97 structur 14

protein 602 express 95 elast 12

tumor 563 snp309 95 mechan 12

regul 505 protein 90 heart 11

carcinoma 465 risk 83 interact 11

role 456 suggest 76 molecular 11

apoptosi 418 result 74 express 10

result 405 tumor 73 stiff 10

function 397 polymorph 70 cardiomyopathi 10

pathwai 387 ubiquitin 69 studi 10

dna 384 interact 66 famili 10

suggest 371 degrad 66 sarcomer 10
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BRCA1/2 is related to DNA repair, and we found
words related to DNA repair in the topic but they
did not rank high enough to be shown in the figure,
which only shows the top 20 words. Interestingly,
RAD51 gene, another DNA-repair gene that binds
with BRCA2 [24] and is regulated by BRCA1 [25], is
ranked high, indicating that the nHDP model was
able to capture the DNA-repair theme. Similarly,
three genes that are strongly associated with this
topic are BRCA1, BRCA2 and TP53; all are related to
DNA repair, and they commonly occur in breast and
ovarian cancers.

Semantic representation of tumors reveals shared
subtypes across cancer types
As stated previously, a main goal of this study is to
use genomic alteration data (SGAs) to reveal common
disease mechanisms shared among tumors (within or
across cancer types). We found that clustering in the
SGA space did not result in clean clusters for any of
the cluster sizes (Fig. 3a). This result is expected be-
cause the heterogeneity of SGAs among tumors pre-
vent the clustering algorithm from finding the
similarity among tumors. In comparison, representing
tumors in the semantic space–each tumor is repre-
sented as a vector spanning the topic space–revealed
clear-cut clusters using either consensus clustering or
t-SNE projection (Fig. 3b and c). The clearer separ-
ation of clusters in the topic space indicates that the
topics captured the recurrent semantic themes (po-
tentially reflecting functions of perturbed pathways),
thus enabling the clustering algorithm to detect the
similarity of tumors sharing common themes. It is
particularly interesting that the majority of clusters
contains tumors from multiple cancer types,

indicating that certain semantic themes are shared
among the tumors from different cancer types.

Distinct topic allocation patterns across clusters
A key motivation of employing nHDP, instead of
other probabilistic topic models such as the LDA
model, is that nHDP not only detects recurrent
themes but also, importantly, the covariance structure
of topics. In other words, if a topic represents a path-
way perturbed by SGAs, nHDP can capture the pat-
terns of pathway perturbations. We examined and
illustrated example topic allocation trees, which shows
the proportions of samples in a cluster that are asso-
ciated with each topic (Fig. 4). Apparently, the pattern
of topic associations differed between clusters, and
certain subtrees are strongly associated with one clus-
ter but not the other. This implies that the combin-
ation of semantic (functional) themes, rather than the
possession of unique functional themes, is what sepa-
rates the different clusters. While we found that many
topics close to the root would show up in multiple
clusters, there are other more specific topics that are
exclusive to one cluster. This was expected, because
the topics that are close to the root in the hierarchy
are more general functional themes and could be
shared across clusters. However, the topics deep in
the hierarchy are more specific and so should appear
in fewer clusters.

Survival analysis
Assuming that different clusters consist of tumors
sharing common disease mechanisms, we performed
survival analysis to determine if such subtyping re-
veals clinical differences. Using the 8 clusters gener-
ated to group the tumors, we performed survival
analysis on each of the different cancer types, where
tumors were grouped according to their cluster id
obtained from the consensus clustering analysis. Of
the five cancer types, BRCA, HNSC, and LUSC were
all found to be significant. This was true both when
all samples and clusters were used, and when only
the clusters containing at least 25 samples were used.
The resulting survival curves can be seen in Fig. 5.
These results indicate that semantic representation
and clustering revealed cancer subtypes that have sig-
nificantly different tumors with biologically different
features, which were identified using their topic
associations.

Discussion
In this study, we investigated the utility of semantic
representation and topic modeling for identifying
patterns in signaling pathway perturbations in differ-
ent tumors. Our results show that semantic

Fig. 2 Example Topic Associations. The topic words (top 20) and
SGAs for topic #84 is shown. On the left are the words associated
with the topic, and on the right are the SGAs that are commonly
associated with the cluster. In the center are the word cloud
representations of the words and genes, on the top and
bottom respectively
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representation of SGAs makes it possible to detect
the functional similarity of different genes, which in
turn enabled nHDP to detect recurrent patterns of
pathway perturbation. Interestingly, this approach
enabled us to identify cancer subtypes (clusters) con-
sisting of tumors with quite diverse tissues of origin,
which exhibit significantly different clinical outcomes
(survival).
To our knowledge, this is a novel approach to

studying common disease mechanisms using genomic

alteration data. Our approach is the first to generate
semantic representations to capture the functional
information of tumors. We conjecture that the exist-
ence of topics in this new representation is due to re-
current SGAs that perturb genes involved in a
common biological process or pathway. As such, one
can further hypothesize that the presence of a topic
in a tumor represents that a specific pathway is per-
turbed in the tumor. Following the same vein of
thinking, one can hypothesize that tumors within a

Fig. 3 Tumor Clustering and Visualization. Both a and b are the consensus clustering results of all of the tumors. a Consensus clustering of
tumors based on their genomic alterations. b Consensus clustering of tumors based on their topic associations. c and d are the results of t-SNE
embedding and visualization of tumors represented in topic space. In Panel c, the tumors are labeled based on the clustering results seen in b;
in Panel d, the tumors are labeled based on their cancer type
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cluster identified in this study share a common dis-
ease mechanism, i.e., they share a particular pattern
of pathway perturbation. Further in-depth analysis of
topics and associated SGAs is needed to examine if
such a hypothesis is supported by the results. If
proved to be the case, our finding can potentially
guide therapy targeting specific combination of
pathways.
This study also has its limitations. Semantic data is

limited by the amount and breadth of current knowledge
regarding genes, so genes that are not well research or
functions that have not been discovered would not be
properly represented.

Conclusion
Our research is the first time semantic representations
are applied in this way to represent cancer samples, as
well as the first use of a hierarchical topic model in this
aspect of biomedical research. Applying topic modeling
to the semantic representations of tumors made it pos-
sible to identify patterns of perturbed pathways in cancer
tumors. This enabled the identification of cancer sub-
types containing different tissues of origin that exhibit
significantly different survival outcomes. If these sub-
types are shown to share patterns of pathway perturba-
tions, then these methods can potentially be used to
guide targeted therapy of cancer.

Fig. 4 Graphical visualization of cluster-to-topic associations. The calculated degree of cluster-to-topic associations for two of the
clusters using the clustering results seen in Fig. 3b. These visualizations show the structure of the topic tree, where each node represents a topic,
and the different patterns of topics associated with individual clusters. The color scale denotes the proportion of tumors in a cluster
associated with each topic, where white means that none of the tumors in the clusters are associated and black means that all of the
tumors are associated with the topic. a The visualization for the topics associated with cluster 4. b The visualization for the topics
associated with cluster 5

Fig. 5 Survival analysis of tumors. The survival analysis curves calculated using only the clusters that contain at least 25 samples. Figs. a, b, and c
correspond to cancer types BRCA, HNSC, and LUSC respectively
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