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Abstract

Background: Detection of gene-gene interaction (GGI) is a key challenge towards solving the problem of missing
heritability in genetics. The multifactor dimensionality reduction (MDR) method has been widely studied for detecting
GGIs. MDR reduces the dimensionality of multi-factor by means of binary classification into high-risk (H) or low-risk (L)
groups. Unfortunately, this simple binary classification does not reflect the uncertainty of H/L classification. Thus, we
proposed Fuzzy MDR to overcome limitations of binary classification by introducing the degree of membership of two
fuzzy sets H/L. While Fuzzy MDR demonstrated higher power than that of MDR, its performance is highly dependent
on the several tuning parameters. In real applications, it is not easy to choose appropriate tuning parameter values.

Result: In this work, we propose an empirical fuzzy MDR (EF-MDR) which does not require specifying tuning
parameters values. Here, we propose an empirical approach to estimating the membership degree that can be directly
estimated from the data. In EF-MDR, the membership degree is estimated by the maximum likelihood estimator of the
proportion of cases(controls) in each genotype combination. We also show that the balanced accuracy measure
derived from this new membership function is a linear function of the standard chi-square statistics. This relationship
allows us to perform the standard significance test using p-values in the MDR framework without permutation.
Through two simulation studies, the power of the proposed EF-MDR is shown to be higher than those of MDR and
Fuzzy MDR. We illustrate the proposed EF-MDR by analyzing Crohn’s disease (CD) and bipolar disorder (BD) in the
Wellcome Trust Case Control Consortium (WTCCC) dataset.

Conclusion: We propose an empirical Fuzzy MDR for detecting GGI using the maximum likelihood of the proportion
of cases(controls) as the membership degree of the genotype combination. The program written in R for EF-MDR is
available at http://statgen.snu.ac.kr/software/EF-MDR.
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Background
Investigating gene-gene and gene-environment inter-
action can be useful to understand genetic architecture
of complex traits because most complex phenotypes are
altered by multiple genes [1]. While many genome-wide
association studies (GWAS) have successfully detected
single nucleotide polymorphisms (SNPs) associated with
phenotypes, focusing only on marginal effects of individual

SNPs in complex traits could result in low power and
replication rate in genetic association studies [2, 3]. Further-
more, the individual SNPs are not sufficient for explaining
the global heritability of complex traits. This missing
heritability may be caused by gene-gene interaction (GGI)
or rare variants [4].
In genetic association studies, there are many different

methods to analyze GGIs, such as regression modeling
[5–8], pattern recognition [9, 10], data reduction [11–14],
random forest [15] and support vector machine [16].
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In an analysis of GGI for complex traits, one of the
hurdle points lies in high dimensionality and difficulty in
interpretation of interaction mechanism. For example,
assume that the number of SNPs of interest is two.
Then, there are 3 × 3 possible genotypes (cells) for bialle-
lic SNPs. For a binary phenotype, there are 23×3 possible
interaction models including redundant models [17].
Among the GGI methods, the multifactor dimensionality

reduction (MDR) method is known to be advantageous to
identify high-order interactions [12, 18–20] and has been
widely applied to detect GGIs in many common complex
diseases (http://epistasis.org). The MDR method was devel-
oped for balanced case/control studies. MDR pools mul-
tiple genotypes into high-risk (H) and low-risk (L) groups
depending on whether or not the number of cases is larger
than the number of controls in a given genotype (a cell in a
contingency table). MDR reduces a dimension of the geno-
types into two H/L groups. Since MDR is a non-parametric
approach, the best SNPs combinations are selected by the
accuracy and consistency in a cross-validation procedure.
For the detection of GGI in unbalanced datasets, Velez et
al. [21] proposed a balanced accuracy function, and it has
been widely used in MDR extensions.
Since its first introduction, many extensions of MDR have

been proposed. The generalized MDR [22] was proposed
by using a generalized linear model to overcome two draw-
backs: the first is that MDR cannot adjust for covariates
and the second is that MDR only can handle dichotomous
traits. The pedigree-based GMDR [23] was proposed for
the analysis of pedigree datasets using a transformation
from a family data to a matched data. Later, the computing
efficient version of the pedigree-based GMDR was pro-
posed by Chen et al. [24] using the score-based statistic.
Chen et al. [25] proposed the unified GMDR for the ana-
lysis of both family and unrelated data. GMDR was recently
extended for the skewed data [26]. For the analysis of sur-
vival data, Beretta et al. [27] proposed the survival dimen-
sionality reduction using a normalized mean time, Lee et al.
proposed Cox-MDR [28, 29] using Cox-hazard model and
Gui et al. [30] proposed Surv-MDR using a log-rank test.
Since MDR methods search causative SNP combinations

in an exhaustive search manner, computation time in-
creases exponentially by increases of a number of SNPs and
an order of interactions. In order to reduce the execution
time and computational burden, filtering methods such as
Relief [31], TuRF [32] and SURF [33] can be adapted on a
preprocessing step. Greene et al. [34] reduced the execution
time using a graphic processing unit and Kwon et al. [35]
improved computation time using the compute unified
device architecture.
Despite its popularity, one of the shortcomings of MDR

lies in its uncertainty of simple binary high(H)/low(L)
classification. In MDR analysis, the binary classification
compares the conditional odds of case and control given a

genotype combination to the unconditional odds of the
total numbers of cases and controls. Although this binary
classification provides a straightforward interpretation of
result, it suffers from a loss of information. Many exten-
sions of MDR have concerned about this H/L binary classi-
fication of original MDR. For example, Model-based MDR
[36] pools empty cells or the cells with similar numbers of
cases and controls into a third risk-group ‘no evidence’
using chi-square tests. This method is extended to a uni-
fied modelling framework using the Wald test [37]. Robust
MDR [38] uses a similar ‘unknown risk’ group using a
Fisher’s exact test. Chung et al. proposed OR-MDR [39]
using estimated odds ratios (ORs) as values of a quantita-
tive trait risk for each genotype and Namkung et al. [40]
proposed a weighting approach using OR of each genotype
for computing the weighted balanced accuracy (wBA) in
order to take into account of these differences [40].
Recently, we proposed a novel MDR extension, Fuzzy

MDR [41], by using the fuzzy set theory. In Fuzzy MDR,
we regard classifying high-risk group or low-risk group as
equivalent to defining the degree of membership of two risk
groups H/L. By adopting the fuzzy set theory, we proposed
Fuzzy MDR which takes into account the uncertainty of H/
L classification. Fuzzy MDR allows the possibility of partial
membership of H/L through a membership function, which
transforms the degree of uncertainty into a [0,1] scale. The
best genotype combinations can be selected which
maximizes a new fuzzy set based accuracy measures. We
demonstrated an improved performance in detection of
causative SNPs in various simulation studies. While Fuzzy
MDR demonstrated higher power than that of MDR, its
performance is highly dependent on the several tuning
parameters. In real applications, it is not easy to choose
appropriate tuning parameter values.
Here, we propose an empirical fuzzy MDR (EF-MDR),

which does not require choosing optimal values of tuning
parameters. EF-MDR is an empirical approach to estimating
the membership degree directly from the data. In EF-MDR,
the membership degree is estimated by the maximum
likelihood estimator of the proportion of cases(controls) in
each genotype combination. We also show that the balanced
accuracy measure derived from this new membership de-
gree estimator is a linear function of the standard chi-square
test statistics. This relationship allows us to perform the
standard significance test using p-values in the MDR frame-
work. Details of EF-MDR are described in the Methods sec-
tion with a brief review of Fuzzy MDR. A performance of
the EF-MDR is assessed by comparisons with the MDR and
Fuzzy MDR with two recommended parameters using two
simulation categories of datasets with and without marginal
effects. Finally, we analyzed Crohn’s disease (CD) and
bipolar disorder (BD) data in the Wellcome Trust Case
Control Consortium [42] (WTCCC) dataset using EF-MDR
for detections of GGIs associated with the CD and BD.
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Methods
Review of Fuzzy MDR
The key idea of MDR is that we can reduce dimensional-
ity from multiple genotypes to two H/L groups by a
binary classifier. As aforementioned, there are many ex-
tensions of MDR focused on the H/L binary classifica-
tion. For example, if there is a genotype with the ration
of cases and controls close to a threshold of the H/L
classification, then this genotype can easily be misclassi-
fied. Some methods proposed the third group to over-
come this drawback, but they are still limited to discrete
(ternary) classification.
In order to overcome the limitation of binary classifica-

tions, we proposed Fuzzy MDR in a previous study using
the fuzzy set theory. The fuzzy set theory is suggested by
Zadeh [43] as an extension of the classical set. In the fuzzy
set theory, an element can belong to multiple sets simul-
taneously by membership degrees of the multiple sets. In
the Fuzzy MDR, H/L groups are fuzzy sets and samples
are elements of the fuzzy set.
Let there be ni1 case and ni0 control samples who have

the ith genotype. If an interaction order of a SNP com-
bination is k and SNPs are biallelic, then i is a value
among 1 ~ 3k. In the first step of Fuzzy MDR, member-
ship degree of each genotype is calculated by ni1, ni0, ni
+1 (total cases) and ni+0 (total controls) using a member-
ship function with tuning parameters. After the mem-
bership degree calculations, 3k genotypes are reduced to
H/L groups by membership degrees μH and μL = (1-μH),
as shown in Fig. 1.
For illustrative purposes, consider two SNP combina-

tions denoted as SNP1 and SNP2, as shown in Fig. 1.
These two SNP combination constructs a 3 × 3 contin-
gency table in which a cell represents a genotype com-
bination. In each cell, there are two bars; the left dark
gray bar with its value representing the number of cases,
while the light gray bar with its value representing the
number of control samples. For example, the first cell
(0,0) contains 12 cases and 16 controls. In the original
MDR method, the 12 cases and 16 controls in the first
cell (0,0) completely belong to low risk (L) group. There-
fore, 12 cases are stacked on the false negative (case but

low risk) and 16 controls are added on the true negative
(control and low risk). In the Fuzzy MDR, each sample
is allowed to have partial membership of H/L groups
simultaneously. Let μH and μL denote the membership
degree values of the H and L, respectively. Then, μHs of
12 cases are summed to the true positive count (TPFuzzy)
and the μLs of 12 cases are summed to the false negative
count (FNFuzzy). In a similar manner, 16 controls are
added to the false positive (FPFuzzy) or the true negative
(TNFuzzy).
In the Fuzzy MDR, several accuracy measures were in-

troduced such as sensitivity, specificity and balanced ac-
curacy defined by

SENFuzzy ¼ TPFuzzy= TPFuzzy þ FNFuzzy
� �

;
SPEFuzzy ¼ TNFuzzy= FPFuzzy þ TNFuzzy

� �
; and

BAFuzzy ¼ SENFuzzy þ SPEFuzzy
� �

=2:

The best SNP combinations are selected by using one
of these measures and cross validation consistencies via
cross validation.
In Fuzzy MDR analysis, four optional parameters need

to be specified. The first parameter is a selection of a
membership function between linear and sigmoid
functions. The second parameter is the use of odds ratio
or standardized odds ratio. The third parameter is for a
weight function. Lastly, the fourth parameter is a thresh-
old value of membership function for defining H/L. We
tested 80 parameter settings for finding the best parameter
values. After the analysis of the simulation experiments,
we recommended two parameter settings: the first one is
a linear membership function without standardization of
the odds ratio, without weight and with third threshold
odd ratio value denoted by F(L,0,0,3) and the second one
is a sigmoid membership function with standardization of
odds ratio, with weight 1 and with the second threshold of
standardized odds ratio denoted by F(S,1,1,2).

EF-MDR
In the Fuzzy MDR, we confirmed that power is improved
in the detection of causative SNPs in simulation studies.
Additionally, interpretation of interaction is more flexible

Fig. 1 Comparison between the original MDR and the Fuzzy MDR
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than MDR methods. However, choosing various tuning
parameters without a golden standard is a drawback in
the analysis using Fuzzy MDR. In other words, different
results are produced by different parameter values.
Therefore, we propose estimating membership degrees

by using the maximum likelihood estimation. Suppose
there are ni1 case and ni0 control samples who have the ith

genotype. A maximum likelihood estimator (MLE) for the
probability of case with the ith genotype pi1 is ni1/(ni1 +
ni0) under the binomial distributional assumption, and we
use it as a membership degree μH of high risk (H) group.
For example, if there are six cases and four controls in a
cell (genotype), then a membership degree of H μH is 0.6
and a membership degree of L μL is 0.4 for the cell. There
are no additional tuning parameters.
Using the MLE of the membership degree, the frequen-

cies of true positive (TP), false negative (FN), true negative
(TN) and false positive (FP) are derived as follows:

TPFuzzy ¼
X

ni1μH ið Þ ¼
X

ni1
ni1
niþ

¼
Xni1

2

niþ
;

FNFuzzy ¼
X

ni1μL ið Þ ¼
X

ni1 1−
ni1
niþ

� �
¼

X
ni1−

X ni1
2

niþ
;

TNFuzzy ¼
X

ni0μL ið Þ ¼
X

ni0
ni0
niþ

¼
Xni0

2

niþ
;

FPFuzzy ¼
X

ni0μH ið Þ¼
X

ni0 1−
ni0
niþ

� �
¼

X
ni0−

X ni0
2

niþ
:

Then, the accuracy measures such as sensitivity, specificity,
and BA are defined accordingly as follows:

SENFuzzy ¼ TPFuzzy

TPFuzzy þ FNFuzzy

¼

X ni1
2

niþXni1
2

niþ
þ
X

ni1−
Xni1

2

niþ

¼
Xni1

2

niþX
ni1

¼ 1
nþ1

X ni1
2

niþ
;

SPEFuzzy ¼ TNFuzzy

TNFuzzy þ FPFuzzy

¼
Xni0

2

niþXni0
2

niþ
þ
X

ni0−
Xni0

2

niþ

¼

X ni0
2

niþX
ni0

¼ 1
nþ0

Xni0
2

niþ
;

BAFuzzy ¼ 1
2

SENFuzzy þ SPEFuzzy
� � ¼ 1

2
1
nþ1

Xni1
2

niþ
þ 1
nþ0

Xni0
2

niþ

� �
:

We select the best SNP combination with the highest
BAFuzzy value. It can be easily shown that BAFuzzy can be

expressed as a linear function of the chi-square statistics
(Appendix). That is,

X2 ¼ nþþ 2 � BAFuzzy−1
� �

:

In other words, we can calculate the chi-square statistics
from BAFuzzy and vice versa. The degree of freedom of the
chi-square statistic is the number of genotypes minus 1.
This relationship provides several advantages to EF-

MDR. First, when the sample size is large, the p-values
of BAFuzzy from EF-MDR can be calculated without per-
mutation tests. The permutation test in MDR framework
usually requires a heavy computational burden in multi-
locus interactions. Second, the p-values can be used for
the comparison of multi-locus models with different or-
ders, providing more objective comparison results than
when testing accuracy measures or cross validation
consistency measure. Third, cross-validation (CV) for
evaluating multi-locus models is not generally required
and thus can be omitted. This omission of CV greatly re-
duces the execution time and removes the random vari-
ation caused by CV.
With these advantages, EF-MDR provides a more in-

tuitive interpretation of interaction analysis than the chi-
square test via visual interface of MDR. Instead of two
colors used in MDR, EF-MDR represents the member-
ship degree with different colors (figures in the Results
section for representations of interaction models). More
details of interpretations of EF-MDR analysis will be
given in Results section.
For a SNP combination, EF-MDR first counts numbers of

cases and controls in each genotype. Then, membership
degrees, a BAFuzzy, a chi-square value and its p-value are cal-
culated sequentially. These values are calculated for all SNP
combinations from two to k-locus, and the lowest p-value
SNPs are selected as the best SNP combination associated
with a phenotype.

Results
First, we checked type I error rates of the EF-MDR with the
null data. Second, we compared EF-MDDR with the ori-
ginal MDR and Fuzzy MDR in terms of power of detecting
causative SNPs from two data sets with/without marginal
effects. For Fuzzy MDR, two optimal sets of tuning param-
eter values were used. Finally, we applied our EF-MDR to
WTCCC data to detect interactions associated with Crohn’s
disease and bipolar disorder.

Type I error
To check for type I error, we used a simulation dataset in
[21] and used non-causative SNPs. This dataset consists of
four sample sizes: 200, 400, 800 and 1600. For each sam-
ple size, there are 100 replicates for 70 different genetic
models. For each dataset there are two causative SNPs
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and 998 non-causative SNPs. For a given sample size, we
randomly selected two SNPs among non-causative SNPs
from each dataset and calculated 7000 p-values. The type
I error rate was calculated as a proportion of datasets with
p-values smaller than the threshold value.
In Table 1, the type I error rates are lower than the

threshold values when the sample size is 200. However,
the differences between type I error rates and threshold
values tend to reduce as the sample size increases. Type I
error rates of 1600 samples are very close to the threshold
values. This phenomenon is caused by the fact that the
chi-square test approximates the chi-square distribution
better for larger sample sizes.

Simulation experiment without marginal effects
We used the simulation data without marginal effects [21].
The dataset consists of four sample sizes and genotype in-
formation of 1000 SNPs. Among 1000 SNPs, two SNPs are
causative SNPs, and the other SNPs are non-causative
SNPs. The two causative SNPs were generated based on 70
penetrance tables, and each penetrance table is calculated
with a combination of seven heritability values, two minor
allele frequency (MAF) and five interaction models. For
each penetrance table, 100 data are generated. The results
are summarized in Fig. 2.
In Fig. 2, power is defined as the ratio of successful find-

ing of the pre-defined causative two SNPs in one hundred
data, and power ratio is the ratio of power of each method
to power of MDR. Powers of MDR are lower than other
methods in most combinations of sample sizes, heritability
values and MAFs. As illustrated in Fig. 2, the powers of
Fuzzy MDRs show frequent fluctuation. While it was hard
to decide which one performs the best, EF-MDR showed
higher average powers than two Fuzzy MDR methods for
each sample size. Additionally, the average power of EF-
MDR was shown to be higher than those of Fuzzy MDRs.
Although it is not guaranteed that EF-MDR always yields
higher power than Fuzzy MDR, EF-MDR has the advan-
tage of providing more stable and robust results to tuning
parameters.

Simulation experiment with marginal effects
We used the datasets with marginal effects generated from
previous studies [44–46]. The datasets consist of three
interaction models, three MAF values and linkage disequi-
librium (LD) values. Totally, 18 datasets were generated

using the same methods with same parameter values.
Model 1 is a ‘multiplicative effect between and within loci’
model (additive model) and it assumes that the relative risk
is exponentially increased by the total number of minor
alleles of two SNPs. Model 2 is a ‘multiplicative effect
between loci’ model (multiplicative model) and it assumes
that the relative risk is exponentially increased by the prod-
uct of number of minor alleles of each SNP. Model 3 is a
threshold model and it assumes that the relative risk is
consistently increased in genotype combinations which
have at least one minor allele of both SNPs. These three
models are widely used to evaluate performance of GGI
methods [44–46]. Each dataset consists of one hundred
replicates. For the simplicity, we fixed sample size 4000
with 2000 cases and 2000 controls. The results are summa-
rized in Fig. 3.
Figure 3 shows the power improvements of two Fuzzy

MDRs and EF-MDR over MDR in most models, LDs and
MAFs. Among Fuzzy MDRs, F(S,1,1,2) is relatively lower
than the others and powers of F(L,0,0,3) and EF-MDR
look similar. The average power (0.2389) of EF-MDR is
slightly higher than average power (0.2350) of F(L,0,0,3).

Real data experiment
We applied the EF-MDR to a Crohn’s disease (CD) and a
bipolar disorder in Wellcome Trust Case Control Consor-
tium (WTCCC) data [42]. The CD data in WTCCC data
consists of about 500,000 genotype information of 1949
cases and 3004 controls. For an illustrative purpose, we se-
lected 30 SNPs reported to have association with CD in
previous studies [42, 47, 48]. We summarized basic charac-
teristics of each SNP in Table 2. The p-values of Table 2
are calculated by chi-square tests of association between
individual SNP and CD status.
We performed EF-MDR analyses from single-locus to

five-locus and summarized results in Table 3. In spite of
ultimately low p-values, the values of BAFUZZY are ap-
proximately 0.5. Most SNP combinations include SNP5.
Note that SNP5 showed the most significant result in
single SNP analysis (order = 1). SNP5 disappeared in the
result of two-locus (order = 2) and reappeared in the re-
sults of higher-orders (order = 3, 4, and 5). In addition, we
applied MDR to the CD data for comparison purpose with
EF-MDR. The MDR results are summarized in terms of
balanced accuracy (BA), sensitivity (SEN) and specificity
(SPE). We did not compute the p-values for MDR, be-
cause it takes too much time to compute the p-values by
permutation with a high precision of 1.0E-10. As shown
in Table 3, most prediction measures of EF-MDR have
smaller values than those of MDRs. However, these mea-
sures are not directly comparable, because their distribu-
tions differ much. Instead, the use of p-values is more
appropriate to choose the appropriate SNP combinations.
Note that the p-values of EF-MDR can be easily computed

Table 1 Type I error rate of EF-MDR

Threshold Number of samples

200 400 800 1600

0.010 0.004 0.006 0.009 0.008

0.050 0.032 0.039 0.044 0.050

0.100 0.072 0.090 0.093 0.102
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by using the linear relationship between BAFUZZYs and the
chi-square statistics.
Among the results in Table 3, we selected the two-locus

and three-locus SNP combinations and represented them
in Figs. 4 and 5, respectively. The three-locus SNP combin-
ation model is the most significant, but it is hard to derive
their biological interpretation from interaction patterns.
Therefore, we analyzed a less complex interaction of the
two-locus SNP combination at first.
In Figs. 4 and 5, the uppercase alphabets represent

major allele and lowercase alphabets represent minor allele.
That is, ‘A’ or ‘a’ represent major and minor allele of the first
SNP respectively, and ‘B’ or ‘b’ represent allele of the second

SNP, and so on. In each cell, there are two bars; the left bar
with its value represents the number of cases, while the
right bar with its value represents the number of control
samples. Background colors represent the degree of mem-
bership function. Red background color means high-risk
group and the green background color low-risk group. The
darker the color, the larger the membership value is; the
lighter the color, the smaller the membership value. The
white background color means that the membership
degrees of H and L are similar.
Figure 4 represents the interaction result of two-locus

SNP combination of SNP1 and SNP8. There are some
interesting interpretations available. First, four green

Fig. 2 Power comparison of experiments without marginal effects
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colored cells (SNP1,SNP8) = (AA,Bb), (AA,bb), (Aa,Bb)
and (Aa,bb) are considered to belong to the low-risk (L)
group and the other cells to the high-risk (H) group.
Note that this interaction model corresponds to M27 in
two-locus disease models [17], called ‘jointly dominant-
dominant model (DD)’ and is considered as one of import-
ant interaction models in earlier studies [49–51]. Second,
three dark red cells (SNP1,SNP8) = (Aa,BB), (aa,BB) and
(aa,Bb) are considered to belong to H with strong cer-
tainty. The three diagonal cells (SNP1,SNP8) = (AA,BB),
(Aa,Bb) and (aa,bb) show weak evidences of belonging to

H or L. Ignoring these cells yields a new interaction model
corresponding to M11 in two-locus disease models [17],
called the ‘threshold model (T)’, and is also considered as
one of the most important interaction models [49, 51]. Of
course, possible interpretations are not limited to these
binary classifications. For example, three dark cells
(SNP1,SNP8) = (Aa,BB), (aa,BB) and (aa,Bb) are consid-
ered as H, three dark green cells (SNP1,SNP8) = (AA,Bb),
(AA,bb) and (Aa,bb) are considered as L and three diag-
onal cells (SNP1,SNP8) = (AA,BB), (Aa,Bb) and (aa,bb) are
considered as ‘no evidence’ or ‘unknown risk’ group.

Fig. 3 Power comparison of experiments with marginal effects

Table 2 Basic characteristics of each SNP for Crohn’s disease (CD)

Index rs number MAF Chromosome (gene) p-value (rank) Index rs number MAF Chromosome (gene) p-value (rank)

1 rs11805303 0.347 1 (IL23R) 4.41E-13 (2) 16 rs1456893 0.304 7 4.02E-05 (19)

2 rs12035082 0.410 1 2.70E-07 (8) 17 rs4263839 0.313 9 (NFSF15) 1.64E-05 (17)

3 rs10801047 0.079 1 1.09E-05 (15) 18 rs17582416 0.363 10 (OC105376492) 1.11E-03 (23)

4 rs11584383 0.297 1 (MROH3P) 4.62E-05 (20) 19 rs10995271 0.413 10 1.54E-05 (16)

5 rs3828309 0.453 2 (ATG16L1) 1.29E-13 (1) 20 rs10883365 0.498 10 (INC01475) 1.60E-06 (11)

6 rs9858542 0.299 3 (BSN) 3.20E-07 (9) 21 rs7927894 0.408 11 1.28E-02 (28)

7 rs17234657 0.146 5 1.71E-12 (3) 22 rs11175593 0.017 12 (OC105369735) 4.22E-02 (30)

8 rs9292777 0.367 5 1.04E-11 (4) 23 rs3764147 0.222 13 (LACC1) 3.34E-06 (13)

9 rs10077785 0.220 5 (C5orf56) 6.39E-05 (22) 24 rs17221417 0.310 16 (NOD2) 2.81E-10 (5)

10 rs13361189 0.084 5 7.04E-08 (6) 25 rs2872507 0.491 17 1.24E-03 (24)

11 rs4958847 0.130 5 (IRGM) 1.81E-06 (12) 26 rs744166 0.422 17 (STAT3) 6.27E-05 (21)

12 rs11747270 0.099 5 (IRGM) 3.13E-05 (18) 27 rs2542151 0.181 18 1.74E-07 (7)

13 rs6887695 0.329 5 4.69E-03 (27) 28 rs1736135 0.412 21 (LOC101927745) 3.39E-02 (29)

14 rs6908425 0.214 6 (CDKAL1) 1.02E-06 (10) 29 rs2836754 0.374 21 (LOC400867) 5.67E-06 (14)

15 rs7746082 0.293 6 4.20E-03 (26) 30 rs762421 0.408 21 (LOC105377139) 2.35E-03 (25)
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Figure 5 represents the interaction of the three-locus
SNP combination (SNP1, SNP5, SNP8). Comparison of
Fig. 5 with Fig. 4 provides a more detailed interpretation
of three-order interactions. Each cell in Fig. 4 showing the
interaction pattern between SNP1 and SNP8 is divided
into the three cells in Fig. 5. For example, the red colored
cell (SNP1, SNP8) = (Aa,BB) in Fig. 4 are split into the
three red colored cells (SNP1,SNP5,SNP8) = (Aa,CC,BB),
(Aa,Cc,BB), (Aa,cc,BB) in Fig. 5; the green colored cell
(SNP1, SNP8) = (AA,Bb) in Fig. 4 are split into the three
green colored cells (SNP1,SNP5,SNP8) = (AA,CC,Bb),
(AA,Cc,Bb), (AA,cc,Bb) in Fig. 5. However, the light red
colored cell (SNP1, SNP8) = (AA,BB) and the light green
colored cell (Aa,Bb) in Fig. 4 are split into the three cells
with different colors in Fig. 5, suggesting strong three-
order interactions.
In addition, Fig. 5 itself provides some interesting

patterns. Figure 5 shows three two-way contingency tables

of (SNP1, SNP8) for a given genotype of SNP5. From the
left to right, the red colored cells disappeared, while more
green colored cells appeared. In particular, three cells
(SNP1,SNP5,SNP8) = (Aa,**,BB), (aa,**,BB) and (aa,**,Bb)
show shades of red in a consistent manner and the colors
become lighter from the left to the right, as the genotype
of SNP5 changes.
In summary, Fig. 5 shows evidence of strong three-

way interactions among the three SNPs. Thus, the
genotypes of SNP1, SNP5 and SNP8 need to be
considered simultaneously for the association analysis
on the CD.
In addition, we applied EF-MDR to a bipolar disorder

(BD) dataset in WTCCC. This dataset consists of about
500,000 SNPs from 1868 cases and 2938 controls. Among
these SNPs, we selected 19 candidate SNPs using the same
selection strategy in Jung et al. [41]. The results of the
bipolar data analysis are summarized in Table 4.

Table 3 Results of Crohn’s disease (CD) data analysis

order SNP
combination

EF-MDR MDR

BAFUZZY p-value SENFUZZY SPEFUZZY BA SEN SPE

1 5 0.5060 1.292E-13 0.4002 0.6121 0.5494 0.3563 0.7425

2 1, 8 0.5121 6.211E-22 0.4069 0.6171 0.5664 0.5625 0.5702

3 1, 5, 8 0.5184 4.715E-25 0.4141 0.6224 0.5807 0.5203 0.6411

4 1, 5, 8, 23 0.5290 2.251E-24 0.4263 0.6319 0.5987 0.5557 0.6417

5 5, 8, 18, 24, 29 0.5518 2.480E-18 0.4585 0.6452 0.6219 0.5625 0.6814

Fig. 4 Representation of the interaction between SNP1 and SNP8 for CD
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Aforementioned, these prediction measures are not dir-
ectly comparable between EF-MDR and MDR, because
their distributions differ much. In Table 4, all models of
orders 2 and higher provided similar significant results.
For simple interpretation, we provide the graphical
representation of the interaction of two-locus SNP
combination in Fig. 6.
Figure 6 represents the interaction of two-locus SNP

combination SNP6 and SNP16. There is a possible inter-
pretation of the interaction. Three dark green colored
cells (SNP6,SNP16) = (AA,Bb), (AA,bb) and (Aa,bb) are
considered to belong to the low-risk (L) and the other
cells to the high-risk (H) group. Note that this inter-
action model corresponds to M95 (equivalent to M11)
in two-locus disease models [17], called ‘threshold model
(T)’ same as the second interpretation of interaction for

two-locus SNP combination in CD data results. As
aforementioned, this M11 interaction model is consid-
ered as one of the important interaction models [49, 51].

Discussion
The MDR method consists of loading an input file and
running it on a main algorithm (selection of SNP combi-
nations, calculation of case-control ratios of each multi-
locus genotype, and identification of multi-locus geno-
types) on the cross-validation (CV) structure. The exe-
cution time of MDR method is exponentially increased
by the number of SNP and the interaction order. Sup-
pose there are n++ samples and s SNPs. The time com-
plexity of loading an input file is O(s × n++) and the time
complexity of a main algorithm on the m-fold cross-

Fig. 5 Representation of the interaction among SNP1, SNP5 and SNP8 for CD

Table 4 Results of the bipolar disorder (BD) data analysis

order SNP
combination

EF-MDR MDR

BAFUZZY p-value SENFUZZY SPEFUZZY BA SEN SPE

1 16 0.5033 1.33e-07 0.3929 0.6140 0.5216 0.9540 0.0892

2 6, 16 0.5072 6.16e-12 0.3978 0.6171 0.5345 0.6467 0.4224

3 6, 15, 16 0.5118 3.21e-13 0.4031 0.6205 0.5568 0.6146 0.4990

4 5, 15, 17, 19 0.5203 4.87e-13 0.4133 0.6270 0.5850 0.6761 0.4939

5 5, 10, 15, 17, 19 0.5376 1.06e-13 0.4347 0.6406 0.6101 0.6376 0.5827
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validation structure is O m� s
k

� �
� nþþ

� �
¼ O

m� sk � nþþ
� �

, for the detection procedure of k-locus
interactions. Therefore, the time complexity of the total
procedure of MDR is O(m × sk × n+ +) and the omission
of CV reduces the execution time to about 1

m . In
addition, the execution time of MDR can be increased by
permutation test. On the other hand, since there is no
additional computation burden in our EF-MDR method,
its time complexity is O(sk × n+ +). We performed the
comparison study on computational times between MDR
with 10-fold cross validation and EF-MDR by using a real
dataset of CD with 30 SNPs of 4953 samples. The com-
parison result on computational times is summarized in
the Table 5, which demonstrates the great computational
reduction of EF-MDR over MDR. This comparison was
performed using R scripts on a 64-bit MS window plat-
form with 3.4 GHz CPU and 8 GB RAM.

Conclusion
We propose an empirical extension of Fuzzy MDR for
detections and interpretations of GGIs. The proposed
EF-MDR uses the proportion of cases as a membership
degree. EF-MDR avoids choosing optimal tuning param-
eter values in real data application, while maintaining
the high performance of optimal Fuzzy MDR. Through
simulation studies, EF-MDR was shown to have higher
power than that of Fuzzy MDR and MDR in various
simulation models. In real data application, EF-MDR
demonstrated its ability of providing a more flexible in-
terpretation of biologically meaningful interactions.
We also showed a linear relationship between the bal-

anced accuracy measure of EF-MDR and the standard
chi-square statistics. This relationship provides a great ad-
vantage of reducing a computational burden. The p-values
can be easily computed from the chi-square distribution,
which enables EF-MDR to avoid not only cross-validation
for selecting the best SNP combinations, but also permu-
tation for calculating p-values.
Furthermore, EF-MDR inherits all the merits of MDR

and Fuzzy MDR. All kinds of GGI interpretation made
by MDR can also be made in EF-MDR. In addition, each
cell derived from the genotype combination has its own
membership degrees, which enables researchers to de-
tect more biologically plausible GGI, as Fuzzy MDR
does. EF-MDR can be easily incorporated into the exist-
ing MDR extensions such as generalized MDR (GMDR)
[22] and quantitative MDR (QMDR) [52].

Fig. 6 Representation of the interaction between SNP6 and SNP16 for BD

Table 5 Execution times of MDR and EF-MDR in seconds

order MDR EF-MDR

1 2.99 0.29

2 61.20 3.99

3 1.01E + 03 39.79

4 1.62E + 04 3.09E + 02

5 2.78 E + 05 2.03E + 03

The Author(s) BMC Genomics 2017, 18(Suppl 2):115 Page 10 of 12



Appendix
A chi-square statistic of association test between genotypes

and a phenotype is
X

ni0 −ei0ð Þ2
ei0

þ
X

ni1 −ei1ð Þ2
ei1

:

For cases, ei1 ¼ niþ nþ1
nþþ. Then,

X ni1 −ei1ð Þ2
ei1

¼
X ni1 −niþ

nþ1
nþþ

� �2

niþ
nþ1
nþþ

¼
X ni1

2−2ni1niþ
nþ1
nþþ þ niþ

nþ1
nþþ

� �2

niþ
nþ1
nþþ

¼
X ni1

2

niþ
nþ1
nþþ

−
X 2ni1niþ

nþ1

nþþ
niþ

nþ1
nþþ

þ
X niþnþ1

nþþ
� �2

niþ
nþ1
nþþ

¼ nþþ
nþ1

Xni1
2

niþ
−
X

2ni1 þ
X

niþ
nþ1

nþþ

¼ nþþ
nþ1

Xni1
2

niþ
−2nþ1 þ nþ1 ¼ nþþ

nþ1

Xni1
2

niþ
−nþ1:

Similar manner,
X

ni0 −ei0ð Þ2
ei0

¼ nþþ
nþ0

X
ni02

niþ
−nþ0 . Then,

the chi-square statistic value is

nþþ
nþ1

Xni12

niþ
−nþ1 þ nþþ

nþ0

Xni02

niþ

−nþ0nþþ
1
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þ 1
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