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Abstract

Background: Inferring the microbial interaction networks (MINs) and modeling their dynamics are critical in
understanding the mechanisms of the bacterial ecosystem and designing antibiotic and/or probiotic therapies.
Recently, several approaches were proposed to infer MINs using the generalized Lotka-Volterra (gLV) model. Main
drawbacks of these models include the fact that these models only consider the measurement noise without taking
into consideration the uncertainties in the underlying dynamics. Furthermore, inferring the MIN is characterized by
the limited number of observations and nonlinearity in the regulatory mechanisms. Therefore, novel estimation
techniques are needed to address these challenges.

Results: This work proposes SgLV-EKF: a stochastic gLV model that adopts the extended Kalman filter (EKF) algorithm
to model the MIN dynamics. In particular, SgLV-EKF employs a stochastic modeling of the MIN by adding a noise term
to the dynamical model to compensate for modeling uncertainties. This stochastic modeling is more realistic than the
conventional gLV model which assumes that the MIN dynamics are perfectly governed by the gLV equations. After
specifying the stochastic model structure, we propose the EKF to estimate the MIN. SgLV-EKF was compared with two
similarity-based algorithms, one algorithm from the integral-based family and two regression-based algorithms, in
terms of the achieved performance on two synthetic data-sets and two real data-sets. The first data-set models the
randomness in measurement data, whereas, the second data-set incorporates uncertainties in the underlying
dynamics. The real data-sets are provided by a recent study pertaining to an antibiotic-mediated Clostridium difficile
infection. The experimental results demonstrate that SgLV-EKF outperforms the alternative methods in terms of
robustness to measurement noise, modeling errors, and tracking the dynamics of the MIN.

Conclusions: Performance analysis demonstrates that the proposed SgLV-EKF algorithm represents a powerful and
reliable tool to infer MINs and track their dynamics.
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Background
Themicrobiota, a conglomeration of all the bacteria living
on/in the human body, is now being extensively studied in
order to understand its relevance to the host. Interestingly,
it has been suggested in several works that the mainte-
nance of a stable microbial ecosystem is necessary for a
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healthy life [1]. For instance, a disruption of the stable state
of the microbiome, referred to as ‘dysbiosis’, is directly
linked to obesity [2–4], diabetes [5], inflammatory bowel
disease (IBD) [6] and cancer [7, 8].
Even though the bacteria have been recognized as play-

ing a key role in defining the health and disease states,
their study has represented a challenge in the past due
to several reasons. First, the bacteria were mainly stud-
ied through cultivation. Many bacterial groups were nei-
ther known earlier nor cultivated in a large number
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in a laboratory setting. Second, in vitro measurements
do not match real in vivo values because the labora-
tory conditions do not match the environment of the
host [9]. However, recent advances in high-throughput
sequencing have overcome these limitations. At present,
the sequencing technologies provide the researchers with
cross-sectional and longitudinal microbial compositions
in different environments.
In particular, longitudinal microbial studies are impor-

tant because they offer an insight into the dynamics of the
bacterial community and its response to external pertur-
bations [10]. In addition to its importance to understand
the variations in bacterial populations, such observational
studies are promising to discover the regulation mecha-
nisms which are essential to identify bacterial groups that
may cause or protect against diseases [11]. Therefore, time
series analysis tools are crucial to exploit the temporal
information embedded into the time series data.
Bacterial communities comprise a vast number of

species with complex relationships including mutual-
ism, competition, parasitism, commensalism, amenalism
and neutralism [12]. These interactions can be medi-
ated by natural competition for space and resources
or via some symbiotic relationships. For example, sub-
stances secreted by one species may be metabolized by
another [13, 14]. Additionally, members of bacterial com-
munities can interact indirectly through the immune
system [15]. Identifying these interactions is crucial to
understand the ecological communities and the underly-
ing regulation activities between microbes. For example,
the depletion of a species may affect other species that
depend on it for their survival. As an additional exam-
ple, the oppositional and symbiotic interactions between
species contribute to the development and resistance of
pathogens [16].
Various methods have been proposed to infer the

microbial interaction network (MIN) [12, 17]. These
methods can be broadly divided into similarity-based
methods and dynamic-based methods. Similarity-based
approaches employ a similarity measure to score the pair-
wise relationship between each pair of microbes. Two
microbes are considered to have an interaction if the
pairwise similarity score exceeds a predefined threshold.
Popular methodologies for constructing similarity-based
networks are the correlation coefficient and local simi-
larity analysis (LSA) [18–22]. While these methods are
computationally efficient, they present several drawbacks.
Firstly, they identify only pairwise relations. Therefore,
complex interactions in microbial communities are not
captured. Secondly, similarity-based networks are undi-
rected. This means that the inferred interactions are
assumed to be bidirectional with equal strengths. How-
ever, this represents an invalid biological assumption.
Third, a similarity-based approach treats the time series

data as a static snapshot, and hence it ignores the temporal
dependencies.
On the other hand, dynamic methods overcome these

drawbacks and go beyond identifying only the interaction
network to build predictive models that enable tracking
the bacterial composition over time and their response
to external perturbations [12]. Constructing such a model
presents two major phases: (i) model selection phase,
which aims to determine a set of equations to identify the
structure of the system; (ii) parameter estimation phase,
or commonly referred to as system identification, which
determines the unknown parameters of the model from
the observed data. A common approach in dynamical
modeling is to use ordinary differential equations (ODEs).
An example of ODE-based dynamical models that have
been employed to characterize the microbial interaction
network is the generalized Lotka-Volterra (gLV) model
[11, 23–25]. gLV has been extensively used due to the fol-
lowing two main features of gLV equations. Firstly, the
model parameters directly capture the growth rates and
pairwise interactions between all species in the system.
Secondly, the gLV model can be extended to account for
external stimuli such as the introduction of probiotics,
antibiotics or changes in diet [11]. However, ODE-based
models consider only the uncertainty caused by the noise
in the measurements. Therefore, the randomness in the
dynamical model is not considered by such models.
In general, estimating the unknown parameters is

embedded within the optimization framework that aims
to minimize the error between the model’s output and
the experimental data. The proposed optimization tech-
niques are broadly divided into integral-based methods
and regression-based methods. Integral-based methods
are iterative algorithms that search the parameter space
for an optimal set. At each iteration, the ODEs are
solved via numerical integration to compute the dif-
ference between the model output and the available
data. The primary drawbacks of integral-based algo-
rithms are the computational burden required to solve the
ODEs and the convergence failure due to the integration
breakdown [26].
To reduce the computational complexity, regression

techniques approximate the derivative terms in the ODE
model from the observed data, thereby, converting the
ODEs into a regular multivariate regression system. For
instance, the parameters of a linearized (via logarithmic
transformation) version of the gLV model were estimated
by the ridge regression in [11] and the sparse linear regres-
sion in [24]. The linearization step restricts the bacterial
abundance levels to be strictly positive. This assumption
is biologically invalid since it is possible that some bac-
teria may be totally depleted in some samples. Generally,
regression-based methods are computationally efficient
and scalable for very large dimensional data [27, 28].
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However, their performance relies on the accuracy of
the estimated derivatives. Therefore, without a proper
denoising preprocessing step, the slope approximation
may perform poorly due to the overfitting problem [29].
Additionally, for fast varying observations, an intelligent
algorithm is required to track the variation in data and
provide an accurate estimate of the derivatives. Estimat-
ing the model’s parameters is a challenging task due to
the following factors: (a) The number of the unknown
parameters is much larger than the available observa-
tions; (b) The underlying regulation mechanisms that
govern the microbial interaction network are nonlinear.
The aforementioned literature about inferring the MIN
from time series data has not specifically dealt with these
two challenges.
To address the challenges mentioned above, we pro-

pose a stochastic-based dynamical model that encodes the
uncertainties in both the measurements and the dynamics
to compensate for modeling errors and capture the com-
plex interactions among the microbiota. Moreover, we
propose EKF to jointly estimate the states of the stochas-
tic model and its parameters. EKF is selected because of
the following two features. First, EKF can handle the non-
linearities in the dynamic model or the observation model
or both via linearization about the current mean and vari-
ance. Second, EKF performs the estimation recursively
which renders the EKF as a suitable approach for infer-
ring a large number of parameters from a limited number
of observations [30]. Although EKF has had success in
several biological applications such as gene regulatory
networks, signaling pathways and metabolic networks
[31–33], it has not been applied to estimate the micro-
bial interaction network from metagenomic time series
data. We refer to the combination of the stochastic gLV
model with EKF to estimate its parameters as the SgLV-
EKF algorithm. The main contributions of this work can
be summarized as:

• We improve the conventional modeling of MINs
from a nonlinear ODE dynamic model to a more
general nonlinear stochastic model to compensate for
uncertainties in the model and/or observations.

• We propose the EKF, which has not been proposed in
the context of microbial interaction networks, to
infer the bacterial interaction network. The EKF is
selected due to its inherent ability to estimate the
parameters of nonlinear interactions from limited
number of observations.

• Comprehensive simulation studies corroborate the
fact that the proposed approach outperforms Nelder
and Stein’s algorithm in terms of robustness to
measurement noise, modeling errors, computational
efficiency, and tracking the dynamics of the microbial
interaction network.

Methods
Systemmodel
In this paper, the MIN is modeled as a nonlinear dynamic
stochastic system that captures the dynamics of the
bacterial abundance level as follows:

xi(k + 1) = fi(x(k)) + wi(k),
yi(k) = xi(k) + vi(k),

(1)

where i = 1, . . . , n is the state index, k = 1, . . . ,M
represents the time-step, M is number of measurement
time points, x(k) ∈ �n denotes the system state vector,
and y(k) ∈ �n stands for the observation vector. In par-
ticular, yi(k) and xi(k) represent the measured and the
actual relative abundance level of the ith bacteria at time
k, respectively. The microbial interaction network con-
taining n bacteria is described by the nonlinear function
f = [

f1, f2, . . . , fn
]T , where fi is defined in terms of the

discrete-time differential equation (4). Variables w(k) ∼

N (0,Q(k)) and v(k) ∼ N (0,R(k)) represent the zero-
mean white Gaussian process noise and measurements
noise, respectively, with covariance matrices given by

E
{
w(k)wT (j)

} = Q(k)δkj,
E

{
v(k)vT (j)

} = R(k)δkj,
E

{
w(k)vT (j)

} = 0
(2)

where E{.} denotes the expectation operator and δkj
denotes the Kronecker delta function:

δkj =
{
0 if k �= j
1 if k = j . (3)

Generalized Lotka-Volterra model
The gLV model is a first order nonlinear system of dif-
ferential equations. In its discrete form, the gLV is rep-
resented as a group of first order nonlinear difference
equations that relate the dissimilarity between the abun-
dance levels of species at time t with respect to time
t − 1.
Let {xi(t); i = 1, . . . , n} be the relative abundance level

of the ith bacteria at time t whose intrinsic growth rate
is gi. Moreover, let cij represent the strength of the influ-
ence of microbe i onto bacteria j (a.k.a., the ‘interaction
coefficient’). The gLV model is defined by means of the
following differential equations:

d
dt

xi(t) = gixi(t) + xi(t)
n∑

j=1
cijxj(t). (4)

The above framework was extended tomodel the effects
of external perturbations (e.g., antibiotics, diets) onto the
microbial community structure [11]. This was obtained
by adding another term to (4) which modulates the influ-
ence of each stimulating source into each member of the
ecosystem. Mathematically, let εil represent the ‘sensitiv-
ity’ of the ith microbe in response to the lth stimuli with
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signal strength ul. The resulting gLV model is captured
by [11]:

d
dt

xi(t) = gixi(t) + xi(t)
n∑

j=1
cijxj(t) + xi(t)

L∑

l=1
εilul(t). (5)

We remark in passing that a simplified gLV model was
previously employed in [24] to characterize the dynam-
ics of the gut microbiome considering only the interaction
between various species. Particularly, the simplistic gLV
model is formulated as:

d
dt

xi(t) = xi(t)
n∑

j=1
cijxj(t), (6)

where the intrinsic growth rate is ignored compared to (4).

Kalman filter and extended Kalman filter
This section reviews the key features of the Kalman filter
and then focuses on formulating the EKF for estimating
both the states and parameters of the state space model.

Kalman filter
Under certain conditions, e.g., linearity of model and
Gaussian noise, the Kalman filter represents an optimal
filter of the system state in the presence of measurement
errors. Let assume that the dynamics of a discrete-time
system is governed by the following linear model:

x(k + 1) = �kx(k) + �ku(k) + �kw(k), (7)

and the observation model is given by

y(k) = �kx(k) + v(k), (8)

where k is a time-step index, x(k) ∈ �n represents the sys-
tem state vector, and y(k) ∈ �n stands for the observation
vector. The variable n denotes the number of states. Vari-
ablesw(k) ∼ N (0,Q(k)) and v(k) ∼ N (0,R(k)) represent
the zero-mean multivariate Gaussian noise in the process
and measurements, respectively. The initial state, and the
noise vectors at each step are all assumed to be mutually
independent.
The discrete-time Kalman filter assumes the following

steps:

• Initialization: at k = 0 and for given initial states
x̂−

(0) = x0, the initial value of the covariance matrix
is given by:

P−(0) =Px0x0 =
E

{
(x(0) − x0) (x(0) − x0)T

}
,

(9)

where the superscript (−) denotes a-priori value.

• Gain: compute the Kalman gain matrix

K(k) = P−(k)�T
k

[
�kP−(k)�T

k + R(k)
]−1

. (10)

• Update: update the state estimate x̂+
(k) and

covariance P+(k) at each measurement

x̂+
(k) = x̂−

(k) + K(k)
[
y(k) − �k x̂−]

,
P+(k) = [I − K(k)�k]P−(k), (11)

where the superscript (+) denotes the posteriori
value.

• Propagation: propagate both the state estimate x̂(k)
and covariance P(k) using the posteriori estimate
x̂+

(k) and posteriori covariance P+(k)

x̂−
(k + 1) = �k x̂+

(k) + �ku(k),
P−(k + 1) = �kP+(k)�T

k + �kQ(k)�T
k .

(12)

Extended Kalman filter for parameter estimation
The Kalman filter is the optimum state estimator for a
linear state spacemodel observed in Gaussian noise. How-
ever, most of the biological systems are nonlinear. This
renders the Kalman filter inapplicable in such scenarios.
To overcome this challenge, one possible solution is to lin-
earize the nonlinear dynamic system before applying the
Kalman filter. This process of approximating the nonlin-
ear system with a linear one while using the Kalman filter
results in the EKF. It is worth to mention that although
EKF is not necessarily optimal, it was adopted as a stan-
dard method to deal with nonlinear systems. The classical
extended Kalman filter’s domain of convergence depends
on the region where the first-order Taylor series lineariza-
tion adequately approximates the nonlinear dynamics of
the system. Therefore, the initializing stage requires the
initial state estimate be close enough to the true state.
The general structure of the EKF is to estimate the state

vector by minimizing the system variance error. Another
useful application of EKF is to estimate the unknown sys-
tem parameters. Augmenting the state vector to include
the unknown parameters as additional states enables an
efficient system identification method for nonlinear sys-
tems. The same solution is applicable to systems with
uncertain parameters but it may lead to poor perfor-
mance in the estimation process. The augmented system
decreases the estimation error caused by imperfect model
parameters. Consider the following state space model:

x(k + 1) = f (x(k); θ) + w(k),
y(k) = h(k) + v(k), (13)

where k is a time index, x ∈ �n represents the sys-
tem state vector, y ∈ �m stands for the observation
vector, w ∈ �n and v ∈ �m denote the system noise
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and the measurement noise, respectively. w ∈ �n and
v ∈ �m are zero-mean white Gaussian stochastic pro-
cesses with covariancematricesQ andR, respectively. The
dynamic evolution and measurements of the system are
governed by the nonlinear functions f : �n → �n and
h : �n → �m, respectively, with θ representing the
parameters of the dynamicmodel. Variables n andm stand
for the number of states and number of measurements,
respectively.
Let z denote the augmented state vector that includes

the parameters of the model as additional states. The
vector z is give by:

z(k) =
[
x(k)
θ(k)

]
. (14)

The augmented version of the state space model given
in Eq. (13) takes the form:

z(k + 1) =
[
x(k + 1)
θ(k + 1)

]
=

[
f (x(k))
θ(k)

]
+

[
w(k)
η(k)

]

= F(z(k)) + ζ (k),
y(k) = x(k) + v(k),

(15)

where ζ (k) denotes the zero-mean Gaussian white-noise
for the augmented dynamic defined by F . Constructing
the augmented model in (15) assumes that the system
parameters are constant (i.e., θ(k) = θ ). Once the aug-
mented state equations are constructed, the standard EKF
can be implemented to estimate the states of the aug-
mented system (i.e., z), which enables the joint estimation
the model states x and its parameters θ . For detailed
derivations of the EKF, in both discrete-time and con-
tinuous time forms, the authors recommend [34]. The
following steps summarize the implementation of EKF:

• Initialization: at k = 0 and for given initial states
z0 =[ x0, θ0]T , the initial value of the covariance
matrix is given by:

P0 =
[
Px0x0 Px0θ0
Pθ0x0 Pθ0θ0

]
. (16)

and

ẑ−
(0) =E{z(0)} = z0,

P−(0) =E
{
(z(0) − z0)(z(0) − z0)T

}
= P0.

(17)

The initial covariance matrices are given by

Px0x0 = E
{
(x(0) − x0)(x(0) − x0)T

}
,

Px0θ0 = E
{
(x(0) − x0)(θ(0) − θ0)T

}
,

Pθ0x0 = E
{
(θ(0) − θ0)(x(0) − x0)T

}
,

Pθ0θ0 = E
{
(θ(0) − θ0)(θ(0) − θ0)T

}
.

(18)

Assume that z(0) ∼ N (0,P(0)).

• Gain: compute the Kalman gain matrix

K(k) = P−(k)HT (ẑ−
(k))

[
H(ẑ−

(k))P−(k)HT (ẑ−
(k) + R(k)

]−1
,

(19)

where H
(
ẑ−

(k)
) ≡ ∂h

∂z |ẑ−
(k).

• Update: update the state estimate ẑ+
(k) and

covariance P+(k) at each measurement

ẑ+
(k) = ẑ−

(k)+
K(k)

[
y(k) − h(ẑ−

(k))
]
,

P+(k) = [
I − K(k)H(ẑ−

(k))
]
P−(k).

(20)

• Propagation: propagate both the state estimate ẑ(k)
and covariance P(k) using the posteriori estimate
ẑ+

(k) and posteriori covariance P+(k)

ẑ−
(k + 1) = F

(
ẑ+

(k)
)
,

P−(k + 1) = 	
(
ẑ+

(k)
)
P+(k)	T (

ẑ+
(k)

)

+ Q(k),
(21)

where 	
(
ẑ+

(k)
) ≡ ∂F(z)

∂z |ẑ+
(k).

For our model of MIN given in Eq. (1), the system
dynamics (i.e., f ) is depicted by the gLV model defined in
Eq. (4) and the observation model h is given by the iden-
tity function (i.e., h(z(k)) = x(k)). The system parameters
vector θ captures the intrinsic growth rates and all the
pairwise interaction coefficients between the n bacteria
included in the gLV model. In particular, θ is given by:

θ = [
g1, g2, . . . gn, c11, c12, . . . , cnn

]T . (22)

Results and discussion
In this section, we compared SgLV-EKF with the cur-
rent state-of-the-art algorithms proposed for inferring the
microbial interaction network using the gLV model. In
particular, EKF is compared with two similarity-based
algorithms, one algorithm from the integral-based family,
and two regression-based algorithms. The first similarity-
based algorithm utilizes the Pearson correlation coeffi-
cient (PCC) [18], whereas the second algorithm employs
the local similarity analysis [22] to quantify the similarity
between time series data. For the integral-based algo-
rithm, the gradient free Nelder-Mead algorithm [35] is
used to span the parameter space for the optimal solution.
For the regression-based techniques, the first regression-
based algorithm was developed by Stein et al. in [11]
and it employs the regularized linear regression to infer
the MIN. We refer to this algorithm as the Stein’s algo-
rithm. The second regression-based algorithm is called
the learning interactions frommicrobial time series (LIM-
ITS) algorithm. This algorithmwas proposed in [24] and it
is based on the sparse linear regression model. It is impor-
tant to mention that Stein’s algorithm involves Tikhonov
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regularization parameters. These parameters were set to
the same values used in [11]. All the experiments were
performed on a Windows 8.1 system with a 3.4 GHz Intel
Core i7 processor on a Matlab 8.3.0.

Synthetic data
The MIN inference algorithms are evaluated in their
ability to predict: (a) MIN; (b) Variation of the bacte-
rial abundance levels over the time (i.e., states of the
dynamic model). An important metric of any interaction
network is its ability to recover the topology/structure
of the simulated interaction network. Specifically, the
accuracy, sensitivity, and specificity of the MIN inference
algorithms in predicting the presence and/or absence of
interactions. Moreover, to evaluate the ability of the MIN
inference algorithms in predicting the dynamic of the bac-
terial system, we use the relative mean square error (MSE)
as a fidelity criterion to measure the error between the
observed data and the estimated bacterial abundances. In
our evaluation, we define the true positive (TP) as the
number of edges that are truly detected, and the false neg-
ative (FN) as the number of edges that are not detected.
Similarly, if no edges are present, the number of times
the algorithm mistakenly predicts the presence of an edge
is defined as the false positive (FP). Otherwise, the num-
ber of times that the algorithm truly predicts the absence
of an edge is defined as the true negative (TN). Sensi-
tivity and specificity are defined as TP/(TP + FN) and
TN/(TN + FP), respectively. And accuracy is defined as
(TP + TN)/(TP + FN + TN + FP). Ideally, the values of
sensitivity, specificity and accuracy are one. An algorithm
with low sensitivity value indicates that this algorithm fails
in predicting the existing edges (i.e., interactions) in the
network. On the other hand, an algorithm with low speci-
ficity performance implies that the algorithm suggests the
presence of edges that don’t exist in reality. We assume the
absence of interaction if the absolute value of the inter-
action strength is less than one tenth the average of the

absolute values of the nonzero elements in the simulated
network (i.e., |cij| < 0.1).
In order to evaluate the performance of our proposed

scheme, a microbial community consisting of 10 bacte-
ria is simulated. A number of 30 time series points (i.e.,
the microbial abundance levels) are generated using the
stochastic gLV model (Eq. 1) with the parameters shown
in Fig. 1a. In our simulations, we perform 100 Monte-
Carlo simulations, and we present the average of these
experiments.
It is pertinent to mention that comparisons with

similarity-based methods are limited to the evaluation of
the efficiency of the algorithms to identify the presence
and/or absence of interactions in the simulated networks
for various dynamic/measurement noise levels. This is
because similarity methods don’t include a mathematical
modeling of the microbial community. Hence, similarity
methods don’t enable predicting the temporal bacterial
abundance profiles.
Figure 1b shows the inferred values using EKF for the

growth rate and the interaction network of the simu-
lated microbial system. The small differences between
the true values of system parameters and the inferred
parameters using EKF point out that the proposed EKF-
based approach is accurate in terms of estimating the true
system parameters.
The performance metrics mentioned above are eval-

uated under the following simulation set-ups: (a) Mea-
surement noise level (i.e., σ 2

v ); (b) System noise level
(i.e., σ 2

w).

Varying themeasurement noise level σ 2
v

First, the six algorithms are tested when varying the
Gaussian noise levels in the observed data with vari-
ance ranging from 10−4 to 10−1. The performance of
the six algorithms in terms of their abilities to iden-
tify the simulated network is depicted in Fig. 2. As it
is clearly depicted by this figure, increasing the noise

Fig. 1 Simulation of microbial regulatory network. a The true values of the model parameters. b The inferred parameters
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Fig. 2 Evaluation measurements of the efficiency of the six algorithms to identify the presence and absence of interactions in the simulated
networks for various measurement noise levels in terms of a accuracy, b sensitivity and c specificity

variance has a slight effect on the performance of the
SgLV-EKF, the Nelder and the two regression-based algo-
rithms. On the other hand, the performance of the two
similarity-based algorithms (i.e., PCC and LSA) degrades
significantly by increasing the noise power. Moreover,
similarity-based algorithms show the least accurate per-
formance compared to the other algorithms. The perfor-
mance of similarity-based techniques may be attributed to
two main reasons. The first reason is that the abundance
profiles of two microorganisms may be correlated even
they don’t interact directly. For example, if bacteria A and
B do not assume a direct interaction, but both of them rely
on the products of bacteria C, then the abundance profiles
of A and B are expected to be correlated. The second rea-
son is that the bacterial abundance data provided by the
sequencing-based techniques represent the relative frac-
tion of the bacterial abundances rather than their absolute
abundances. This compositional nature of the bacterial
profiles can lead to unreliable results [36].
For the regression-based algorithms, Stein’s algorithm

fails to detect the majority of the interactions as depicted
from the very low sensitivity values in Fig. 2b, whereas
LIMITS algorithm provides more reliable results with
consistence accuracy performance around 60%. However,
SgLV-EKF outperforms both Stein’s and LIMITS algo-
rithms. SgLV-EKF and Nelder’s algorithm yield close and
stable results over different variance values. However, the
execution time of Nelder algorithm is approximately 80
times higher than the SgLV-EKF execution time as it is
pointed out by Table 1.
The relative MSE of the predicted bacterial abundance

levels is depicted in Fig. 3. The noise level has a negligi-
ble effect on the relative MSE of SgLV-EKF and Nelder’s

Table 1 Average execution time for various methods (seconds)

SgLV-EKF Nelder Stein LIMITS

Execution Time 2.11 161.62 0.06 1.4

algorithm. Both SgLV-EKF and Nelder’s algorithm exhibit
low MSE errors. The estimated parameters resulted from
both Stein’s and LIMITS methods lie in the unstable
region of the dynamic system. Therefore, they present an
infinite MSE error.

Varying the dynamic noise level σ 2
w

This section evaluates the algorithms performance against
uncertainties in the dynamic model. This uncertainty is
modeled by a zero mean white Gaussian noise with vari-
ance varying from 10−7 to 10−1.
Figure 4 presents the accuracy, sensitivity, and speci-

ficity of the six MIN inference algorithms. Since our
scheme takes into account the randomness in the dynamic
model, SgLV-EKF outperforms the other five algorithms
in identifying the structure of the interaction network.
Moreover, SgLV-EKF provides a robust and reliable per-
formance against the uncertainty in the dynamic model
and it exhibits an average accuracy higher than than 75%.

Fig. 3 Relative MSE performance under different measurement noise
levels
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Fig. 4 Evaluation measurements of the efficiency of the six algorithms to identify the presence and absence of interactions in the simulated
networks for various dynamic noise levels in terms of a accuracy, b sensitivity and c specificity

On the other hand, due to the presence of a small amount
of noise in the dynamic model, the estimation using the
other five algorithms is unreliable and inconsistent. In
particular, the two similarity-based algorithms show a sig-
nificant reduction in their accuracy performance due to
the increase in the process noise power. For example, for
noise level exceeding 10−4, PCC and LSA achieve an aver-
age accuracy of only 45% and 35%, respectively. Similar to
the results in the previous section, Stein’s method failed
in inferring the existing interactions as illustrated by the
very low sensitivity values in Fig. 4b. For noise power
values larger than 10−4, Nelder’s method diverged and
failed in providing any estimate of the model’s parame-
ters. The divergence of Nelder’s algorithm combined with
the robust performance of the SgLV-EKF algorithm justify
our approach of replacing the conventional ODE-based
gLV model with a stochastic gLV model that accounts for
uncertainties in the system model.
Figure 5 presents the relative MSE for the SgLV-EKF

and Nelder’s algorithms. The results of Stein’s and LIM-
ITS algorithms are omitted here for the same reason
mentioned in the previous section. SgLV-EKF shows a
consistent performance against system noise.

Real data
To further demonstrate the capability of SgLV-EKF algo-
rithm in inferring the microbial interaction networks, we
considered two realistic time series datasets. Recently,
an investigation to assess the effect of antibiotics on the
intestinal microbial community infected with C. difficile
was carried out in [37]. In this study, DNA sequences
were taken from the cecum and the ileum of 9 mice
models. The sequences generated from this study were
analyzed in [11] to obtain the OTUs profiles of each
sample. The OTU assignment retains the ten most abun-
dant genera (listed in Table 2) in addition to C. difficile
which together account for approximately 90% of the total
16S rRNA sequences. In this paper, the time series data

belonging to two mice under different conditions were
considered.
It is pertinent to remember that, for the moment,

no complete microbial interactions database reference is
available to objectively evaluate the results obtained based
on real data sets. However, the results can be assessed by
evaluating their consistency with biological assumptions
and their agreement with previous studies. Formore accu-
rate evaluation, the identified interactions need further
analysis via high-throughput experiments. Also, since the
constructed MINs include only a subset (i.e., 11 OTUs) of
the total OTUs presented in the samples, an edge between
two microbes may not necessarily indicate a direct inter-
action. For example, if two microbes are co-regulated by
another microbe which is not included in the 11 OTUs,
these two microbes may exhibit an interaction between
them.

Fig. 5 Relative MSE performance under different dynamic noise
levels. For σ 2

w is larger than 10−4, Nelder’s algorithm diverges
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Table 2 OTUs that are considered in the construction of the
MINs of the two realistic datasets

OUT 1: Barnesiella

OUT 2: Undefined genus of Lachnospiraceae

OUT 3: Unclassified Lachnospiraceae

OUT 4: Other

OUT 5: Blautia

OUT 6: Undefined genus of unclassified Mollicutes

OUT 7: Akkermansia

OUT 8: Coprobacillus

OUT 9: Clostridium difficile

OUT 10: Enterococcus

OUT 11: Undefined genus of Enterobacteriaceae

Dataset-1: Gutmicrobiota ofmousemodel infected by C.
difficile
This dataset consists of 4 time points taken over two
weeks and it belongs to the mouse with ID 8. This mouse
received spores of C. difficile and was used to deter-
mine the impact of the pathogen (i.e., C. difficile) on
the native gut microbiota. Figure 6 depicts the measured

Fig. 6 Time series of observed and predicted bacterial abundance
levels in relation to Dataset-1

bacterial abundance level time series data xi and its
predicted values x̂i. The results show that the SgLV-
EKF was successful in tracking the bacterial abundance
level.
The predicted values for the growth rates and the

MIN are depicted in Fig. 7. The inferred growth rates
are consistent with the biological assumptions in the
sense that they are all positive. Moreover, their range
[ 0.2 − 0.83] agrees with typical growth rate ranges
[ 0.43 − 1.46] [25] and [ 0.2 − 0.9] [11]. The compara-
ble growth rates for the bacterial populations may indi-
cate the existence of a balance state in the bacterial
ecosystem. In other words, the environment is not dom-
inated by one or few species with significantly higher
growth rates.
The negative values of the diagonal elements in the

inferred interaction matrix Fig. 7 are consistent with the
underlying biology. This is because the negative values
indicate that each species would reach the carrying capac-
ity even in the absence of the other species [11]. Intrigu-
ingly, even Coprobacillus exhibits low abundance levels as
shown in Fig. 6, the inferred MIN suggests Coprobacil-
lus as the bacteria with the strongest interactions (i.e.,
larger interaction coefficients values) with other members
in the microbial community. In particular, Coprobacillus
inhibits all other microbes except Akkermansia and Blau-
tia. Interstingly, all the bacteria exhibit inhibitory activity
against C. difficile except Enterococcus, Undefined genus
of Lachnospiraceae, and Undefined genus of unclassified
Mollicutes which positively interact with the pathogen.
This positive interaction agrees with previous results in
[38]. The predicted MIN suggests C. difficile to nega-
tively impact Blautia and Coprobacillus. This complies
with the findings in [39] that show that both Blautia and
Coprobacillus are among the top genera that are depleted
in patients infected by C. difficile. Moreover, the inferred
MIN shows that Barnesiella is negativelly interacting with
Enterococcus. This agrees with the results found in [40].
The constructed microbial interaction network is dis-
played in Fig. 8.

Fig. 7 Inferred growth rates and interaction matrix in relation to
Dataset-1
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Fig. 8 Inferred microbial interaction network in relation to Dataset-1

Dataset 2: Gutmicrobiota ofmousemodel infected by C.
difficile and treated with clindamycin
This dataset consists of 11 time points taken over 23
days and it belongs to the mouse with ID 9. At the first
day of experiment, this mouse was injected with a single
dose of clindamycin, and on the following day received
spores of C. difficile. This experiment aimed to inves-
tigate the impact of the antibiotic (i.e., clindamycin) on
the intestinal bacterial structure. The bacterial abundance
levels and their estimated values are presented in Fig. 9.
It is clear that the inferred model provides a fairly good
prediction of the bacterial abundance data. By compar-
ing the abundance levels in the two datasets, it is clear
that the clindamycin antibiotic alters the structure of the
microbial community. In particular, Barnesiella and the
undefined genus of Lachnospiraceae are severely depleted
in response to clindamycin. On the other hand, Entero-
coccus, the undefined genus of Enterobacteriaceae and
more importantly C. difficile exhibit an increase in their
abundance levels. This suggests that the induced dysbio-
sis in the bacterial community from its normal state due
to the clindamycin antibiotic facilitates the colonization of
C. difficile.
The inferred interaction matrix shown in Fig. 10 sup-

ports these findings. For example, the simultaneous
increase in the abundance levels of Enterococcus, the
undefined genus of Enterobacteriaceae and C. difficile can
be explained by the mutualistic (i.e.,+|+) relationships
between them. The inferred growth rates shown in Fig. 10
are all positive and ranging between 0.2 and 0.89. This
complies with the biological assumption as discussed ear-
lier. The obtained microbial interaction network is shown
in Fig. 11.

Fig. 9 Time series of observed and predicted bacterial abundance
levels in relation to Dataset-2

Conclusions
In this work, we propose the SgLV-EKF algorithm to
model the microbial dynamic and infer their interactions.
In particular, we replace the conventional model of MIN
formulated as a gLV dynamic model with a with a stochas-
tic gLV model. The introduced stochastic model accounts
for the uncertainties in the model and/or measurements.
The proposed stochastic model accounts for the uncer-
tainty in the model by adding a noise term in the dynamic

Fig. 10 Inferred growth rates and interaction matrix in relation to
Dataset-2
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Fig. 11 Inferred microbial interaction network in relation to Dataset-2

equation. Moreover, to deal with the challenges of infer-
ring MIN (i.e., nonlinear dynamics and limited number of
observations), we propose EKF to jointly estimate the bac-
terial abundance levels and their interactions. The online
and recursive nature of EKF enables fast and reliable esti-
mation of the model’s parameters from short time series
data.
The performance of the proposed SgLV-EKF algo-

rithm is compared with two similarity-based algorithms
(i.e., PCC and LSA), one integral-based algorithm (i.e.,
Nelder’s algorithm) and two regression-based algorithms
(i.e., Stein’s and LIMITS algorithms) in the presence
of synthetic as well as realistic data sets by vary-
ing the noise levels in both the measurements and
dynamic model.
It is observed that Stein’s algorithm, an example of

regression-based algorithms, is computationally efficient.
However, it consistently exhibits a very low sensitivity
indicating its failure to detect the majority of the inter-
actions. This renders Stein’s algorithm unreliable and
inaccurate for estimating the MIN. This inaccuracy is
because its sensitivity to the selection of the regulariza-
tion parameters and the approximation of the deriva-
tives in the ODE model. Particularly, the authors in [11]
applied the forward difference to estimate the derivatives,
which represents a coarse approximation of the slope
of the bacterial abundance profiles. The LIMITS algo-
rithm, a second example of regression-based algorithms,
achieves more reliable and consistent performance com-
pared to Stein’s algorithm. However, this improvement
comes at the cost of increased computational time. The
reason behind increasing the execution time of LIMITS

algorithm is the bagging procedure implemented in LIM-
ITS to reduce the bias caused by the ‘errors-in-variables’
problem [41]. Similar to Stein’s algorithm, the perfor-
mance of LIMITS algorithm is sensitive to the accuracy of
the approximation used to evaluate the derivatives in the
ODE model.
Nelder’s algorithm, an implementation of the integral-

based approaches, offers close results to the SgLV-EKF
when varying the measurements noise. However, Nelder’s
algorithm failed to compensate for randomness in the
dynamic system as the algorithm diverges in the pres-
ence of noise with power exceeding 10−4. Moreover,
SgLV-EKF is more computationally efficient due to its
sequential structure. The main virtue of similarity-based
algorithms is that they are computationally efficient. How-
ever, similarity-based methods can capture only pairwise
relationships between species. This renders these meth-
ods incapable of handling the existing complex interac-
tions in microbial communities.
Overall, the robustness against uncertainty in measure-

ments and/or model, the enhanced accuracy relative to
the state-of-the-art algorithms, and the reduced compu-
tational time make SgLV-EKF a promising approach to
model the microbial dynamics and infer the interactions
among microbes.
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