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Abstract

Background: Recently, researchers have tried to integrate various dynamic information with static protein-protein
interaction (PPI) networks to construct dynamic PPI networks. The shift from static PPI networks to dynamic PPI
networks is essential to reveal the cellular function and organization. However, it is still impossible to construct an
absolutely reliable dynamic PPI networks due to the noise and incompletion of high-throughput experimental data.

Results: To deal with uncertain data, some uncertain graph models and theories have been proposed to analyze
social networks, electrical networks and biological networks. In this paper, we construct the dynamic uncertain PPI
networks to integrate the dynamic information of gene expression and the topology information of high-throughput
PPI data. The dynamic uncertain PPI networks can not only provide the dynamic properties of PPI, which are neglected
by static PPI networks, but also distinguish the reliability of each protein and PPI by the existence probability. Then, we
use the uncertain model to identify dynamic protein complexes in the dynamic uncertain PPI networks.

Conclusion: We use gene expression data and different high-throughput PPI data to construct three dynamic uncertain
PPI networks. Our approach can achieve the state-of-the-art performance in all three dynamic uncertain PPI networks. The
experimental results show that our approach can effectively deal with the uncertain data in dynamic uncertain PPI
networks, and improve the performance for protein complex identification.

Background
Over the past decade, yeast two-hybrid, mass spectro-
metry and other high-throughput experimental have gen-
erated a mass of protein-protein interaction (PPI) data.
Such PPI data construct the large-scale PPI networks for
many organisms. Great efforts have been made to under-
stand organizational principles underlying PPI networks.
Many cellular principles have been uncovered by analysis
of these networks, such as the scale-free topology [1], dis-
assortativeness [2] and modularity [3].
A protein complex consists of a group of proteins and

multiple PPIs at the same time and place, forming single

multi-molecular machinery [4]. Since most proteins are
only functional after assembly into protein complexes,
protein complexes are critical in many biological
processes [5]. Over the past decade, great effort has been
made to detect complexes on the PPI networks. The
Molecular Complex Detection (MCODE) algorithm pro-
posed by Bader and Hogue is the first time to exploit
computational methods to identify complexes based on
PPI networks [6]. Markov Clustering (MCL) [7] can use
random walks to identify based on PPI networks. Liu et
al. [8] propose Maximal Cliques Clustering (CMC) to
predict complexes from large PPI networks. Based on
the core-attachment structural feature [9], Leung et al.
[10] propose CORE algorithm to identify protein-
complex cores by calculating the p-values for all pairs of
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proteins. Similarly, Wu et al. [11] present COACH
algorithm to identify protein complexes, which detects
the core structure and attachments of complex respect-
ively. Nepusz et al. [12] propose ClusterONE algorithm
which effectively improves the performance to identify
the overlapping complexes. Zhang et al. [13] propose
CSO algorithm to predict complexes by integrating GO
data and PPI networks.
A protein complex is formed by a group of proteins at

the same time, which interacted with each other by asso-
ciated polypeptide chains. However, modeling biology
systems as static PPI networks will lose the temporal
information. It is necessary to construct dynamic PPI
networks for both identifing protein complexes and
further understanding molecular systems. Since gene ex-
pression data is helpful to analyze the temporal informa-
tion of proteins, some studies [14–18] have used gene
expression data to construct dynamic PPI networks and
reveal the dynamic character of PPI networks. For ex-
ample, Faisal et al. [14] predict human aging-related
genes by integrating aging-related gene expression data
with human PPI data. Wang et al. [15] construct dy-
namic PPI networks and detect complex by exploiting
gene expression data and PPI data.
Another issue in complexes identification is PPI net-

works contain much noise data including false positive
and false negative rates [16]. Some studies have been
proposed to improve the reliability of PPI networks [17].
Using uncertain graph model to deal with such PPI net-
works is more reasonable than traditional graph model.
Uncertain model have been applied to analyze social
networks, electrical networks and biological networks.
Recently, Zhao et al. [18] use uncertain model to detect
protein complexes in static PPI networks. Nonetheless,
few studies apply uncertain model to analyze dynamic
PPI networks.
In this study, we firstly construct dynamic uncertain PPI

networks (DUPN) by integrating gene expression and PPI
data. The active time point and the existence probability
of each protein is calculated based on gene expression
data. The existence probability of each PPI is calculated
based on the topological property of high-through PPI
data. We then attempt to use uncertain graph model to
identify the protein complexes in DUPN, and propose a
clustering algorithm named CDUN. Finally, we evaluate
our method in different datasets and the experimental re-
sults show that our method achieves the state-of-the-art
performance for complex identification.

Methods
In this section, we introduce how to integrate the gene ex-
pression data with the PPI data to construct the DUPN,
and then describe the clustering algorithm CDUN for
identify protein complexes based on the DUPN in details.

Active time points and probability of proteins
In a living cell, proteins and PPIs are not static but chan-
ging over time [19]. The gene expression is useful to
analyze the temporal information of the proteins. In
recent years, some studies [15, 20, 21] have use gene
expresstion data to calculate the active time points of
proteins.
The gene expression data consist of n time point pro-

files. Let Gi(p) denote the gene p expression value at i
time point. Let α(p)and σ(p)be the arithmetic mean and
the standard deviation (SD) of Gi(p), respectively.

α pð Þ ¼
Pn

i¼1Gi pð Þ
n

ð1Þ

σ pð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Gi pð Þ−α pð Þð Þ2
n−1

s
ð2Þ

Let X be a real random variable of normal distribution
N(α, σ2). For any k > 0, P{|X-α| < kσ} = 2Φ(k)-1, where
Φ(.) is the distribution function of the standard normal
law [15, 20].
In this study, we use the Eqs. (3) and (4) to calculate

protein active probability at the different time points.

Ge threshk pð Þ ¼ α pð Þ þ k �σ pð Þ� 1−
1

1þ σ2 pð Þ
� �

ð3Þ

Pri pð Þ ¼

0:99 if Gi pð Þ≥Ge thresh3 pð Þ
0:95 if Ge thresh3 pð Þ > Gi pð Þ≥Ge thresh2 pð Þ
0:68 if Ge thresh2 pð Þ > Gi pð Þ≥Ge thresh1 pð Þ
0 if Gi pð Þ < Ge thresh1 pð Þ

8>>><
>>>:

ð4Þ

We use the Eq. (3) to calculate the k-sigma (k = 1,2,3)
threshold for the gene p. Ge_thresk is determined by the
values of α(p),σ2(p)and k (the times of sigma). If σ2(p)is
very low, it indicates that the fluctuation of the expression
curve of gene p is also very small and the value of Gi(p)
tends to be very close to α(p). In this case, the value of
Ge_threshk is close to α(p). If σ2(p)is very high, it indicates
much noise in the gene expression data of the gene p. In
this case, the value of Ge_threshk is close to α(p) + k · σ(p).
In the Eq. (3), the range of k (the times of sigma) is in (0,
3), and 3 is the maximum times of sigma. The larger k is,
the higher Ge_threshk gets. A higher value of Ge_threshk
indicates that using more strict rules to identify the active
time point of a protein [20].
We use the Eq. (4) to calculate the active probability

of a protein in the i time point. Thus, the protein active
probability contains four levels (0.99, 0.95, 0.68 and 0)
based on the sigma rules (P{|X-α| < σ} ≈ 0.6827, P{|X-
α| < 2σ} ≈ 0.9545 and P{|X-α| < 3σ} ≈ 0.9973) [15, 20].

Zhang et al. BMC Genomics 2018, 18(Suppl 7):743 Page 32 of 71



Construction of DUPN
Figure 1 shows an illustration example of the DUPN
construction. Firstly, we use the PPI data to construct
the static PPI networks in Fig. 1a. Secondly, we use gene
expression data to calculate the active time points and
the probability of each in Fig. 1b. In this study, the active
probability only include three values P1 = 0.99, P2 = 0.95
and P3 = 0.68 based on the Eq. (4). Although a PPI imply
physical contact between two proteins, it does not mean
that the interaction occur in a cell at any time [22]. The
real PPI networks are changing during the lifetime of a
cell, because the active time points of proteins are diffe-
rent. Thirdly, we can inject the static PPI networks into
a series of PPI subnetworks based on the dynamic

information of the proteins in Fig. 1c. These PPI subnet-
works associated with the different active time points
construct a dynamic PPI network. All proteins in the
PPI subnetworks Ti are active with an active probability
at Ti time point. Finally, we assign an uncertain value to
each protein and PPI in the dynamic PPI networks to
construct the DUPN in Fig. 1d. In this way, we can
distinguish the uncertain level of both protein and PPI
in the DUPN. The existence probability of each protein
is the active probability calculated based on Eq. (4). Zhao
et al. [18] proposed a method to calculate the existence
probability of PPI based on the topology structure of the
PPI networks. In this study, we use the same method to
calculate the existence probability of each PPI on the
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Fig. 1 An illustration example of DUPN construction. a construction of static PPI networks. b calculation of dynamic information. ATP and AP
denote active time points and active probability, respectively. c dynamic PPI networks. d dynamic uncertain PPI networks (DUPN)
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Fig. 1d based on the topology structure of the PPI
subnetworks in the Fig. 1c. The existence probability be-
tween the two proteins vj and vk is defined as follows:

PrTiðvj;VkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nj∩Nk

�� ��2
Nj

�� ��−1� �� Nkj j−1ð Þ ;
vuut Nj

�� �� > 1 and Nkj j > 1

0; Nj

�� �� ¼ 1 or Nkj j ¼ 1

8>><
>>:

ð5Þ

where Nj and Nk are the sets consisting of all neighbors
of vj and vk at Ti time point in Fig. 1c, respectively.
Our method to construct DUPN is different from the

work [18]. In the DUPN, we assign an uncertain value to
each protein and PPI, which can distinguish the uncer-
tain level of each protein and PPI in the dynamic PPI
networks.

Uncertain graph model
A static PPI network generally can be modeled as G
= (V, E), where V = {v1, v2, …, vn} represents a set of pro-
teins and E = {e1, e2, …, em} represents a set of PPIs.
Definition 1 (Uncertain PPI network) An uncertain

PPI network at Ti time point is defined as UGTi = (VTi,
ETi,PTi

V, PTi
E ), where PTi

V : VTi → [0,1] is the function that
assigns a probability of existence to each protein and PTi

E :
ETi → [0,1] is the function that assigns a probability of
existence to each PPI at Ti time point.
Definition 2 (Dynamic uncertain PPI network) A DUPN

DG = {UGT1, UGT2, …, UGTk}, is defined over a set of un-
certain PPI networks. In Fig. 1d, the DUPN only consists
three uncertain PPI networks, {UGT1, UGT2, UGT3}.
To deal with uncertain data, some uncertain graph

models and theories [18, 23, 24] have been proposed to
analyze social networks, electrical networks and bio-
logical networks and so on. In this study, we assume the
probabilities of proteins and PPIs are independent. Let
G’
j = (V’j, E’j) denote an instantiation of an uncertain PPI

network UGTi = (VTi, ETi, PTi
V, PTi

E ), where V’j VTi and
E’j ETi∩(V’j × V’j). The instantiation is a deterministic
network with an observing probability. We denote the
relationship between G’

j and UGTi as UGTi G’
j. The

probability of Pr(G’
j) is given as follows:

Pr G′
j

� 	
¼ Q

v∈V ′
j

PV
Ti

vð ÞQ
v∈VTi

nV ′
j

1−PV
Ti

vð Þ
� 	

Q
e∈E′

j

PE
Ti

eð Þ Q
e∈ETi∩ V ′

j�V ′
jð ÞnE′

j

1−PE
Ti

eð Þ
� 	

ð6Þ

The Eq. (6) gives a probability distribution over all in-
stantiations of the uncertain PPI network UGTi at Ti

time point. Based on the Eq. (6), if an uncertain PPI net-
work UGTi consists of n instantiations {G’

1, G
’
2,…, G’

n},

Pn
i¼1 Pr G

0
i

� � ¼ 1. In an uncertain PPI network, identify-
ing protein complexes has to take into account all pos-
sible instantiations {G’

1, G’
2,…, G’

n} that are associated
with the probabilities defined in Eq. (6).
Definition 3 (Expected Density) Let UGTi = (VTi, ETi,

PTi
V, PTi

E ) denote an uncertain PPI network at Ti time
point. PGTi = {G’

1, G
’
2,…, G’

n} is a set of possible instantia-
tions of UGTi, where G’

j = (V’Ti, E’Ti). Pr(G
’
j) is the prob-

ability associated with instantiation G’
j∈PGTi. Given a set

of protein vertices in UGTi, VS VTi, the expected
density of VS is defined as follow:

ED VS;UGTið Þ ¼
Pn

j¼1 Pr G′
j

� 	
�2�hj

V Sj j� VSj j−1ð Þ ð7Þ

where hj is the number of PPIs among the proteins of
VS in the instantiation G’

j.
Definition 4 (Attached Score) Let UGTi = (VTi, ETi, PTi

V,
PTi
E ) denote an uncertain PPI network at Ti time point.

PGTi = {G’
1, G

’
2,…, G’

n} is a set of possible instantiations
of UGTi, where G’

j = (V’Ti, E’Ti). Given a set of protein
vertices VS ⊂ VTi, a protein vertex va∈VTi and va∉VS, the
attached score between va and VS in the UGTi, is given
as follows:

AS va;VSð Þ ¼
Pn

j¼1 Pr G′
j

� 	
�mj

VSj j ð8Þ

where mj is the number of PPIs between va and VS in
the instantiation G’

j.
As the uncertain graph model, an uncertain PPI net-

work can generate a large amount of different possible
instantiation. According to the Eqs. (7) and (8), the com-
putational complexity is very high in an uncertain PPI
network. Based on the studies [18, 24], the Eqs. (7) and
(8) can be efficiently calculated by the Eqs. (9) and (10),
respectively.

ED VS;UGTið Þ ¼

P
vp;vq∈V ;vp≠vq

PE
Ti vp; vq
� ��PV

Ti vp
� ��PV

Ti vq
� �

VSj j� VSj j−1ð Þ
ð9Þ

AS va;VSð Þ ¼

P
vj∈VS

PE
Ti va; vj
� ��PV

Ti vað Þ�PV
Ti vj
� �

VSj j ð10Þ

Thus, based on the uncertain graph model, we can use
the Eqs. (9) and (10) to efficiently calculate the expected
density and the attached score for protein complex iden-
tification in an uncertain PPI network, respectively.

The CDUN algorithm
Some studies has revealed the complex core-attachment
organization [25]. A protein complex generally contains
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of a core structure and some attachment proteins. In
the core structure, the proteins share high functional
similarity, which are highly co-expressed [9]. The at-
tachment proteins assist the core proteins to perform
subordinate functions. Based on the core-attachment
structure of protein complexes, the CDUN algorithm
identifies protein complexes from all the uncertain
PPI networks of a DUPN in turn. Algorithm 1 shows
the pseudo-codes of the DUPN algorithm.

CDUN algorithm consists of two phases. CDUN firstly
detects candidate protein complexes from all UGTi∈DG
in turn at line 1–31. The candidate complexes are added
into Candidate_complex set. Then, CDUN removes the
highly overlapped protein complexes from Candidate_-
complex at line 32–44, based on their ED value.
In the first phase, CDUN firstly calculates the expected

density of all edges in UGTi based on Eq. (9) at line 4–5.

ED ({u,v}, UGTi) denotes the expected density of the
edge between u and v. The edge will be added into
Seed_set, if its expected density is not less than Core_-
thresh that is a predefined threshold parameter. The ef-
fect of Core_thresh is discussed in The effect of
Core_thresh section. Average expected density of all
edges is calculated at line 10. Secondly, CDUN augments
each seed to generate the core structure at line 11–20. If
the ED value of the core structure is not less than Core_-
thresh, CDUN will add the neighbor protein p into the
core structure at line 25–28. We use the same parameter
(Core_thresh) in lines 7 and 16 to keep the expected
density of both the seeds and the core structures are not
less than the Core_thresh. Finally, CDUN detects the at-
tachment proteins for each core structure based on the
AS score that is calculated by Eq. (10), and adds the at-
tachment proteins into each core structure to form the
candidate complex set Candidate_all at line 22–30.
The candidate protein complexes in Candidate_all are

identified from all UGTi∈DG, which generally overlap
with each other. In the second phase, CDUN calculates
the ED value of all candidate protein complexes in line
32–34. We rank the candidate complexes in descending
order of the ED value (Candidate_list = (cc1, cc2,…, ccn))
at line 35. The candidate complex with highest ED value
in will be removed from Candidate_list and added into
Complex_set. CDUN checks the overlapped degree be-
tween cci ∈Candidate_list and cc1. CDUN will removes
cci from Candidate_list at line 39–42, if the overlapped
degree is larger than the Overlap_thresh. In our experi-
ments, we set the Overlap_thresh as 2/3. The above
steps will be repeated until Candidate_list is empty and
the final complex set Complex_set is generated.

Results and discussion
Datasets
The PPI datasets used in our experiments are the DIP
[26], MIPS [27] and STRING [28] datasets, respectively.
The PPI data of STRING dataset are from biomedical
literature data, high-throughput data, genomic context
data and co-expression data. Table 1 lists the statistics of
the dataset in our experiments.
We download the gene expression data GSE3431 [29]

from Gene Expression Omnibus, which involves 36 dif-
ferent time intervals. The GSE3431 consists of 3 cycles
and each cycle is 12 time intervals. We calculate the
average value at 12 active time points for each gene

Table 1 The statistics of PPI datasets in experiments

High-throughput PPI data Proteins Interactions

DIP dataset 4928 17,491

MIPS dataset 3950 11,119

STRING dataset 5970 217,413
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based on 3 cycles data. In our experiments, DUPN_DIP,
DUPN_MIPS and DUPN_STRING are constructed based
on the gene expression data GSE3431 and the PPI datasets
including DIP, MIPS and STRING dataset, respectively.
To evaluate the protein complexes identified by our

method, the gold standard data are CYC2008 [30]. The
CYC2008 benchmark consist of 408 protein complexes,
which includes some complexes of size 2. In some cases,
it is hard to evaluate the performance of the methods by
using the complexes of size 2. Therefore, we use 236
complexes of size more than 2 in the CYC2008 to evalu-
ate the complexes identified in the experiments.

Evaluation metrics
Overall, most of the complexes identification methods
use two type of evaluation metrics to evaluate the per-
formance of complexes prediction [19]. One type of
evaluation metrics are precision, recall and F-score. The
other type are sensitivity (Sn), positive predictive value
(PPV) and accuracy.
Let P(VP, EP) be an identified complex and B(VB, EB)

be a known complex. The neighborhood affinity score
NA(P,B) between P(VP, EP) and B(VB, EB) is defined as
follows:

NA P;Bð Þ ¼ VP∩VBj j2
VPj j � VBj j ð11Þ

In most studies of complex prediction, the P(VP, EP) is
considered as matching the B(VB, EB) if NA(P,B) is larger
than 0.2 [16]. In our experiments, we use the same
threshold of NA(P,B).
Precision, recall and F-score are used to evaluate of

our experimental results, which are defined as follows:

precision ¼ Nci

IdentifiedSet
ð12Þ

recall ¼ Ncb

BenchmarkSetj j ð13Þ

F−score ¼ 2precision⋅recall
precisionþ recallð Þ ð14Þ

where Nci and Ncb are the number of detected protein
known complexes by our method, respectively. Identi-
fied_Set and Benchmark_Set denote the set of complexes
identified by our method and gold standard dataset, re-
spectively. In additional, we also report Sn, PPV and ac-
curacy in our experiments. The definitions of Sn, PPV
and accuracy are described in the study [16].

The effect of Core_thresh
In this experiment, we evaluate the effect of the threshold
parameter Core_thresh on the performance of CDUN.
The Core_thresh determines not only the number of the
seeds in the Seed_set, but also the expected density of the
core structures generated from the seeds.
We use DUPN_DIP to evaluate the effect of Core_-

thresh. Table 2 shows the detailed experimental results
of Core_thresh ranged from 0 to 1. It can be seen that
when Core_thresh takes from 0 to 1, the number of
complexes identified by our method decreases con-
stantly. When Core_thresh = 0, CDUN can identify 763
protein complexes on the DUPN_DIP. It indicates that
too many seeds are generated due to the value Core_-
thresh is too small. When Core_thresh = 1.0, CDUN can-
not identify any complexes on the DUPN_DIP. It
indicates that no seeds can be generated due to the value
Core_thresh is too large. Overall, with the increase of
Core_thresh, the precision and PPV are increased, and
the recall, Sn and Accuracy are. The F-score of CDUN
ranges from 0.246 to 0.575. When Core_thresh is set as
0.4, the major metrics F-score achieves the highest value
of 0.575.

Table 2 The effect of Core_thresh on the DUPN_DIP

Core_thresh #Complexes Precision Recall F-score Sn PPV Accuracy

Core_thresh = 0 763 0.436 0.653 0.523 0.47 0.648 0.552

Core_thresh = 0.1 747 0.443 0.657 0.53 0.461 0.649 0.547

Core_thresh = 0.2 651 0.493 0.619 0.549 0.443 0.667 0.544

Core_thresh = 0.3 551 0.55 0.589 0.569 0.433 0.66 0.535

Core_thresh = 0.4 433 0.6 0.551 0.575 0.431 0.641 0.526

Core_thresh = 0.5 304 0.664 0.441 0.53 0.397 0.631 0.5

Core_thresh = 0.6 238 0.723 0.368 0.488 0.362 0.609 0.47

Core_thresh = 0.7 134 0.836 0.263 0.401 0.287 0.63 0.425

Core_thresh = 0.8 97 0.856 0.199 0.323 0.201 0.689 0.372

Core_thresh = 0.9 56 0.839 0.144 0.246 0.128 0.801 0.321

Core_thresh = 1.0 0 – – – – – –

The ‘#Complexes’ refers to the number of identified complexes with different Core_thresh. The highest value in each row is in bold
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Comparison with other methods
Then, we compare CDUN with other complex identifica-
tion methods: CSO [13], Cluster ONE [12], COAN [17],
CMC [8], COACH [11], HUNTER [31], MCODE [6],
Transitivity Clustering method (TransClust) [32] and
Spectral Clustering method (SpecClust) [33]. We test
these methods on all three static PPI networks DIP, MIPS
and STRING, respectively, and choose the optimal param-
eters. CDUN is performed on the DUPN_DIP, DUPN_-
MIPS and DUPN_STRING, respectively. The Table 3 lists
the comparison results using CYC2008 as the benchmark.
Firstly, we use DIP dataset to compare the perform-

ance of complex detection methods. From Table 3, it
can be seen that CDUN and CSO and COAN achieve
the F-score of 0.575, 0.553 and 0.486, respectively, which
significantly outperforms other methods. Both CSO and
COAN exploit the GO data, which contain much valu-
able information related to protein complexes curated

by experts. However, CDUN can achieve the highest F-
score of 0.575 without integrating GO annotation data.
HUNTER achieves the highest precision of 0.852. Trans-
Clust achieves the highest recall of 0.674, Sn of 0.622,
PPV of 0.725 and accuracy of 0.672, respectively. But the
precision of TransClust is only 0.13, which leads to a
low F-score of 0.218.
Secondly, we use MIPS dataset to compare these

methods. On MIPS dataset, CDUN achieves the highest
F-score of 0.377, which are superior to other methods.
HUNTER achieves the highest precision of 0.538. Trans-
Clust achieves the highest recall of 0.623, Sn of 0.544,
PPV of 0.71 and accuracy of 0.621, respectively.
Thirdly, we use STRING dataset to compare these

methods. STRING dataset is much larger than other two
datasets. This makes more difficult for protein complex
identification on STRING dataset than other two data-
sets. From Table 3, we can see that CDUN achieve the

Table 3 Performance comparison CDUN with other approaches using CYC2008 as benchmark

PPI Dataset Methods Precision Recall F-score Sn PPV Accuracy

DIP CDUN 0.6 0.551 0.575 0.431 0.641 0.526

CSO 0.497 0.623 0.553 0.538 0.631 0.582

Cluster ONE 0.337 0.441 0.382 0.378 0.696 0.513

COAN 0.41 0.597 0.486 0.445 0.529 0.483

COACH 0.307 0.602 0.406 0.544 0.456 0.498

CMC 0.485 0.428 0.455 0.306 0.643 0.443

HUNTER 0.852 0.119 0.208 0.164 0.644 0.325

MCODE 0.423 0.14 0.21 0.282 0.362 0.32

TransClust 0.13 0.674 0.218 0.622 0.725 0.672

SpecClust 0.122 0.331 0.179 0.548 0.529 0.538

MIPS CDUN 0.438 0.331 0.377 0.244 0.612 0.387

CSO 0.391 0.344 0.365 0.283 0.641 0.426

Cluster ONE 0.273 0.267 0.27 0.235 0.725 0.412

COAN 0.356 0.352 0.354 0.261 0.636 0.407

COACH 0.239 0.347 0.283 0.317 0.385 0.35

CMC 0.335 0.322 0.328 0.361 0.468 0.411

HUNTER 0.538 0.14 0.222 0.289 0.333 0.31

MCODE 0.365 0.153 0.215 0.189 0.572 0.329

TransClust 0.145 0.623 0.236 0.544 0.71 0.621

SpecClust 0.095 0.182 0.125 0.41 0.37 0.389

STRING CDUN 0.446 0.674 0.537 0.715 0.518 0.609

Cluster ONE 0.13 0.343 0.188 0.671 0.494 0.569

COACH 0.181 0.458 0.26 0.963 0.154 0.385

HUNTER 0.5 0.017 0.033 0.107 0.353 0.194

MCODE 0.079 0.131 0.099 0.681 0.257 0.418

TransClust 0.11 0.517 0.181 0.842 0.528 0.667

SpecClust 0.066 0.347 0.111 0.652 0.519 0.582

The highest value of each dataset is in bold. Core_thresh is set 0.4 for CDUN
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highest precision of 0.446, recall of 0.674 and F-score of
0.537, respectively. COACH achieves the highest Sn of
0.963. TransClust achieve the highest PPV of 0.528 and
accuracy of 0.667, respectively. Furthermore, it can be
seen that the F-score of other compared methods is
much lower on STRING dataset than other two datasets.
For instance, Cluster ONE achieves a very low F-score
of 0.188 on STRING dataset, which is much lower than
on other datasets. This is mainly because the STRING
PPI network is much more complex than the PPI net-
works constructed by other datasets. In addition,
STRING dataset integrates PPIs not only from high-
throughput experiments, but also from biomedical liter-
atures, co-expression data, genomic context data. The
multiple source data generally lead to more noise data in
STRING dataset. These noise data also have impact on
the performance of protein complex identification
methods. Compared with other methods, CDUN inte-
grates gene expression data and STRING dataset to con-
struct DUPN_STRING which consists of 12 uncertain
PPI subnetworks, {UGT1, UGT2, …, UGT12. Then, CDUN
identify the complexes from such uncertain PPI subnet-
works. Eventually, CDUN achieve a high F-score of
0.537 on STRING dataset.
We also note that CDUN does not achieve high recall

and accuracy in some cases. For instance, CDUN only
achieve accuracy of 0.526 and 0.387 on DIP and MIPS
dataset, respectively. In the future work, we will try to
improve the recall and accuracy of our method further.
In additional, we compare CDUN with DCU [21] on

the DIP dataset. In the study [21], the DCU method was
evaluated using all the 408 complexes in the CYC2008.
Therefore, we also compare CDUN with DCU using all
the 408 complexes of CYC2008. The comparison results
are listed in the Table 4. It can be seen that CDUN
achieves higher precision and F-score than DCU on DIP
dataset.

The significance of the identified complexes
In this experiment, we use GO data to evaluate bio-
logical significance of the identified complexes. The GO
classifies gene product functions along biological
process, molecular function and cellular component.
SGD’s GO::TermFinder [34] is used to calculate the p-
value of an identified complex with respect to GO data
in our experiment. If the p-value is less than 0.01, we
consider the identified complex to be statistically

significant. In Table 5, We calculate the proportion of
identified protein complexes with p-value less than 0.01
on the three PPI datasets.

An study of cdc28-cyclin complexes identified by CDUN
Our method can identify many protein complexes, as
well as their active time points. The cellular systems are
highly dynamic and responsive to cues from the environ-
ment. These dynamic complexes results are more valu-
able to reveal the cellular function and organization than
the static complexes results. In Fig. 2, we present an ex-
ample to illustrate this.
Cdc28-cyclin complexes are a series of cyclin-dependent

protein kinase holoenzyme complexes, which had been
validated by [27, 35]. Cdc28-cyclin complexes consist of
10 proteins including YBR160W, YPR120C, YPL256C,
YGR108W, YGR109C, YMR199W, YDL155W, YAL040C,
YLR210W, YPR119W. Different Cdc28-cyclin complex
contains the common kinase catalytic subunit, YBR160W,
and the different regulatory cyclin partner.
The PPI networks including the 10 proteins have ex-

tracted from MIPS dataset in Fig. 2. The PPI networks
don’t contain YGR109C and YPR120C, because there
are no PPIs between the two proteins YGR109C and
YPR120C with the other eight proteins in MIPS dataset.
It is very difficult to identify the multiple Cdc28-cyclin
complexes only based on the topology structure of PPI
networks. Our method can use gene expression data to
calculate the dynamic information of these proteins,
which also have been listed in Fig. 2. From the protein
dynamic information, we can see that these proteins
manly are active at T2, T9, T10 and T11. For instance,
YBR160W, YGR108W, YDL155W, YMR199W and
YLR210W are active at T2 together. Then, our method
constructs DUPN_MIPS based on PPI networks and
protein dynamic information. Eventually, Cdc28-cyclin
complex 1, 2 and 3 are identified from UGT2, UGT9,
UGT10 andUGT11 by CDUN, which all matched in
CYC2008 dataset.
From Fig. 2, we can see that the three different protein

complexes are overlapped each other in the static PPI
networks. Since our method constructs the DUPN,
CDUN can effectively identify the three Cdc28-cyclin
complexes. Furthermore, our method can identify the

Table 4 Performance comparison CDUN with DCU on DIP
Dataset

Methods Precision Recall F-score

CDUN 0.559 0.48 0.517

DCU 0.548 0.519 0.495

Table 5 Proportion of the identified protein complexes with
p-value less than 0.01

Datasets Total BP MF CC

DIP 433 0.947 0.801 0.904

MIPS 317 0.954 0.751 0.887

STRING 917 0.908 0.744 0.821

‘Total’ refers to the number of predicted complexes
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active time points of the three Cdc28-cyclin complexes.
Cdc28-cyclin complex 1 and 2 are associated with T2
and T9, respectively. Cdc28-cyclin complex 3 is associ-
ated with T10 and T11. The experimental results reveal
the dynamic property of Cdc28-cyclin complexes in the
cellular systems. Firstly, the kinase catalytic subunit,
YBR160W, associated with YGR108W, YDL155W,
YMR199W and YLR210W to construct the Cdc28-
cyclin complex 1 at T2. Then, the kinase catalytic sub-
unit, YBR160W, associated with YAL040C to construct
the Cdc28-cyclin complex 2 at T9. Finally, YBR160W as-
sociated with YPL256C and YMR199W to construct the
Cdc28-cyclin complex 3 at T10 and T11.

Conclusions
In this paper, we firstly exploite gene expression data to
calculate dynamic information of PPI networks. Then, we
give a novel method to construct DUPN by integrating
gene expression and PPI data based on uncertain graph
theory. Next, we propose a new CDUN algorithm to de-
tect complexes on DUPN. It is encouraging to see that our
approach achieves the state-of-the-art PPI performance on
different yeast PPI datasets. Furthermore, the framework
of DUPN can be applied to other similar applications.
As a future study, we will collaborate with medical ex-

perts, and further analyze the dynamic property of the
protein complexes identified by CDUN. We note that
the recall and accuracy of our method cannot improve
significantly. In the future, we will focus on this issue
and try to improve the recall and accuracy of our
method. In addition, we will attempt to integrate other
resources, such as the TAP dataset to improve the per-
formance of protein complex identification.
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