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Abstract

Background: Identifying rare germline and somatic variants associated with cancer progression is an important
research topic in cancer genomics. Although many approaches are proposed for rare variant association study, they
are not fit for cancer sequencing data due to multiple issues, such as overly relying on pre-selection, losing sight of
interacting hotspots, etc.

Results: In this article, we propose an improved pipeline to identify germline variant and somatic mutation
interactions influencing cancer susceptibility from pair-wise cancer sequencing data. The proposed pipeline,
RareProb-C performs an algorithmic selection on the given variants by incorporating the variant allelic frequencies.
The interactions among the variants are considered within the regions which are limited by a four-gamete test. Then
it filters singular cases according to the posterior probability at each site. Finally, it outputs the selected candidates
that pass a collapse test.

Conclusions: We apply RareProb-C on a series of carefully constructed simulation cases and it outperforms six
existing genetic model-free approaches. We also test RareProb-C on 429 TCGA ovarian cancer cases, and RareProb-C
successfully identifies the known highlighted variants which are considered increasing disease susceptibilities.

Background
Over recent decades, large cancer genome projects, such
as TCGA and ICGC [1, 2], greatly promote the achieve-
ments on cancer genomics. One of the important research
topics is to comprehensively identify the germline and
somatic variants that contribute to cancer susceptibility.
Several standard pipelines for detecting germline vari-
ants and somatic mutations have been developed. For
each cancer patient, these pipelines require two sets of
sequencing data, one of which is from tumor tissue, while
the other collects from normal tissue. The variant calls
from a pair of such two sets are compared. Germline
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variants are expected to be observed in both sets, while
the plausible differences may represent genuine somatic
mutations.

Deleterious germline variants inheritance are usually
confined to a small population, whose minor allele fre-
quencies are usually very low. Interacting with germline
ones, highly recurrent somatic mutations only make up a
small proportion of total somatic events. Low minor allele
frequencies can terribly hurt the statistical power and odd
ratio in association analysis. To tackle this issue, exist-
ing computational approaches for germline and somatic
variants widely adopt the collapsing strategy, as known
as the burden-test. It is a major technique for rare vari-
ant association study. The basic idea of collapsing strategy
is to merge the given variants to one or multiple virtual
loci, whose minor allele frequency(ies) is(are) obviously
increased. The statistical tests are then applied to these
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virtual loci, together with common variants. For exam-
ple, the mutations from the genes that are on the same
pathway are often collapsed to a single virtual locus. The
successful cases of using collapsing strategy have reported
many rare variants that contribute to the susceptibility of a
number of complex diseases and traits, including mutlipe
types of cancer [3–6].

Any burden-test approaches could be classified into one
of two categories: genetic model-based or genetic model-
free. Genetic model-based approaches assume that the
given variants are finely selected, while the model-free
ones generate a set of candidate variants from given ones.
Recent published approaches prefer the model-free strat-
egy because model-free approaches are more aggressive
in identifying novel deleterious events. The major diver-
sity of the existing approaches is presented in the ways
of selecting candidate variants. Some approaches weight
the given variants before statistical tests, such as the
rare variant weighted aggregated statistic (RWAS) [7], the
likelihood ratio test (LRT) [8] and two weighted score
tests with branching under ratios (BUR) and likelihood-
based model branching (LiMB), respectively [9]. Regres-
sion is another idea to refine the given variants, such
as the kernel-based association test (KBAT) [10], the
sequence kernel association tests (SKAT) [11, 12] and
convex-concave rare variant selection method (CCRS)
[13]. RareCover is considered the first algorithmic selec-
tion approach, which filters the variants via a χ2 aggre-
gation greedy strategy [14]. Both RareProb [15] and the
logistic Bayesian LASSO (LBL) [16] improve the selection
strategy of RareCover, where RareProb implements a hid-
den Markov random field model and LBL incorporates
a posterior Bayesian score calculated by a Markov chain
framework.

Although different burden-test approaches vary in the
means of collapsing, the “common disease, rare variant”
hypothesis limits their applications in cancer genomics
[17]. This hypothesis suggests that a set of independent
variants with low MAFs and modest penetrances jointly
affect a complex trait, where each may only explain a
small portion of the phenotypes [5, 6]. Here, the inter-
actions among rare variants are suggested to be either
non-existent or too weak to be observed [7, 8, 14, 18].
However, it is reported that the germline variant and
somatic mutation interactions influencing cancer sus-
ceptibility is involved in more than 3% of cancer cases
across multiple cancer types [4]. For example, the two-hit
hypothesis serves as a classic genetic model for the DNA
repair and tumor suppressor genes [19]. Moreover, several
computational models are proposed to capture such inter-
actions. For example, the significant mutated gene test has
successfully supported the research on the landscape of
the interacting somatic mutations across 12 major can-
cer types [3]. Such interactions are also observed in clonal

expansion analysis [20]. It is also reported that the somatic
copy-number alternations may contribute to the potential
selective advantages of the germline variants [4]. Second,
tumor tissue is an admixture of clonal tumor cells and
non-cancerous cells. And thus, sample contamination and
clonal architecture are ineluctable. Furthermore, the vari-
ant allelic frequency at each site reveals differences among
sub-groups of the given samples. Without considering
these issues, a collapsing method would lose sensitivity
and specificity, and the association approach could be
weakened by decreasing the statistical powers.

We propose a burden-test pipeline in this article. This
pipeline extends the existing RareProb framework pro-
posed in [15] and the name of this pipeline is RareProb-
C. RareProb-C is designed for cancer sequencing data,
which considers the interactions among rare germline and
somatic variants. To verify this pipeline, we conduct a
series of simulation experiments with different settings,
and compare RareProb-C to 6 popular approaches, which
are 1) RWAS, BUR and LiMB from weighted-based group,
2) CCRS from regression-based group and 3) RareCover
and LBL from algorithmic selection group. The results of
RareProb-C show significant advantage in type-II error
rates. RareProb-C is also tested on a set of 429 TCGA
ovarian cancer cases. The association report provided
by RareProb-C includes more highlighted variants, which
are considered to be associated with increased cancer
susceptibilities.

Methods
RareProb-C consists of four components, and RareProb
[15] becomes a core module of one component. The three
new components are described in this section, whose
functions are detecting interacting variants, estimating
the significant mutated regions, and removing singular
variants or cases. During implementation, all these com-
ponents are executed simultaneously within a hidden
Markov random field framework. Supposing that we are
given M variants on a set of N samples. Variants could
include both single-site ones and small indels. Large struc-
tural variations are not discussed here, as their functional
analyses are often involved in either large LOH/CNV or
more complex mechanisms [4]. Suppose the given N sam-
ples consist of N

2 cases and N
2 controls. If the number of

cases is not equal to the number of controls, the following
equations can be used simply by applying non-centrality
parameters.

Detecting interacting variants
For germline variant s, let θs denote the variant allelic
frequency (VAF) in a tumor sample and ρs denote the
variant allelic frequency in the paired normal sample.
Let c+

s and c−
s represent the number of reads supporting

the mutation at site s in the tumor and normal samples,



Geng et al. BMC Genomics 2018, 18(Suppl 7):753 Page 57 of 71

respectively. Two binomial distributions can be drawn for
the tumor and normal samples: c+

s ∼ Bin
(
d+

s , θs
)

and
c−

s ∼ Bin
(
d−

s , ρs
)
, where d+

s and d−
s denote the respec-

tive read depths. For this site across samples, the statistic
of the difference between θs and ρs is calculated by a
pair-wise t-test. Similar to the linear kernel function [11],
which calculates genetic similarities, we weight the inter-
actions of two variants s and s′ by ωs,s′ ∼ 2tsts′

t2
s +t2

s′
, which

affects how likely these two variants would be collapsed.
For somatic mutations, only θ· and c+· are considered. By
applying clonal architecture analysis [3], θ· are clustered
into multiple sub-clones and the correlation coefficient
ω·,·′ of each mutation-pair within a sub-clone is obtained
simultaneously.

Furthermore, the interactions among multiple variants
may vary from two adjacent sites to a few sites within
a certain region/pathway, e.g., within a gene or multiple
genes. Let G·,s represent the genotypes at any site s across
all given samples. Here we assume that the observed geno-
type reflects a Bayesian classifier from multiple factors,
such as c+

s and c−
s . Let m

(
G·,s

)
denote the classifier model

for each case at site s. Then, the interactions among s and
neighboring variants n(s) can be described as the condi-
tional probability of m

(
G·,s

)
undergoing m

(
G·,s′

)
, where

s′ ∈ n(s). To clearly describe the patterns of interactions,
we have

P
(
G·,s|G·,sn(s)

) ∝ exp

⎛

⎝τm
(
G·,s

) + ν
∑

s′∈n(s)
ωs,s′m

(
G·,s′

)
⎞

⎠

where the first component, τm
(
G·,s

)
represents the

solo effects from s itself, while the second component
describes the effects from the interacting ones.

The variant allelic frequency for each site consists of
an N-dimensional vector. Let the vector be a state in the
Markov random field. Then, state Hs = [

G·,s
]−1 cor-

responding to site s, and based on the Markov-Gibbs
equivalence, for two interacting variants s and s′, the inter-
action could be represented as a transition probability
between Hs and Hs′ , which is

P (Hs|Hs′ , θ) ∝exp
( N∑

i=1
μ + (1 − μ) f

(
−θds,s′ + Is,s′e−θds,s′

) )

where μ denotes the mutation rate by which a variant
occurs independently, while θ denotes an unknown model
parameter that describes the probability of a variant being
located in a deleterious region. ds,s′ is the genetic distance
between two adjacent sites s and s′, which underlies the
length of a region.

Estimating the regions with interactions
The transition probability P (Hs|Hs′ , θ) models the inter-
acting patterns between two sites, and we then bridge each
interacting pattern to the region vector R. R can be shared
across cases with similar features.

For any site s, vector G·,s is used to estimate the status
of region vector Rs. To facilitate the computation, without
loss of the Markov property, we first define two additional
silent states affiliated to the state Hs, which are Re

s and Rb
s .

Then, we define that a Markov chain via state Re
s denotes

that site s is in an elevated region; otherwise, the chain
though Rb

s denotes that site s is in a background region.
Let Pe

s = P (R = 1|Hs) be the transition probability of
site s within an elevated region, while Pb

s = P (R = 1|Hs)
denotes the probability of site s within a background
region and the Markov property limits Pe

s + Pb
s = 1. Thus,

the probability of site s being located in an elevated region
can be represented by

p
(
Re

s |Hs, Hs′ , Rn(s)
) ∝ exp

⎛

⎝τB
(

Pe
s , Pb

s

)
+ ν

∑

s′∈n(s)
ωs,s′Rs′

⎞

⎠

and the joint probability of latent vector R can be rep-
resented by p (R; �R) ∝ exp

(
τ

∑M
s Rs + ν

∑
s,s′ ωs,s′Rs′

)
,

where s′ ∈ n(s) and �R = (τ , ν). τ and ν are two
model parameters balancing the importance of interac-
tions, where τ + ν = 1. Rs′ = P (Rs′ |X), where X is
a M-dimensional vector that each element represent the
causal/non-causal status of the corresponding variant.

Furthermore, we require each region to pass the four-
gamete test, which limits the length of a region and poten-
tially reduces false positives. We adopt a maximal-K-cover
pipeline to divide G N

2 ×M into multiple compatible inter-
vals, as proposed in [21]. This pipeline consists of a series
of scanning algorithms. First, it establishes two interval
sets, Ilr and Irl, and obtains intervals from the left-to-
right algorithm and right-to-left algorithm, respectively,
where each set contains K intervals. Second, a merg-
ing algorithm combines these 2K intervals to extract the
overlapping genotypes with the same index, for exam-
ple, Il,i and Ir,i. It then defines K cores according to the
overlapping, denoted by C = {o1, o2, · · · , oK }. Third, an
uber-scan algorithm calculates K + m candidate intervals
U = {u1, u2, · · · , uK } and assigns these K + m intervals to
each core in C. If oi contains uj, then uj is allocated in the i-
th group. Finally, the maximal intervals are estimated via a
dynamic programming algorithm. We restrict any region
within one compatible interval, where the genotypes are
restricted by having limited diversity.

Estimating model parameters
Based on the Gibbs-Markov equivalence, a pseudo-
likelihood iteration algorithm can solve this model to
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estimate the unknown model parameters and the hidden
states. Again, due to the computational complexity, we
introduce another two silent field states to facilitate the
computation process. For any site s, let �Js

i,· permute from
�G·,s′ , where the transition probability from Js

i,· to �G·,s′ is
∝ 1

N−1 ; let �Js
i duplicate from the vector G·,s′ , where the

transition probability from �Js
i to �G·,s′ is 1. The other com-

ponent of P (Hs|Hs′ , θ) can be divided into two separate
transition probabilities, namely, P

(
Js
i |Rs

) = f
(−θds,s′

) +
e−θds,s′ and P

(
Js
i,·|Rs

) = 1
N−1 f

(−θds,s′
)
, where f (x) is

(1 − e−x)/N .
Now, for the entire hidden Markov random field model,

we need to estimate three unknown model parameters:
the mutation rate μ, the deleterious region location like-
lihood θ and the regional Bayesian classifier Pe· . Pb· fully
depends on Pe· . The forward probability for the hidden
state Rs is

αR(s) =
2N∑

j=0
αR (s − 1) Pb

s · I + Pe
s (1 − I) P (Rs|X)

where the indicator function I = 1 when mode
(
j, 2

) = 0.
The forward probability for �Hs is

αH(s) =
N∑

j=0
αH (i, s − 1) P (Hs)

Similarly, we have the forward and backward probabili-
ties for hidden states Rs and Hs at the same site, which are
βR(s) and βH(s).

We incorporate an EM algorithm described in [22]
into the original iterated conditional mode algorithm in
RareProb to estimate the model parameters and update
the hidden states. In iteration r, the algorithm estimates
the hidden parameters as follows:

μr+1 =
∑N

i=1
∑M

j=0 I(Hs �= Gi,s)P(Hs|G, μr , θr)
∑N

i=1
∑M

j=0 I
(
Gi,s > 0

)
P(Hs|G, μr , θr)

and

θr+1 =argmax

⎛

⎝
M∑

i=1
P

(
Js
i |Rs

) N∑

j=1
P

(
Js
i |G, μr , θr

)

+P
(
Js
i,·|G, μr , θr

)
)

Let ξR(s, i, j) represent the probability of Rs equal to i
and Rs′ equal to j, with the conditions of R̂ and model
parameters. Then, we have

ξR
(
s, i, j

) = αR(s, i)P
(
Hi|Hj

)
P (Rs|X) βR(s, j)

∑2N
i=1

∑2N
j=1 αR(s, i)P

(
Hi|Hj

)
P (Rs|X) βR(s, j)

thus,

(
Pb

s

)

r+1
=

∑M
s ξR (s, 0, 0)

1
N

(
1 + (N − 1) e−θds,s′

)

Once the differences in parameters between two iter-
ations are less than a preset threshold(s), this algorithm
terminates.

Filtering singular cases
With the estimation of regions and causal/non-causal sta-
tus for each variant, we also filter cases with different
patterns of features via the posterior probability at each
variant. We first bootstrap a set of samples from all of the
cases and estimate the model structural parameters via
the aforementioned algorithms. In the implementation,
we include a short-cut to first filter out L samples with
higher posterior probabilities, and then apply the boot-
strap on those selected ones to speed up the process.The
posterior probability at a specific site s carrying genotype
i is

ζ
(
Gi,s

) ∝ exp
αR(s, i)βR(s, j)

αR(M, i)

If the posterior probability ζ
(
Gi,s

)
is less than ζ

(
Ḡi,s

)
,

we consider the variant as one with different feature pat-
tern. If a case carries a number of such variants, where
the number is a user-setting parameter, we will eliminate
it from downstream association analysis.

Results and discussion
To test the performance of the proposed approach, we
first apply RareProb-C to a series of simulated datasets
under different configurations, and compare the results to
6 recent published methods. As mentioned above, accord-
ing to the ways of selecting candidate variants, the existing
model-free approaches could be summarized into one
of three categories: weighted-based methods, regression-
based methods and algorithmic selection methods. We
choose at least one approach from each category. The
approaches, to which we compare, include 1) RWAS, BUR
and LiMB from weighted-based group, 2) CCRS from
regression-based group and 3) RareCover and LBL from
algorithmic selection group. We also apply RareProb-C to
a set of 429 TCGA samples from the ovarian group, and
then the results are verified by the literature review.

Generating simulation datasets
We adopt the same way of generating simulation datasets
as in [7, 8, 15]. It implements a fixed-number strategy.
The number of causal variants, denoted by C, and the
total number of variants M in each dataset are preset.
To conduct a fair comparison, each rare variant in this
experiment is generated independently because the exist-
ing approaches do not consider the interacting rare vari-
ants. In the real dataset later on, the interacting germline
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and somatic variants are involoved then. The assumption
behind the fixed-number strategy is that linkage disequi-
librium between rare variants does not exist. The minor
allele frequency of each variant in these cases follows the
Wright’s distribution:

f (ρi) ∝ (ρi)
βi−1 (1 − ρi)

βL−1 eσ−ρiσ

where ρi is the MAF at site i, and σ is the selection coef-
ficient. A causal variant may be repaired to a neutral one
with the probability of βL, while βi is the probability of
mutating a neutral variant to causal one. We adopt the
same parameter setting as in [7, 8, 15], where we set σ =
12.0, βi = 0.001 and βL = 0.00033. The relative risk (RR)
of a causal variant is defined as RR = δ

(1−δ)ρi
+ 1, where

δ is the marginal population attributed risk (PAR), which
is equal to the group PAR divided by the number of causal
variants. The reason is that the sum of relative risk among
all the variants should be equal to 1. The minor allele fre-
quency in controls is controlled by relative risk, which is
θi = RR×ρi

(RR−1)ρi+1 . In each dataset, we first randomly choose
C causal variants in a set of 100 variants and record the
causal ones into Xknown. Then, according to the previous
strategy, we generate 1000 cases and 1000 controls.

Comparisons between RareProb-C and the existing
approaches
We first compare the statistical power and type-I error
rate. For the statistical power, we take the same measure-
ment used in [7, 8, 15], where the power of an approach is
measured by the number of significant datasets among all
the datasets with the same configuration, using a signifi-
cance threshold of 2.5×10−6 based on the Bonferroni cor-
rection, assuming 20000 genes genome-wide. The type-I
error rate of each experiment is defined as the probabil-
ity of a preset causal variant not being selected for the
set of candidate variants. We test exactly 100 datasets
for each comparative experimental configuration, where
the type-I error rates take the average. In this group of
experiments, we hold the number of preset causal vari-
ants to 50 and vary the population attributed risk (PAR)
from 0.02 to 0.05 and the results are shown in Table 1.
According to Table 1, we are able to summarize that
most of the approaches can achieve very high statistical
powers, among which RareProb-C presents lower type-I
error rates than the other approaches in most of the sim-
ulation configurations. We also would like to explain a
little more for the two exceptions, RareCover and LRT.
The type-I error rates of RareCover are calculated from
the significant datasets only. Although RareCover’s rates
are much lower than the other approaches, the statisti-
cal power is always the premise. For LRT, as there is no
prior information for the simulation datasets to conduct
variant selection, LRT involves all given variants into the

likelihood ratio test. And thus, LRT does not have type-I
error rates but always has 100% type-II error rates.

To further evaluate the performance, we also compute
the type-II error rate. The type-II error rate of each experi-
ment is defined as the probability of a preset neural variant
being selected for the set of candidate variants. We test
exactly 100 datasets for each comparative experimental
configuration, where the type-II error rates take the aver-
age. In the following experiments, we vary the population
attributed risk (PAR) from 0.02 to 0.05 and also enumer-
ate the number of preset causal variants from 50 to 90
and the results are listed in Table 2. From Table 2 we can
see that RareProb-C offers a significant improvement in
reducing the type-II error rate, which is considered to be
very important in clinical genomics.

Null-model test for RareProb-C
We also apply a null-model test on RareProb-C to
collect the dataset-level type-I error rate. The type-I
error at dataset level measures how frequently a non-
significant dataset (consisting of non-causal variants) is
wrongly reported as a significant association dataset. We
randomly generate one million datasets, each consist-
ing of 1000 samples with 100 variants each. At each
sample site, a mutation is assigned with the probabil-
ity of 0.005. For each sample, it has the same prob-
ability of being set as a case or a control. Among
these 10,000 datasets, RareProb-C only reports 9 sig-
nificant datasets, which shows strong reliability. LBL
reports 24 significant datasets. CCRS reports 122 signif-
icant datasets. Both BUR and LiMB report 0 significant
datasets.

Experiments on cancer sequencing data
We then apply RareProb-C to a real cancer sequencing
dataset. This dataset consists of 429 TCGA serous ovar-
ian cancer (OV) cases [1, 23]. Each case has one tumor
sample with whole exome sequencing data and one nor-
mal sample with whole exome sequencing data. All of the
data are aligned to human reference build 37 using BWA,
and variants are identified using VarScan, GATK, and Pin-
del, with stringent downstream filtering to standardize
specificity. Variant annotation is based on Ensembl release
70_37_v5. The variant list for association analysis con-
tains 3050 germline truncation variants and 4724 somatic
truncation mutations. Read count and variant allelic fre-
quency analysis are performed by the bam-readcount tool,
available at https://github.com/genome/bam-readcount.
Somatic variants with VAFs can be downloaded from
the supplemental data of [23]. The control cohort is
from the NHLBI Women’s Health Initiative (WHI), which
consists of 557 samples. The variant calls for each
WHI sample are collected via the same pipeline with
OV cases.

https://github.com/genome/bam-readcount
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Table 1 The statistical powers and the type-I error rates of RareProb-C and other approaches on the simulation datasets

PAR 0.02 0.03 0.04 0.05

Approach Power Type-I Power Type-I Power Type-I Power Type-I

RareProb-C 100% 34.22% 100% 25.06% 100% 22.33% 100% 24.33%

RareCover 71.67% 5.89% 62.67% 3.97% 54.55% 2.86% 47.73% 1.92%

LRT 99% 0% 100% 0% 100% 0% 100% 0%

LBL 100% 37.47% 100% 37.57% 100% 35.74% 100% 31.19%

BUR(0.95) 100% 55.03% 100% 60.16% 100% 64.85% 100% 59.06%

LiMB 100% 44.99% 100% 48.62% 100% 55.04% 100% 42.82%

CCRS 100% 27.82% 100% 43.49% 100% 56.86% 100% 67.73%

The population attributed risk (PAR) vaires from 0.02 to 0.05. The significance threshold is set to P < 0.05

RareProb-C applied an exome-wide association analysis
on the total of 7774 variants. It reports 9 genes harbor-
ing causal variants with significant p-values, which are
BRCA1, BRCA2, CHEK2, BRIP1, USP6, PALB2, ATM,
PCSK7 and FLT3. Among these 9 genes, 5 genes (BRCA1,
BRCA2, CHEK2, BRIP1 and USP6) are highlighted as sig-
nificant susceptibility genes associated to ovarian cancer
in an integrated germline-somatic study on the same
TCGA OV cases [23]. The association analysis results

between RareProb-C and this research are shown in
Table 3.

Moreover, for the 3 genes (ATM, PCSK7 and FLT3)
that are not reported as significant in [23], our findings
are also noteworthy. ATM is a known ovarian cancer
associated gene reported in multiple researches [24, 25].
According to the literature review, we find that both
PCSK7 and FLT3 are reported to be associated with ovar-
ian cancer in [26], respectively. As a comparison, we also

Table 2 Comparison results among RareProb-C and the other 5 state-of-the-art approaches on the type-II error rates

PAR Causal Type-II error

Approach RareProb-C LRT LBL BUR 0.95 LiMB CCRS

0.02 12.89% 100% 32.99% 23.93% 42.78% 53.17%

0.03 50 15.21% 100% 30.09% 14.96% 57.37% 54.00%

0.04 17.28% 100% 19.78% 11.16% 47.99% 52.02%

0.05 20.90% 100% 25.51% 12.03% 52.76% 52.42%

0.02 12.20% 100% 26.06% 20.15% 56.10% 54.45%

0.03 60 17.05% 100% 26.18% 16.16% 60.48% 53.03%

0.04 20.75% 100% 39.02% 14.87% 65.71% 54.08%

0.05 23.29% 100% 31.14% 19.44% 58.82% 55.45%

0.02 12.29% 100% 31.88% 20.33% 67.80% 52.53%

0.03 70 19.10% 100% 33.11% 20.66% 67.94% 53.88%

0.04 22.39% 100% 33.32% 23.55% 71.77% 55.62%

0.05 22.51% 100% 32.09% 31.37% 75.55% 58.84%

0.02 11.39% 100% 32.66% 9.29% 80.07% 50.16%

0.03 80 17.85% 100% 48.38% 8.38% 76.71% 53.03%

0.04 22.98% 100% 38.21% 31.35% 84.29% 62.57%

0.05 15.57% 100% 42.83% 39.47% 78.66% 67.21%

0.02 11.79% 100% 36.91% 35.63% 91.26% 51.73%

0.03 90 20.42% 100% 40.49% 40.33% 89.29% 61.25%

0.04 21.28% 100% 39.91% 47.99% 91.26% 70.83%

0.05 14.72% 100% 48.87% 55.54% 88.79% 74.26%

The population attributed risk (PAR) still vaires from 0.02 to 0.05 and the number of preset causal variants enumerates from 50 to 90. The significance threshold is set to
P < 0.05
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Table 3 Significant associated genes identified by RareProb-C
comparing to the ones highlighted in the integrated
germline-somatic research on the same dataset

Gene name RareProb-C OV research

BRCA1 3.0 × 10−14 2.0 × 10−8

BRCA2 4.5 × 10−15 8.9 × 10−6

CHEK2 2.4 × 10−15 0.11∗

BRIP1 5.2 × 10−10 0.11∗

USP6 3.3 × 10−12 Not Significant∗

PALB2 5.2 × 10−10 Not Significant∗

ATM 2.9 × 10−9 Not Significant

PCSK7 7.6 × 10−8 Not Significant

FLT3 5.8 × 10−7 Not Significant

*These 4 genes are considered to contribute to ovarian cancer susceptibility in the
research, although without reaching the significance threshold (P < 0.05)

run RWAS+SIFT, LRT+SIFT, RareCover and RareProb
on the same dataset. However, RareCover only identifies
BRCA1 and BRCA2 with significant associations, while
RareProb reports BRCA2, CHEK2 and YWHAE. Unfortu-
nately, we do not find literature supports YWHAE. Other
approaches do not report significant results.

Conclusions
In this article, we introduce an improved burden-test
pipeline for cancer sequencing data, RareProb-C. This
new pipeline is a model-free association approach. It
considers the interactions among the given variants, by
incorporating variant allelic frequencies and other estima-
tions directly from sequencing data. It is able to overcome
several known weaknesses of the existing collapsing meth-
ods. RareProb-C significantly extends and enhances the
hidden Markov random field model in RareProb and tech-
nically estimates the hidden states and model parameter
with fewer degrees of freedom. We apply RareProb-C to
a set of TCGA ovarian cancer cases and a control cohort
from NHLBI Women’s Health Initiative. RareProb-C suc-
cessfully identifies several significant associations, which
are strongly supported by multiple researches. In the com-
parisons of RareProb-C on simulation datasets under dif-
ferent simulation configurations, the results demonstrate
that this new approach outperforms 6 popular approaches
in terms of statistical power, sensitivity and specificity.
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