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Abstract

Background: In recent years several different fields, such as ecology, medicine and microbiology, have experienced
an unprecedented development due to the possibility of direct sequencing of microbioimic samples. Among
problems that researchers in the field have to deal with, taxonomic classification of metagenomic reads is one of the
most challenging. State of the art methods classify single reads with almost 100% precision. However, very often, the
performance in terms of recall falls at about 50%. As a consequence, state-of-the-art methods are indeed capable of
correctly classify only half of the reads in the sample. How to achieve better performances in terms of overall quality of
classification remains a largely unsolved problem.

Results: In this paper we propose a method for metagenomics CLassification Improvement with Overlapping Reads
(CLIOR), that exploits the information carried by the overlapping reads graph of the input read dataset to improve
recall, f-measure, and the estimated abundance of species. In this work, we applied CLIOR on top of the classification
produced by the classifier Clark-l. Experiments on simulated and synthetic metagenomes show that CLIOR can lead to
substantial improvement of the recall rate, sometimes doubling it. On average, on simulated datasets, the increase of
recall is paired with an higher precision too, while on synthetic datasets it comes at expenses of a small loss of
precision. On experiments on real metagenomes CLIOR is able to assign many more reads while keeping the
abundance ratios in line with previous studies.

Conclusions: Our results showed that with CLIOR is possible to boost the recall of a state-of-the-art metagenomic
classifier by inferring and/or correcting the assignment of reads with missing or erroneous labeling. CLIOR is not
restricted to the reads classification algorithm used in our experiments, but it may be applied to other methods too.
Finally, CLIOR does not need large computational resources, and it can be run on a laptop.
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Background
Metagenomics is the study of genomic sequences
obtained from an environment such as, for example,
water, saliva, soil, etc. [1]. A metagenomic sample is pro-
cessed by extracting and studying the genetic material
in order to detect the microorganisms that are present
in each sample. Metagenomics is transforming ecology,
medicine, microbiology, and other research areas investi-
gating various microbiomes [2, 3], by enabling for the first
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time the genomic study of environmental samples, given
the difficulty or impossibility to culture most bacteria. For
example, the diversity of microbes in humans is found to
be associated with diseases such as inflammatory bowel
disease (IBD) [2] and colorectal cancer [3]. Metagenomics
allows the identification and characterization of bacterial
and viral genomes at a level of detail not previously possi-
ble. Moreover it can be used to detect previously unknown
species.

Taxonomic classification of metagenomics reads can
help the identification of functional potential of the
microbes. In general, there are two methods to detect
the taxonomic content of environmental samples: (1)
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sequencing phylogenetic marker genes, e.g. 16S rRNA,
that requires PCR amplicons analysis; (2) Next Generation
Sequencing, where all the genomic material of the sample
is sequenced.

The assignment of the correct taxa using marker genes
is a relative simple step. However, this method suffers the
drawback of potentially biased amplification steps. Fur-
thermore, not all taxa can be captured by traditional 16S
sequencing, because of its divergent gene sequences [4].

With the continuing decrease in cost of sequenc-
ing, approaches based on Next-Generation Sequencing
are becoming the most common ones. The advantages
include the ability to gain insights of the genomic con-
tent of a microbiome through functional classification,
without the need to culture bacteria or of biased prepro-
cessing steps. However, the short length of NGS reads
poses a number challenges for the correct taxonomical
classification of each read.

Many computational methods have been developed
to classify metagenomic reads. These methods can be
broadly divided into three categories, reflecting their dif-
ferent strategies: (1) sequence similarity based methods,
like MegaBlast [5] and Megan [6], in which reads are
searched for in reference databases through sequence
similarity; (2) marker-based methods, like [7, 8], where
certain specific marker sequences are used to identify
the species. Some of these methods are based on uni-
versal genes, others, like MetaPhlAn [9], utilizes marker
genes that are clade specific; (3) sequence composition
based methods, which are based on characteristics of their
nucleotide composition (e.g. k-mers presence).

The fastest approaches are sequence composition based
methods. They generate models from the reference organ-
isms genomes, usually based on k-mers counts. Then
the input reads are classified based on which model fit.
In this category the most representative methods are
Kraken [10], Clark [11] and Lmat [12], in which reads are
queried against reference databases and the origin of the
hit sequences is used to classify reads. These methods
are able to achieve a precision in the classification task as
good as MegaBlast, but they are much faster and they can
handle larger datasets.

All these tools focus on the improvement of the correct
assignment of reads to the taxa they belong in terms of
precision. Indeed they have reached very high levels, e.g.
Clark [11] reports precisions above 95% on many datasets.
On the other hand, in terms of recall, i.e. the percentage
of reads actually classified, both Clark and Kraken usually
show performances between 50% and 60%, and sometimes
on real metagenomes just 20% of reads can be assigned to
some taxa.

The literature in this field is growing very rapidly (see,
for example, [6, 7, 9–14]) with a focus on improving
the classification precision. Instead, in this study we aim

to improve the recall in order to reduce the number of
unclassified reads, that is one of the major issues when
analyzing real microbiome datasets.

Recently, we have develop MetaProb [14] a method for
binning metagenomic reads. MetaProb is able to effec-
tively group reads together to form bins of reads that rep-
resent candidate species. As several other binning tools
like MetaCluster [15] and BiMeta [16], MetaProb is based
on the construction of the reads overlap graph [17] to
mimic the assembly process. However, MetaProb does
not rely on a reference database and it cannot taxonom-
ically annotate reads, or bins. In this paper we introduce
a novel boosting method for CLassification Improvement
with Overlapping Reads (CLIOR), that relies on the defi-
nition of overlapping reads graph, and it uses as input the
taxonomic label assignments given by Clark, a standard
single reads classifier. The problem with many single reads
classifiers is that reads that share a considerable overlap
might be assigned to different taxa. Our method consid-
ers groups of overlapping reads as originating from a same
species, thus all the reads that belong to a given group will
be labeled with the same taxa, leading to an improvement
of classification performances.

The proposed CLIOR approach is characterized by four
distinctive features: i) a pipeline that combines reads over-
laps together with theirs taxonomic labels; ii) the intro-
duction of a classification correction, that will reduce the
problem of unassigned reads, and correct misclassified
reads; iii) CLIOR does not depend on a specific algorithm
for the classification of single reads, e.g. we used Clark,
but it can applied to other methods too; iv) the ability of
CLIOR to improve reads annotations increases as the size
of datasets grows.

Methods
In this section we will describe the CLIOR approach to
improve the overall quality of classification of metage-
nomic samples. With reference to Fig. 1 we will describe
the main steps of our approach, namely: i) initial classi-
fication of the input read datasets with a state-of-the-art
classifier; ii) partitioning of the reads into homogeneous
groups; iii) adopt a voting strategy and apply it to each
group to obtain the final classification.

Initial classification of reads
The set of reads obtained from a metagenomic sample is
given in input to a classifier that will try to assign a label
to each read.

After this step a read is assigned a label at the taxon-
omy level for which the software is run if, according to
the classifier-specific strategies, the confidence level of
the call is above a given threshold. Otherwise the read
remains unlabeled. The comparison of different metage-
nomic classification methods is a non-trival problem and
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Fig. 1 CLIOR pipeline. The tree main phases of CLIOR: classification; grouping; voting. In black the reads that are not assigned; in blue the reads
assigned to species A’ in red those assigned to species B, and in green those assigned to species C

it is not the scope this paper. We chose Clark [11] as one
of the most promising tools in terms of both similarity to
the correct answer and the fraction of reads classified [18].
However, CLIOR is of general use and it can take in input
the taxonomic annotations produced by any other tool.

The next steps in our approach have the objective of
both reducing the cardinality of the set of unlabeled reads,
and correcting labels that could have been erroneously
assigned to some reads.

Grouping reads based on overlaps
In this step of our pipeline, the set of reads is parti-
tioned into groups, based on the extent of their overlap.
Ideally the overlap would be computed using a reads over-
lap graph [17], but this approach is highly demanding in
terms of RAM. Instead we use an alignment-free tech-
nique used in de-novo genome assembly, and that has
been also successfully applied as an intermediate step in
several metagenomic binning studies [14–16, 19].

The overlap between reads is estimated by consider-
ing the amount of shared k-mers between reads. This
technique relies on the assumption that, by choosing a
sufficiently large value for k, the probability that two k-
mers are shared by different genomes is low. For example,
a study presented in [16] shows that the average ratio of
common k-mers between pairs of bacterial genomes is
less than 1.02% when k = 30. Therefore, the presence of a
shared k-mer between two reads should indicate that the
two reads belong to the same species. Moreover, if sev-
eral such k-mers are shared, they are also actually likely to
be overlapping reads. This strengthens the probability to
meet our goal of having in the same group only reads from
the same species.

The partitioning of the set of reads into groups is
obtained as follows. The input reads are scanned one at
the time, and a global inverted index is built to store for
each k-mer the list of reads in which it occurs. Then an

approximate reads overlap graph is built, in which a node
represents a read, and an edge is inserted between two
reads if and only if the dot product of their k-mer vectors
is greater than a pre-defined threshold m. In fact, when
analyzing datasets with millions of reads, it is crucial to
store only qualifying edges, rather than the full graph, in
order to limit the RAM usage. This approach allows us to
analyze datasets an order of magnitude larger than the full
graph approach.

Given a read Ri, its composition vector is a vector
Vi of size 4k where the entry Vi[ t] holds the num-
ber of occurrences of the t-th k-mer in lexicographic
order.

In order to compute such a dot product without actually
build the 4k sized vectors, we proceed as follows. Consider
a read Ri and its set of k-mers KRi . For each w ∈ KRi we
query the inverted index to get the corresponding list Lw
of reads that share the k-mer w. For each read Rj ∈ Lw, we
count its multiplicity in the list and multiply this value by
the multiplicity of w in KRi . This value is kept in a variable
Wi,j that stores the partial weight of the edge between Ri
and Rj. We then proceed with the next k-mer in Ri and if
Rj is found again in the corresponding list, then the result
of the multiplication is added to Wi,j. Note that, while pro-
cessing read Ri, we do not need to keep all the variables
Wi,j in memory for all j, because only few reads Rj will
share some k-mers. Since Wi,j is a sparse vector, we use an
unordered map to store only the required fields. When all
the k-mers of Ri have been considered, we check the com-
puted weights and insert an edge between Ri and Rj if and
only if Wi,j ≥ m, for a given threshold m. We then proceed
with the next read to be processed. The values of the read
length (about 100 bases) and of the k-mer length (k = 30)
are usually such that the dot product we compute often
coincides with the number of shared k-mers between two
reads. In fact its very unlikely that a short read contains
the same 30-mer twice.
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Table 1 Genus-level and species-level average accuracy of
CLIOR and Clark-l, for various simulated (N=16) and synthetic
(N=5) metagenomes

Dataset Tool Species Genus

Prec Rec F-m Prec Rec F-m

Simulated Clark-l 0.869 0.555 0.670 0.988 0.629 0.762

CLIOR 0.978 0.973 0.976 0.992 0.986 0.989

Diff 0.109 0.419 0.306 0.004 0.357 0.227

Synthetic Clark-l 0.740 0.425 0.537 0.902 0.522 0.656

CLIOR 0.714 0.536 0.607 0.892 0.680 0.765

Diff -0.026 0.110 0.070 -0.010 0.159 0.109

Diff is the difference between the corresponding CLIOR and Clark-l performances

Once the overlap graph has been set up, the grouping
phase begins. Initially, each read is considered as a group,
and groups are progressively merged until a stopping cri-
teria is met. Starting from a node, we explore its outgoing
edges, and include in its group the node among its neigh-
bors that shares with the group the highest number of
edges. Then the new frontier is considered and we iter-
ate the process until the size of the group has reached a
threshold T. The role of this threshold is to avoid that,
by growing too large, the groups might end up including
reads from two different species linked by few, but suffi-
cient, common reads. However, when computing the size
of a group, it is not enough to sum the lengths of its reads,
because overlaps between reads should not be counted
more than once. To avoid overcounting these overlaps,
while building a group we also select a subset of indepen-
dent reads within the group. An independent set, defined
on a graph, is a set of vertices which does not contain adja-
cent vertices, thus they do not overlap. Since the problem
of finding the maximum independent set I(G) of a group
G is known to be NP-hard, we adopt a greedy solution. If
the read chosen for extension is not adjacent to any read in
I(G), then this is a new independent read and we add x to
I(G). The stopping criteria is met when the length of the
reads in I(G), which by definition do not overlap, reaches
a predefined value T.

When we cannot add further nodes, the group is
defined, and all the nodes in it are marked as visited. The
process is repeated starting from an unvisited node until
the whole graph has been explored.

Voting groups of reads
The method described above, with conservative parame-
ters k = 30 and T = 9000 (see “Parameters and evaluation
metrics” subsection), is able to cluster reads into several
small groups. Note that each species is not completely
contained in a group, but in general it is scattered across
different groups. With reference to Fig. 1, this situation
is represented by the species labeled in red. However,
the groups are characterized by a very high precision, in
fact on simulated datasets about 99.9% of groups con-
tains reads from one species. Therefore, we expect the
reads within a group to be assigned a same label. How-
ever, most classifiers ([10, 11]) leave many reads unas-
signed. Here is where our approach can be successfully
exploited. When inspecting the label assignment within a
group, if there are unassigned reads, or if several differ-
ent labels are present, we proceed with a re-assignment
following a majority consensus vote. Experiments where
we do not re-assign labels if the reads have already been
classified by Clark showed similar, but slightly lower, per-
formances than the ones we obtained with re-assignment
(see Additional file 1).

In case of ties, we proceed by randomly picking a win-
ner label and assigning that to all the reads in the group.
While this solution could potentially end up in the re-
assignment of reads that were initially correctly classified,
we argue that the impact in such a case is indeed lim-
ited. In fact, in order to have a relevant impact we should
have ties in big groups. However, exact ties in big groups
are quite unlikely to happen, because of the high precision
of groups. For small groups we have an higher probabil-
ity, but the effect of wrong re-labeling is also limited to a
small number of reads, thus not affecting substantially the
final results. In terms of numbers over all experiments, at
species level, 1.8% of groups have ties. The percentage of
reads whose labeling is affected by the random choice of

Fig. 2 Precision and recall at species level. Comparison between Clark-l and CLIOR precision and recall on simulated and synthetic datasets. In blue
Clark-l precision, in yellow Clark-l recall. In red CLIOR precision, in green CLIOR recall
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Fig. 3 Precision and recall at genus level. Comparison between Clark-l and CLIOR precision and recall on simulated and synthetic datasets. In blue
Clark-l precision, in yellow Clark-l recall. In red CLIOR precision, in green CLIOR recall

the winner is about 0.6%. At genus level, 0.61% of groups
have ties, and only than 0.13% of the reads are affected.

Results and discussion
We used several metagenomic datasets to test the perfor-
mance of CLIOR on different simulated and real commu-
nities. The simulated and real datasets used come from
other papers ([10, 11, 16]) and we summarize them in the
next section.

Simulated and synthetic metagenomes
For our test we used 16 sets of simulated short read
datasets used also in [16]. These are generated with
MetaSim software and they can be partitioned in two
groups: S and L. Each dataset comprises paired-end short
reads (length of approximately 80 bp) generated according
to the Illumina error profile with an error rate of 1%. The
six datasets in L are built over the genomes of two species,
Eubacterium eligens and Lactobacillus amylovorus, but
they are characterized by a different abundance ratio
between the two species. The ten datasets in S are much
more varied in terms of number of species (up to 30),
abundance ratio (balanced/unbalanced), and phylogenetic
distance (details on [16]).

We included in our tests also five mock commu-
nities (synthetic datasets) that are constructed from
real sequencing data, called: MiSeq, HiSeq, MK_a1 and
MK_a2, simBA5. The MiSeq and HiSeq metagenomes

were built using 10 sets of bacterial whole-genome shot-
gun reads, as in Kraken [10]. We use the dataset of short-
reads Illumina HiSeq, to create the MK_a1 and MK_a2
datasets with two abundance profiles.

The datasets HiSeq and MiSeq contain 10000000 and
4000000 single-end reads respectively, MK_a1 and MK_a2
have 1000000 paired-end reads for a total 2000000 reads
to classify. The MiSeq dataset is particularly difficult to
analyze because it contains five genomes from the Enter-
obacteriaceae family (Citrobacter, Enterobacter, Klebsiella,
Proteus and Salmonella). This can make the classifica-
tion step of these taxa more difficult because these species
have an high sequence similarity [10].

As described in [10] simBA5 metagenome was created
by simulating reads from the complete set of bacterial and
archaeal genomes in RefSeq, for a total of 1216 species. It
was created with an high error rate, to evaluate the per-
formance on data that contain many errors or have strong
differences from the genomic library available (for more
details see [10]).

Since our algorithm used Clark, we needed to compute
the reference database based on the NCBI RefSeq. How-
ever, this collection is not complete and we have some
reads which cannot be correctly identified. Examples are
the reads in HiSeq metagenomes with the Pelosinus fer-
mentans species and in MiSeq metagenome with Proteus
vulgaris, that are incorrectly classified for the same
reason [11].

Fig. 4 Pearson correlation at species level. Comparison between Clark-l and CLIOR on simulated and synthetic datasets. In blue Clark-l, in red CLIOR
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Fig. 5 Pearson correlation at genus level. Comparison between Clark-l and CLIOR on simulated and synthetic datasets. In blue Clark-l, in red CLIOR

Real data
To evaluate the performance of our algorithm we also
analyzed five real experiments taken from NCBI and
that were also used for the evaluation of Clark and
Kraken. We created all datasets filtering human reads
and sampling in a uniform manner so as not to
change the characteristics of the datasets. As in [11]
we used SRS015072 (mid-vagina, two runs, SRR062276
with 698428 reads and SRR062301 with 692906 reads),
SRS019120 (saliva, two runs, SRR062415 and SRR062462
both with 2000000 reads) and SRS023847 (anterior nares,
one run, SRR061942 with 600000 reads).

Parameters and evaluation metrics
In this paper we used CLIOR to boost the performance of
Clark-l, so we need to set the parameters for both. Among
the available versions of Clark, we used Clark-l, the light
version of Clark, with all default parameters. This choice is
motivated by our objective to obtain performances com-
parable or better than the state-of-the art algorithms, but
using much less computational resources. In fact Clark-l
can be run on a laptop. As for CLIOR, we set the thresh-
old m (minimum threshold of shared k-mer, k = 30) in

different ways on the basis of the properties of datasets.
Several previous work (e.g. [14, 16]) showed that a good
value for m, for short reads, is m = 5. Ideally we would
have run all our experiments with this value. However,
HiSeq and MiSeq are big datasets (10M and 4M reads,
respectively). In order to be able to analyze these datasets
we had to increase the threshold to m. In fact, smaller
values of m correspond to denser graphs, thus increas-
ing the memory requirements. The choice of m reflects a
trade-off between precision and available computational
resources. In our experiments the parameter m of CLIOR
was set to 45 for the HiSeq and MiSeq datasets, and m = 5
for all other tests. The parameter T of CLIOR was set to
9000, similarly to other studies [14, 16].

In order to compare the results of CLIOR with Clark-l,
we used precision, recall and F-measure metrics with def-
initions as in [11]. Given N the number of reads, Y the
number of reads classified and X the number of correctly
classified reads, we can define precision as P = X/Y ,
that is the fraction of correct assignments over the total
number of assignments, and recall as R = X/N , that
is the ratio between the number of correct assignments
and the number of reads to be classified. The F-measure

Fig. 6 Predicted abundance at species level. Analysis on the dataset MK_a1. In light-blue the ground truth, in blue CLIOR, in orange Clark-l
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Fig. 7 Predicted abundance at genus level. Analysis on the dataset MK_a1. In light-blue the ground truth, in blue CLIOR, in orange Clark-l

emphasizes comprehensively on both precision and recall,
being defined as F = 2PR/(P + R). The aim of this study
is to improve the classification quality, in particular by
increasing the recall without affecting the performances
of the others metrics.

In our algorithm the processing of reads, to create
the overlap graph, is the most demanding phase and it
requires RAM to store the k-mers and the graph edges.
With our setup we were able to run CLIOR on all tests
in a PC with a Intel core i7-4510U CPU @ 2.00 GHz x 4
with 16 GB of RAM and 10 GB of swap partition, with a
maximum amount of memory needed of 24 GB.

Results on simulated and synthetic metagenomes
In our experiments we evaluated the performances of
CLIOR and Clark-l at both species and genus level of clas-
sification. We report in Table 1 a summary of the resulting

average precision, recall and f-measure on both simulated
and synthetic metagenomes at both species and genus
level. A detailed comparison on each dataset is shown in
Fig. 2 for the analysis at species level, and in Fig. 3 for the
analysis at genus level. Note that in Figs. 2, 3, 4, and 5
adjacent points are not related, therefore the role of the
lines between them is purely that of enhancing the visu-
alization. The corresponding full tables are shown in the
Additional file 2.

First of all, if we compare the overall results obtained at
species and genus level, we can see that, for both CLIOR
and Clark-l, the performances at genus level are better
than those at species level. This was indeed expected. In
fact, in the taxonomy tree, when the classification level
is more specific, the label assignment is more difficult.
Moreover, it is possible that, although at species level a
read is assigned a wrong label, at genus level the same label

Fig. 8 Predicted abundance at species level. Analysis on the dataset MK_a2. In light-blue the ground truth, in blue CLIOR, in orange Clark-l
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Fig. 9 Predicted abundance at genus level. Analysis on the dataset MK_a2. In light-blue the ground truth, in blue CLIOR, in orange Clark-l

is indeed correct, thus making genus level classification
relatively less difficult.

By observing more in detail the performances of CLIOR,
we can see that there is a generalized improvement in
terms of recall. An important aspect is that this does
not come at great expense of precision. On the contrary,
on average, among the simulated datasets we have an
improvement also for what concern the precision. In the
simulated dataset the gain in precision is on average 10%
and 0.4%, for the two different levels of classification.

For what concerns the recall, the average increments are
41.86% and 35.72% for simulated datasets, at species and
genus level, and 11.03% and 15.88% for synthetic datasets
at the same two levels. The major recall increment is on
the dataset S3, both for species (about 57%) and for genus
level accuracy (about 58%).

One of the most difficult datasets is the synthetic
metagenome MiSeq, that contains five genomes from the
same family. Five species of the same family and high
sequence similarity may influence the performances of
Clark-l. In fact, for the MiSeq metagenome, Clark-l classi-
fied correctly only 21% and 25.56% of reads at the species
and genus level. Moreover, its precision is the lowest
among all the datasets that we analyzed, specifically 52%
and 63%. On this difficult dataset CLIOR is still able to
improve the recall by 16% and 17%, whereas the precision
decreases by 1% and 6% for different target levels.

When analyzing precision and recall values, it is of
interest to have also the actual number of reads correctly
assigned, in order to have a complete picture. We report
in Additional file 3 the number of reads correctly clas-
sified and the number of assignments for species and
genus level classification. These absolute numbers show
that for the MiSeq dataset, although we have a moderate
loss of precision, still the number of reads correctly classi-
fied grows from 5369370 (Clark-l) to 5871490 (CLIOR) at
the species-level and from 6242990 (Clark-l) to 7022260

(CLIOR) at genus-level. Similar observations hold also
for the datasets MK_a1, that is the one with the highest
drop of precision, we have that Clark-l classify correctly
1051590 reads at species-level, whereas CLIOR 1135770
reads; at the genus-level we have 1406490 (Clark-l) and
1806830 (CLIOR) correct reads. Note that the number of
reads correctly assigned to a species plays a crucial role for
the robust identification of the species in a sample.

Estimating the species abundance
An interesting question is to which extent the abundance
of a given species (or genus), predicted by our method
CLIOR, resembles the actual abundance of that species
(or genus) in the input dataset. To answer this question,
in line with other studies [18], we compute the Pearson
correlation coefficient between abundance, predicted by
CLIOR and Clark-l, and the actual composition of species
and genera in the datasets. The results are shown in Figs. 4
and 5 for species and genus analysis respectively.

In both cases the Pearson correlation coefficient for
CLIOR is equal or close to r = 1 in many cases, show-
ing that the predicted abundances are highly correlated

Fig. 10 Precision and Recall as a function of the size of the input. In
blue Clark-l precision, in yellow Clark-l recall. In red CLIOR precision, in
green CLIOR recall
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Fig. 11 Pearson correlation as a function of the size of the input. In
blue Clark-l, in red CLIOR

with the actual dataset composition. Since the result for
the dataset MK_a1 showed a behavior that is not in line
with the others, we further investigate this case. Figure 6
shows that, at species level, CLIOR improves the pre-
dicted abundance of most species (see Additional file 2 for
more details).

The cases of Xanthomonas axonopodis and Bacillus
cereus deserve an ad-hoc discussion, as both Clark-l and
CLIOR basically miss the species. The difficulty Clark-l
has in the identification of these species is possibly due
to the fact that, in the dictionary, several closely related
species are present, thus making it difficult the call for
Xanthomonas axonopodis and Bacillus cereus. In these
particular cases, we speculate that CLIOR is probably mis-
lead by the presence of these other labels, that although
“close” are not correct, and extend them to other Xan-
thomonas axonopodis and Bacillus cereus reads. This
explanation is supported by the data shown in Fig. 7
(see Additional file 2), where the abundance prediction
at genus level, which will aggregate close species labels
under the same genus label, is correct, and CLIOR is
able to improve, with respect to Clark-l, even for genus
Xanthomonas and Bacillus.

Similarly, we investigated further on the actual dis-
tribution of abundances for the dataset MK_a2, for
which we have the best improvement in terms of
Pearson correlation. The results are shown in Figs. 8

and 9 for species and genus level of classification,
respectively.

Of particular interest is the species Aeromonas
hydrophila, where Clark-l predicts 14.84%, CLIOR
32.80%, and the real abundance is 32.06%. The
Xanthomonas axonopodis and Bacillus cereus are the
most difficult species to correctly predict for both clas-
sifiers. However, similarly to what we discussed for the
MK_a1 dataset, at genus level this effect disappear and
the predictions are much closer to the ground truth.
This indicates that several closely related species are
present in the dictionary, thus affecting the labeling
of Clark-l and thus of CLIOR. Overall we see that for
most species the prediction made by CLIOR is actually
closer to the ground truth, independently from the fact
that Clark-l underestimates or overestimates the true
abundance.

Impact of the dataset size
An important feature of our approach is that the larger
the read dataset in input, the better the classification. This
is because the grouping phase benefits of the presence of
more reads that allows in turn to better characterize the
groups.

For this experiment we took subsamples of increasing
size from the MK_a2 dataset, which contains 1M paired
end reads (i.e. 2M reads in total). Figure 10 shows preci-
sion and recall at species level, as a function of the size of
the dataset.

The same considerations holds for the Pearson correla-
tion, as shown in Fig. 11.

In terms of time performances, the total time depends,
obviously, on the dataset size. Figure 12 shows the total
time needed to complete the classification process as a
function of the input size. It can be seen how the time
slightly increases, taking less than 5 min to analyse 2M
reads.

The size of the dataset also affects the quality of the
classification itself. In fact, the larger the number of reads

Fig. 12 Time needed for the overall classification task. The total time to obtain the final classification. Time is shown as a function of the dataset size
on subsets of increasing size for MK_a2, which contains 1M paired end reads, i.e. 2M read in total



Girotto et al. BMC Genomics 2017, 18(Suppl 10):917 Page 78 of 88

available, the better is the quality of the groups created by
CLIOR.

Results on real metagenomes
We tested CLIOR also on real datasets in order to val-
idate the performances of the classification process on
real metagenomic samples for which the ground truth
is not known. We used Clark-l and CLIOR to classify
Human Microbiome Project reads, also used in [10, 11],
in order to compare the number of assigned reads (see
Table 2).

From our classifications tests, we found that on the mid-
vagina samples (SRR062276 and SRR062301), Clark-l clas-
sifies 22% of reads, while CLIOR classified 52.3% of reads,
more than double the reads assigned by Clark-l at species
and genus levels. A similar performance was observed on
the anterior nares (SRR061942) datasets, where Clark-l
classifies only 23% of reads and CLIOR classified twice
as many reads, about 47% at both levels. For the saliva
samples (SRR062415 and SRR062462), Clark-l classifies
17% both at the species and genus level, whereas CLIOR
assigned 26.6% and 30.2%, respectively. In this case the
increment is about 9% at species level and 13% at genus
level.

The species and genera found in these real samples
can be investigated further by comparing the abundance
ratios. For example in the saliva dataset (SRR062415)
the top five genera found by CLIOR are Streptococcus,
Haemophilus, Prevotella, Azotobacter and Neisseria as
shown in Fig. 13. These genera have been also reported
as the most abundant by [10, 11, 20], with similar ratios.
Similar observations can be drawn from the other real
samples (see Additional file 4). In summary, CLIOR is able
to double the number of reads assigned to some species
also in real datasets. This is important because the classi-
fication of more reads allows a more robust identification

Table 2 Number of assigned reads on real samples: comparison
between Clark-l and CLIOR

Datasets Tool Species Genus

SRR062276 Clark-l 0.220 0.221

CLIOR 0.523 0.523

SSR062301 Clark-l 0.220 0.220

CLIOR 0.527 0.527

SSR061942 Clark-l 0.229 0.229

CLIOR 0.469 0.469

SSR062415 Clark-l 0.170 0.170

CLIOR 0.266 0.302

SSR062462 Clark-l 0.171 0.171

CLIOR 0.267 0.302

Fig. 13 Analysis on real data. Top 5 genera detected by CLIOR in the
saliva datasets SRR062415: Streptococcus (blue), Haemophilus
(orange), Prevotella (yellow), Azotobacter (green), Neisseria (maroon),
Others (light blue)

of species in a sample. Moreover, the resulting abundance
ratios of the species are in line with previous studies.

Conclusions
In this paper we have introduced CLIOR (CLassification
Improvement with Overlapping Reads), a metagenomic
classification booster that is based on the overlapping
reads graph. CLIOR is not restricted to the single reads
classification algorithm, e.g. Clark-l, and it may be applied
to other methods such as, for example, Kraken. Results on
several simulated metagenomes show that CLIOR is able
to improve both the recall and the precision with respect
to Clark-l: at species level, on average, the increment is
41.9% and 10.9% respectively, while at genus level it is
35.7% and 0.4% respectively. Results on more realistic syn-
thetic metagenomes confirmed that CLIOR can improve
the recall substantially (on average, 11% at species level
and 15.9% at genus level) at a cost of a small loss in terms
of precision (on average, 2.6% at species level, and 1% at
genus level). Moreover, on real samples CLIOR was able to
classify a substantially larger number of reads than Clark-l,
most of the time, doubling the recall. CLIOR does not
need large computational resources and it can be run on a
laptop.

Additional files

Additional file 1: Results without re-assignment (PDF file). The file
contains tables showing the precision and recall at species and genus level
without re-labeling for simulated and synthetic dataset, respectively. (PDF
48 kb).

Additional file 2: Details of classification for the dataset MK_a1 (PDF file)
The file contains tables showing the details of the classification at species
and genus level, respectively, for the dataset MK_a1. (PDF 37 kb)

Additional file 3: Detailed classification results (PDF file).
The file contains tables showing the detailed values of precision, recall, and
f-measure, both at species and genus level, for Clark-l and Clior on
simulated and synthetic datasets, respectively; and tables showing the
number of reads that have been classified at species and genus level,
respectively. (PDF 72 kb)
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http://dx.doi.org/10.1186/s12864-017-4273-6
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Additional file 4: Details of real data analysis (PDF file).
This file contains figures showing the top 5 dominant species in several real
samples. In SRS015072 (mid-vagina) we found that Lactobacillus is
dominant, as in [11] and other studies cited by the same paper.
Pseudomonas and Desulfotomaculum were detected as in [11] but we also
found Azotobacter, Streptococcus [21, 22] and Mycoplasma that do not
appear in [11]. In SRS019120 (saliva) we found Streptococcus,
Haemophilus, Prevotella and Neisseria that appear also in [10, 11, 20] and
also the Azotobacter genus as in mid-vagina datasets. In SRS023847
(anterior nares) the Propionibacterium and Staphylococcus is present as in
[11], but with a different percentage (Propionibacterium from 61.5% in [11]
to 46,10% in CLIOR). Mycoplasma appears in the result of SRS023847 with
about the same abundance of Propionibacterium. This genus is not
present in [11] and in our experiments with Clark-l is present in a small
percentage (only about 0,42%). We can guess that there are some reads
that overlap for this genus so they create some groups and the winner take
all method allows to find them. In SRS023847 appear also Azotobacter, as
in the previous datasets, and Bacillus, which do not appear in [11] but is an
important pesticide and easily inhalable. (PDF 385 kb)
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