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Abstract

Background: The advances in target control of complex networks not only can offer new insights into the general
control dynamics of complex systems, but also be useful for the practical application in systems biology, such as
discovering new therapeutic targets for disease intervention. In many cases, e.g. drug target identification in biological
networks, we usually require a target control on a subset of nodes (i.e., disease-associated genes) with minimum cost,
and we further expect that more driver nodes consistent with a certain well-selected network nodes (i.e., prior-known
drug-target genes).

Results: Therefore, motivated by this fact, we pose and address a new and practical problem called as target control
problem with objectives-guided optimization (TCO): how could we control the interested variables (or targets) of a
system with the optional driver nodes by minimizing the total quantity of drivers and meantime maximizing the
quantity of constrained nodes among those drivers. Here, we design an efficient algorithm (TCOA) to find the optional
driver nodes for controlling targets in complex networks. We apply our TCOA to several real-world networks, and the
results support that our TCOA can identify more precise driver nodes than the existing control-fucus approaches.
Furthermore, we have applied TCOA to two bimolecular expert-curate networks. Source code for our TCOA is freely
available from http://sysbio.sibcb.ac.cn/cb/chenlab/software.htm or https://github.com/WilfongGuo/guoweifeng.

Conclusions: In the previous theoretical research for the full control, there exists an observation and conclusion that the
driver nodes tend to be low-degree nodes. However, for target control the biological networks, we find interestingly that
the driver nodes tend to be high-degree nodes, which is more consistent with the biological experimental observations.
Furthermore, our results supply the novel insights into how we can efficiently target control a complex system, and
especially many evidences on the practical strategic utility of TCOA to incorporate prior drug information into potential
drug-target forecasts. Thus applicably, our method paves a novel and efficient way to identify the drug targets for
leading the phenotype transitions of underlying biological networks.
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Backgroud
One final goal of our efforts is to control the complex
systems in our daily life. In the past decades, plenty of
attentions [1–5] have been paid into the study of the
structures and dynamics of complex networked systems,
especially biological systems. A frontier area of the re-
search in network science and engineering is controlling
complex networks, such as biological molecule net-
works. Since the law of some systems is hidden, it is dif-
ficult to study the controllability of the nonlinear
systems directly, especially for the large scale biological
systems. However, it is possible to obtain local analytical
results for the controllability of nonlinear systems by de-
veloping control schemes of linear dynamic systems.
Nearly decades of efforts on the controllability of linear
dynamic networks, not only review a sufficient condition
for “local controllability” of a nonlinear system about a
trim point but also result in tremendous advances in our
understanding of the problem of controlling complex
networked dynamical systems [5–9]. In a recent break-
through, an efficient algorithm with low polynomial time
was provided for computing the minimal quantity of in-
put nodes needed to control any given large-scale di-
rected network [6]. But, it was also shown that in the
case of sparse inhomogeneous networks, such as most of
the networks emerging from biochemical and biomedical
applications, controlling the entire system is expensive.
On the other hand, in terms of practical applications in
many cases, it is enough to control only a certain well-
selected portion of the network’s nodes, such as the set
of essential genes, in order to impose a certain overall
behaviour over the system. Thus, an interesting ques-
tion, known as target control problem of complex net-
works, is posed that how can we chose the driver
variables from the system to control a subset of the
whole nodes (or a subsystem) about a trim point [8].
However, the traditional framework of network control

can only be applicable for the simple networks, and it can
not address the target control problem of the large scale
of networks. To solve the problem, Wu et al. has proposed
a method to solve the target control problem by con-
structing a weighted bipartite network [10]. But this
method may fail when there does not exist a perfect
matching in most cases. Meanwhile, Gao et al. proposed
another method which offers an approximation on the
minimum set of input nodes for target controlling the net-
works [8]. However, the above researches only focus on
controlling the system through any minimum driver-node
set and ignore the existence of multiple candidate driver-
node sets for control a targeted subset of the network.
When we actually expect to control the system with ob-
jectives optimization, the different driver-node sets may
not participate in target control equally. This consider-
ation prompts us to study how to find the desired solution

for target controlling complex networks with objectives
optimization. A practice of this consideration can come
from our aim for combinatorial drug target identification:
we not only consider how to control the disease-
associated genes with the minimum driver nodes, but also
expect that more driver nodes can be consistent with the
set of well-known drug-target genes. Here, we pose a new
target control problem with the objectives-guided for find-
ing the optimal driver nodes that minimize the total quan-
tity of drivers and also maximize the quantity of
constrained nodes within the drivers.
In this paper, we develop a novel algorithm (TCOA) to

identify the drivers for efficiently controlling targets in
complex networks. Our algorithm consists of three
steps: We first construct the target control tree of the
network by finding the maximum matching in the con-
structed iterated bipartite graph or “linking and dynamic
graph” and identify the controllable targets of each node
by obtaining its reachable target nodes in the control
tree; Then we find the set of optional driver nodes by
using the integer linear programming to optimize a reg-
ulated factor, which is introduced to balance the quantity
of driver nodes and the quantity of driver nodes within
the set of constrained (or pre-selected) nodes; Finally we
define the maximum matching of the constructed iter-
ated bipartite graph or “linking and dynamic graph” as a
Markov chain and use a Markov chain Monte Carlo
(MCMC) approach to sample from the sets of all pos-
sible maximum matching. We have evaluated TCOA on
several real-world networks, and the experiment results
support that TCOA outperform existing control-focus
approaches. Especially, we have also applied TCOA algo-
rithm to analyze the PPI signaling transduction networks
in pancreatic cancer, and Inflammatory bowel disease
network from KEGG. The results further illustrate that
our TCOA can efficiently identify the driver nodes with
more optional property to guarantee the system target
controllable, compared to several control-focus ap-
proaches. In addition, the experiment results on the two
biological cases can also supply an efficient bioinformat-
ics tool to identify the drug targets for leading the
phenotype transitions of underlying biological networks.

Methods
Problem formulation
Since the law of the some network dynamics, such as
the biological networks is hidden, it is difficult to dir-
ectly study the controllability of the nonlinear networks.
Most complex systems are characterized by nonlinear
interactions between the components, and usually local
properties can be verified [11, 12]. Thus, it is possible to
obtain local analytical results for the controllability of
nonlinear systems [13, 14]. Here, we review a sufficient
condition for “local controllability” of a nonlinear system
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about a trim point. A system is “locally controllable” if
there exists a neighborhood in the state space such that
all initial conditions in that neighborhood are control-
lable to all other elements in the neighborhood with lo-
cally bounded trajectories [15]. Considering a dynamic
system governed by a set of ordinary differential
equations,

dx=dt ¼ f xð Þ þ Bu
y ¼ Cx

�
ð1Þ

where the function f(x) denotes the system’s dynamics.
x ∈ RN and y ∈ RNO represent nodes state and target (out-
put) nodes state; The element Bij in B∈ RN*NC represents
whether the node vi among V = {v1,v2,…,vN} is inputed by
the j-th signal [16–18]. C∈RNO*N represents the output
matrix.
We are interested in how to find proper matrix B to

gurantee the system (1) locally target (or output) con-
trollable through the input u = [u(1),u(2),..,u(NC)]. Let x0
be defined as, f(x0) = 0,A(x0)=∂f(x0)/∂x and G(x0) = [CB
CAB …CAN-1B], where f(x0) = 0 provides the system’s
steady state, A(x0) represents the system’s local (linear)
dynamics around a trim point x0 and G(x0) guarantees
the system local target controllable. The dynamics in (1)
are locally target controllable around x0 if rank (G(x0)) =
NO [13, 14]. Therefore the local target controllability
analysis of (1) about a trim point therefore reduces to
the linear target controllability analysis of (2),

dx=dt ¼ A x−x0ð Þ þ Bu
y ¼ Cx

�
ð2Þ

The dynamics in Eq. 1 are deemed “locally structurally
target controllable” if the linearized dynamics in Eq. 2
are structurally target controllable. And the linearized
dynamics in Eq. 2 is structurally target controllable if the
follow equation is satisfied when we can choose the
non-zero values in A and B,

max rank CB; CAB; CA2B;…; CAN−1B
� �� � ¼ NO

ð3Þ

In a given directed network with nodes V = {v1,v2,…,vN},
let O and D be the set of target nodes and the driver
nodes, assuming that we expect more driver nodes could
be constrained in a set Q, where both O and D and Q
are the subset of V. The output matrix and the input
matrix can be set as C = [I(1); I(2);…I(NO)] and B
= [I(b1); I(b2);…I(bd)]; I(i) represents i-th row of N*N
unit matrix I, {b1,b2,…,bk} is the index of identified driver
nodes set D. For the purposes of this work, the adja-
cency matrix of the network is used to find the structure
of A in Eq. 2. Given the constrained nodes set Q, we

focus on how to find a suitable driver nodes set D such
that

minf 1 ¼ Dk k
maxf 2 ¼ Q∩Dk k
s:t:max rank CB;CAB;CA2B;…;CAN−1B

� �� �� � ¼ NO

ð4Þ

where ||D|| denotes the quantity of nodes in the identi-
fied driver nodes set D and ‖Q ∩D‖ represents the quan-
tity of drivers in the constrained or pre-selected nodes
set Q; the objective functions f1 and f2 aim to find the
optional drivers with minimum quantity of drivers D
and maximum quantity of drivers in the pre-selected
nodes set Q respectively.
However, there are no existing methods to efficiently

solve the problem. For example, in Fig. 1, for simple net-
work 1 we want to control the target nodes O = {v3,v4,
v6,v7} with the minimum the quantity of driver nodes
and also expect to maximum the identified driver nodes
within the constrained nodes Q = {v2,v4}. But Liu’s ap-
proach [6] and Gao’s approach [8] fail to find the op-
tional driver nodes set for target controlling the O
= {v3,v4,v6,v7} (see Fig. 1).To overcome the limitations of
the existed approaches for the target control problem in
complex networks, we develop a novel objective
optimization algorithm (TCOA). The key consideration
of our TCOA to solve the problem (4) is that 1) find the
controllable targets of each network node without
destroying target controllable of the whloe system; 2) to
extract the optimal driver nodes of the network by using
objectives-guided optimization with integer linear pro-
gramming and Markov chain Monte Carlo (MCMC).
The former is to guarantee the identified subset satisfy-
ing the constrained condition. And the latter is to guar-
antee the subset to be optimal for the two objectives.

The framework of our TCOA
Our TCOA presents an algorithm for detecting driver
nodes that can best control a network. We adopt the
paradigm of local (linear) controllability. Different from
the related works, our goal is not only to minimize the
quantity of drivers, but also to maximize the quantity of
drivers within a given pre-selected subset. The consider-
ation for our TCOA is in the adding of different and
more efficient strategies to find the optimal driver nodes
of the graph. The TCOA algorithm consists of three
steps: i) Identifying the controllable subsystem by con-
structing target control tree; ii) Finding the optional
drivers with the Integer Linear Programming (ILP); iii)
Further optimizing the driver set by using MCMC sam-
plings. The details of TCOA are introduced in bellows.
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Step 1 Identifying target controllable subspace by
constructing target control tree
Definition 1 The target control tree is defined as a
multi-layers network where the nodes in the bottom layer
represent the target nodes and the nodes in the other
layers consists of the upstream control nodes.
Note that in our previous reseach [19] we have defined

the upstream control nodes as the nodes which can con-
trol the target nodes in network G(V,E).To efficiently
obtain the target control tree for controlling targets in a
complex network, a algorithm (greedy algorithm) is
designed to construct the target control tree as is listed
in Table 1. Note that in our greedy algorithm, we use
the “linking and dynamic graph” to represent the iter-
ated bipartite graph. The relationship between maximum
matching in the “linking and dynamic graph” and “the
target control tree” can be explained as follow: at each
iterated bipartite graph among the “linking and dynamic

graph”, we can obtain the maximum matching, which re-
sult in a sub-graph; in the sub-graph, the maximum
matching determines which paired nodes can be con-
nected in “the target control tree”. The maximum match-
ing of a given general bipartite graph can be efficiently
obtained by using Hopcroft-Karp algorithm [20, 21]. Since

Hopcroft-Karp algorithm runs in O(
ffiffiffiffiffiffiffiffiffiffiffiffi
∣ Vj j∣p

*||E||) time in
the network G(V,E), the whole maximum complexity of

the greedy algorithm is in O(r*
ffiffiffiffiffiffiffiffiffiffiffiffi
∣ Vj j∣p

*||E||), where r is
the iteration times when we obtain the updated bipartite
graph.

Theorem (Target controllable subsystem identification
theorem) In the target control tree, the target node vj among
the bottom layer could be controlled by the node vi among
the up layer if node vj is accessible from node vi.
This result of our theorem (the details of proof are in

supplementary note 1 of Additional file 1), can allow us

(a) (b) (c)

Fig. 1 Demonstration of the limitations of the existed methods for the target control problem with objectives-guided optimization. a Two simple
networks. In the two networks, the target set is {v3,v4, v6,v7} and {v3,v4, v6} respectively (highlighted in green) and the constrained nodes set is
{v2,v4} and {v1} respectively (shape in hexagon). Here we want to minimum the quantity of driver nodes to control the target nodes set
{v3,v4, v6,v7} and {v3,v4, v6} (i.e., disease-associated genes) and maximum the identified driver nodes within the constrained nodes (i.e., practical constraints
as prior known drug targets). b By applying full control of Liu’s method to the two networks, we can identify the unmatched nodes {v1,v3,v5} and {v1,v2}
(nodes within the blue circle) in the right side of the bipartite graph transferred from the directed network, as the driver nodes(more details seen in ref. [6]).
c By using target control of Gao’s method, they first obtain the updated bipartite graph by choosing the nodes in the left side in the previous matching
(highlighted in grape) as the nodes in the right side of the current matching (highlighted in green) and then calculate a maximum matching
in the updated bipartite graph. Finally they add unmatched nodes (nodes within the blue circle) in right side of the updated bipartite graph
to the set of driver nodes (more details seen in ref. [8]), which identify the set of driver nodes of the two networks as {v1,v3,v4} and {v1,v2}. In
the simple example 1, according to the k-walk theory in Re. [8], it is easy to know that node v2 can control v3 and v6 and v4 can control v4
and v6. For the simple example 2, based on the fact that when we remove a link it will not decrease the quantity of driver nodes. For example,
when we remove the link from node v4 to node v3 in Fig. 2, according to the k-walk theory in Re. [8], it is easy to know that node v1 can control v3, v4
and v6. Therefore, the nodes {v2,v4} and {v1} as the optional driver nodes are ignored by the existed methods for the two networks
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to find the controllable targets of node vi, denoted by
TCS(vi). The term “control” means that when we act
control signals on the node vi, the nodes state in TCS(vi)
can be changed to any stable or unstable targte state
from any initial state at a finite time.Following on our
theorem, in the target control tree, we can apply the
Breadth First Search algorithm (BFS) [22, 23] to obtain
the controllable targets of node vi,TCS(vi).The procedure
of BFS is shown in Table 2, Obviously, the maximum
complexity of the BFS algorithm for identifying the con-
trollable targets of all nodes in the target control tree
TCT ≡ (VTCT, ETCT), where VTCT are the nodes and ETCT
are the edges in TCT, is in the order of O(||VTCT||*||ETCT||)
[22, 23].
On the other hand, Liu et al. determined the control-

lable subsystem of any node in a network via linear pro-
gramming [24], while Wang et al. propose a concept

called control range to identify the controllable subsys-
tem [25]. However, the existing two methods are still
not efficient to identify the target controllable subsys-
tem. In Figs. 2 and 3 we give an intuitive explanation to
explain how we find the controllable targets of each net-
work node. As shown in Fig. 2, we want to control the
state transition of {v3, v4, v6}. By using Liu’s approach
[24] and Wang’s approach [25], they both identify the
controllable targets of v1 is {v3, v4 }. However, by using
our method, the identified target controllable subsystem
of node v1 is {v3, v4, v6} (see Figs. 2 and 3).

Step 2 Identifying the optional driver nodes by using
integer linear programming
We first introduce an outlier measurement on a set of
driver nodes that quantifies the quantity of driver nodes
outside the pre-selected node-set,

μ Mð Þ ¼ D−Qk k ¼
X
vi∈U

xi−
X
vj∈D

yj

where xi = 1 when a node vi belongs to the driver set
and ∑xi denotes the quantity of driver nodes; yj = 1 when
node vj belongs to the pre-selected set D and ∑yj denotes
the quantity of driver nodes in the pre-selected node-set.
To take into account both the quantity of driver nodes
and the quantity of driver nodes in the pre-selected set,
we define the weight

W Mð Þ ¼ Dk k þ D−Qk k ¼ 2
X
vi∈U

xi−
X
vj∈D

yj

Note that W(M) is only one candidate measurement of
the trade-off between the quantity of driver nodes and
the quantity of driver nodes in the pre-selected set. After
obtaining the controllable targets of each network node
and the weight of the driver node-set, the optional driver
nodes guaranteeing the constrained target controllable
can be approximately determined by the following Inte-
ger Programming model,

minW Mð Þ ¼ 2
X
vi∈U

xi−
X
vj∈D

yj ð5aÞ

s:t:
X
vi∈Fu

xi≥1 everyu∈Oð Þ ð5bÞ

xj ¼ yj vj∈D⊆U
� �

; xj; yj∈ 0; 1f g ð5cÞ

In the problem (5), the function (5a) is to get the op-
tional driver node-set with the minimum quantity of
driver nodes and the maximum quantity of driver nodes
in the pre-selected nodes set. The constraint (5b) aims
that at least one driver node could control a target node.
The constraint (5c) points that the value of yj is equal to
that of xj if node vj belongs to the pre-selected set Q. In

Table 1 Our greedy algorithm for constructing target
control tree for network G(V, E)

Input: Network G(V, E), target nodes O

Initialize:
B0 ←(R0, L0) //the right side R0 is made of target
nodes O, and the left side L0 is made of nodes
from which the targes could be reachable.
m0←Matching(B0) //Find maximum matching
m0 among bipartite graph B0
CF(V0, m0) ←Subgraph(V0, m0) // Let V0 = R0∪L0,
we obtain a subgraph CF(V0, m0)
for paired nodes (vi

0,vj
0)∈CF(V0, m0) do // if we

could find a path from node vi
0∈L0 to vj

0∈R0, add
edge ek

0 = (vi
0,vj

0) to TCT .
E0← E0∪ek

0

end
While Ln≠∅ (n≥ 1) do
Rn ← Ln-1 //Let the set of nodes in Ln-1 to be
the new Rn set
Bn ←(Rn, Ln) //get a new bipartite graph Bn.
mn←Matching(Bn) //Calculate a maximum
matching mn in Bn
Vn = Vn-1∪Ln
CF(Vn, mn) ←Subgraph(Vn, mn)
for paired nodes (vi

n,vj
n)∈CF(Vn, mn) do // vi

n∈Ln,
vj
n∈Rn
If there exists a directed path from vi

n to vj
n
,

add edge ek
n = (vi

n,vj
n) to TCT.

Let En = En-1∪(∪ek
n).

End

Output: The target control tree, TCT≡ (VTCT, ETCT) = (Vn, En)

Table 2 Breadth First Search (BFS) algorithm for identifying
target controllable subspace

Input: Target control tree TCT≡ (VTCT, ETCT), node vi

Initialize: TCS(vi) =∅ , N0 ={vi};
While Nk≠∅ (k≥ 1)
Find the neighbor nodes of all nodes in Nk-1 layer,
denoted by Nk;
end while
Add the reachable nodes in R0 to TCS(vi);

Output: The target controllable subspace of nodevi, TCS(vi)
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fact, the problem (5) could be efficiently solved for thou-
sands of variables with a LP-based classic branch and
bound method [26, 27].

Step 3 Optimizing the driver nodes by MCMC samplings
Here we define the maximum matching of the “linking
and dynamic graph” as a Markov chain. The state space
of the Markov chain is the set of all the possible max-
imum matching of the “linking and dynamic graph”. In
our greedy algorithm, for a given node different sets of
controllable targets could be found when we obtain dif-
ferent maximum matchings (e.g. the red edges in the
Fig. 3). That is, for different Markov chains, the different
sets of driver nodes with different weight W(M) could be
obtained. The optimal different Markov chains need to
be sampled from the state space, so that, a Markov
Chain Mont Carlo method (MCMC) [28] is used. The
MCMC approach samples sets of maximum matching,
with the probability of sampling a set M proportional to
the weight W(M) of the set. Thus, the frequencies of the

maximum matching sets in the MCMC method provides
a ranking of maximum matching sets, in which the sets
are ordered by decreasing sampling frequency. The ad-
vantages will prove useful in analysis of real network
data below.
The basic idea of MCMC, implying on our objective

optimization, is to build a Markov chain whose states
are the collections of k adjoin paths connecting to the
target nodes in the “linking and dynamic graph” and to
define transitions between states that differ by one target
node. With the Metropolis-Hastings algorithm [29], we
sample sets of maximum matching M G of k adjoin
paths in the iterated bipartite graph with a stationary
distribution that is proportional to exp.(c*W(M)) for
some c > 0, which gives a desired stationary distribution
on the state space.The advantage will prove useful in
analysis of real mutation data below. The MCMC
method is described as follows:
Initialization: By using greedy algorithm, obtain the

initial Markov chain M0;

(b)

(d) (c)

(a)

Fig. 2 Demonstration of identifying the target controllable subspace a A directed network. The target control nodes set is {v3,v4,v6} (highlighted in
green) and the constrained nodes set is {v1} (shape in hexagon). b Construct the “linking and dynamic graph”. Initialize a bipartite graph B0, where the
right side R0 consists of the target nodes {v3,v4,v6}, and the left side L0 consists of the nodes that can reach the target nodes. Identify the maximum
matching m0 = {(v2,v3),(v3,v4),(v5,v6)} in the initialized bipartite graph B0. Let the matched nodes {v2,v3,v5} in L0 to be R1 set and get a new bipartite graph
B1. In the new bipartite graph B1, we can obtain the corresponding maximum matching m1 = {(v1,v3),(v3,v5)}. Repeat this process and we obtain the
maximum matching m2 = {(v1,v3)} in the new bipartite graph B2, which result in the “linking and dynamic graph” {m0, m1, m2} c Construct the target
control tree from the “linking and dynamic graph”. In the sub-graph CF(R0 + L0,m0) and subgraph CF(L0 + L1,m1) and CF(L1 + L2,m2), add edges set
E0 = {(v2,v3), (v2,v4), (v3,v4),(v5,v6)} and E1 = {(v1,v3), (v1,v5), (v3,v5)} and E2 = {(v1,v3)} to TCT, which result in the target control tree. d We first form a new
bipartite graph, in which the up layer consist of all the nodes in the network, and the bottom layer consist of the target nodes. Based on the target
control subspace theorem, we can show that the node vi in the L0, L1, L2 can control node vj in R0, if there exist a path from vi to the target node vj in
the target control tree TCT. And then we add edges from the node vi in the up layer to node vj in the bottom layer for the new formed bipartite graph.
Finally we can identify the target controllable subspace of each node from the formed bipartite graph
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Iteration: For t = 1, 2,…, obtain Mt + 1 from Mt as
follows,

� Choosing a path w uniformly at random in Mt. Then
choose randomly an edge ek0 inside the path. Delete
the edge ek0 in the chosen bipartite graph Bk0
among the “linking and dynamic graph”. For the
augmenting path, when we alternate unmatched and
matched links (Supplementary note 2 in
Additional file 1), we can obtain a new matched
edge e’k0 in the chosen iteration k0, which result in a
new matched path v among the “linking and
dynamic graph”. Then a new Markov Chain Mt+1 =
Mt \ {w} ∪ {v} has been obtained.

� Accepting the new Markov chain Mt + 1 with the
probability p(Mt,Mt + 1) = min[1,exp.(c*W(Mt+ 1)-
c*W(Mt)), else reject it.

We will terminate the procedure of the MCMC sampling
when the value of W(M) converge within 100 iteration time
units. Otherwise, the search process is terminated if the it-
eration time exceeds the fixed default value Nmax = 1000.
We have explored different values of c, and also use c = 10
in numerical experiments, which we found empirically to
give the best tradeoff between the exploration of different

sets and the convergence to sets with high weight W(M) on
the simulated data and the pancreatic cancer data. The
effect of parameter on the convergence of weight W(M) on
the simulated datasets and two biological networks are pro-
vided in Supplementary note 3 and Supplementary note 4
of Additional file 1.

The complexity analysis of TCOA
The TCOA method contains three parts:
(i) For constructing the target control tree for the net-

work G(V,E), we apply the developed greedy algorithm,
to find the maximum matching of the “linking and dy-
namic graph”. In fact, the developed greedy algorithm

runs in the order of O r�
ffiffiffiffiffiffiffiffiffi
Vk kp �

Ek k

 �

, where r denotes

the iteration times in the iterated bipartite graph.
(ii) In phase of finding the controllable targets of all

network nodes, we apply the BFS algorithm to the con-
structed target control tree. Therefore the maximum
complexity of the BFS algorithm for finding the control-
lable targets of all nodes is in the order of
O(||VTCT||*||ETCT||), where VTCT denotes the nodes and
ETCT represents the edges in target control tree TCT
(VTCT = V, ||ETCT|| < =||E||) .

Fig. 3 Demonstration of MCMC sampling. For the directed network in Fig. 2a, after two iterations, we first obtain the set of matched links (red
edges) which form a Markov chain M1 in the “linking and dynamic graph”. Based on the Markov chain, we identify the target controllable
sunspace of each node in the network; Then, we get the driver nodes {v3} by solving the problem (5) with integer linear programming (ILP),
which result in the weight of the driver nodes W(M1) = 2.Then we generate a new Markov chain M2 by replacing the maximum matching in the
t = 0 updated bipartite graph (supplementary note 2 of Additional file 1) and obtaining the new maximum matching in the later updated bipartite
graph after t = 0. Based on the new Markov chain, we can identify the driver nodes {v1} with the weight W(M2) = 1. Finally according to the
Metropolis-Hastings algorithm, we will accept the markov chain M2 with the probability p(Mt,Mt + 1) = min[1,exp.(c*W(M2)-c*W(M1)) for some c > 0,
here we set c = 10
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(iii) For the phase of finding the optional driver nodes
set, the optional driver nodes set is obtained by using the
integer linear programming. Specifically, we used a
branch-and-bound algorithm, an automatic method with
a greedy O(log(||V||)) of solving discrete programming
problems, as implemented by function intlinprog of the
MATLAB programming language to solve our binary
integer-programming problem [30]. To find more optional
solutions, MCMC sampling method has been adopted,
resulting in the overall complexity of our TCOA approach

O m� r�
ffiffiffiffiffiffiffiffiffi
Vk kp �

Ek k þ Vk k� ETCTk k þ log Vk k

 �


, which

can be approximately considered as O(m∗‖V‖∗‖ETCT‖)
where m is sampling number, and ETCT is the edges set of
the target control tree.

Results
Experiment results of real-world networks
To evaluate the target control efficiency on an arbitrary
network, we first introduce two factors αand β, which
represent the ratio of the target nodes and constrained
(or pre-selected) nodes to the whole network nodes
respectively; To target control the target nodes O(α), our
TCOA can identify the optional nodes set D(α, β) with
the minimum driver nodes and the maximum quantity
of driver nodes contained in a given constrained set
Q(β).‖D(α, β)‖/‖O(α)‖ denotes the ratio of the quantity of
identified drivers to the quatity of targets, and ‖D(α, β) ∩
Q‖/‖D(α, β)‖ denotes the ratio of the quantity of identi-
fied drivers among constrained (or pre-selected) nodes
to the quantity of all the identified drivers.
Then we introduce two target controllability parameters.

One is the average ratio of drivers to targets,

E1 ¼
Z 1

0

Z 1

0
D α; βð Þk k= O αð Þk kð Þdαdβ

which reflects the cost of controlling targets in the com-
plex network. And another parameter is the average ra-
tio of constrained (or pre-selected) nodes in the drivers
to all the drivers,

E2 ¼
Z 1

0

Z 1

0
D α; βð Þ∩Qk k= D α; βð Þk kdαdβ

which reflects the verifiability of identified driver nodes
in target controlling the network.
Note that whenα = 1, β = 1, both of E1 and E2 can be

reduced to the fraction of drivers to control the full net-
works. When 0 < α < 1, β = 1, E1 is reduced to the fraction
of driver nodes to control the target nodes, and E2 = 1.
However in our paper, we focus on the problem that when
0 < α < 1, 0 < β < 1, how to identify optional driver nodes to
minimize the measure E1 and to maximize the measure E1.
In fact, we have selected α = 0.1,0.2,…,1 andβ = 0.1,0.2,…,1,

and applied our TCOA to calculate the two target control-
lability parameters E1 and E2. We have obtained the data
of the real-world networks from [7, 8], and for the con-
venience we provide the data description in the
(Additional file 2: Table S1). The results on these real net-
works are listed in the Table 3.
Obviously, we can conclude that TCOA can efficiently

identify the driver nodes with optional property to guar-
antee the system target controllable, compared to the
existing method. However with increasing size of Q, our
TCOA is receiving more and more guidance, and is
expected to outperform Gao’s method, which does not
take a constrained set as input. From the Table 3, we
find our TCOA can not only find more driver nodes
contained in the constrained nodes set Q but also
detects the less quantity of driver nodes.
The novelty of our TCOA is the proposed analysis

framework consisting of target control tree, ILP model
and MCMC sampling for improving efficiency. In
addition to the algorithm comparision between TCOA
and other existing methods, we have also carried on
more comparisons to investigate the contribution of ILP
and MCMC in TCOA.To evaluate the advantage of the
ILP and MCMC sampling, we list the result of our
TCOA without MCMC sampling (only with ILP) and
the result of our TCOA. From Table 3, we find that our
TCOA can perform better than the TCOA only with ILP
but without MCMC sampling, supporting strongly the
efficiency of the MCMC sampling. We also find that our
TCOA can achieve better results than Gao’s method
even without MCMC sampling.

Case studies on PPI signaling transduction networks in
pancreatic cancer
As further evidences of the applicability of TCOA, we
have carried TCOA on PPI signaling transduction net-
works in pancreatic cancer. The main cause of cancer is
genetic and epigenetic alterations, which allow normal
cells to over-proliferate as tumor cells [31]. To compre-
hensively understand the specificity in signaling net-
works, we have to understand how distinct pathways
communicate with each other and how proteins of one
pathway make interactions with related signaling com-
ponents. Here, to understand the various information-
processing abilities employed during the molecular alter-
ation of the cancerous cells [32], we obtain directed PPI
network of 1569 interactions from 991 nodes in pancre-
atic cancer. The directed PPI cancer data, uses SIGNOR
(SIGnaling Network Open Resource) database [33],
which outputs binary matrix representations for the
used-provided protein lists and allows us to create
directed graphs between signaling entities. The networks
are available in Network Controlability Project [34] or
seen (Additional file 3: Table S2). In our paper, in total
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1507 approved proteins (or genes) by the Food and Drug
Administration (FDA) have been selected as the
constrained (or preselected) nodes in the directed PPI
network which will have a prior-known molecule mech-
anism, see (Additional file 4: Table S3). As is well
known, only a subset of these alterations called essential
proteins, from the hundreds of genomic alterations in
various biological pathways [35, 36], are driving the dis-
ease initiation and progression. In the Ref. [34], re-
searchers collected essential gene data for all cancer
from the COLT-Cancer database [37]. In particular, they
considered the HPAF-II cell lines for pancreatic cancer,
and follow the GARP (Gene Activity Rank Profile) and
GARP-P value of corresponding proteins mentioned in
the database. Since previous studies showed that pro-
teins with lower GARP score are more essential and dir-
ectly associated with oncogenesis [38], they selected only
those essential proteins whose GARP value is in the
negative range, and moreover, whose GARP-P value is
less than 0.05 (p < = 0.05). Following the above criteria,

they identified 168 essential proteins available in the
SIGNOR PPI network database in pancreatic cancer
are selected as the targets to be controlled by the
input signals.The essential proteins data can be seen
in (Additional file 5: Table S4).
Our TCOA focus on how to identify the optional

driver proteins with the minimum quantity of drivers
and the maximum of the constrained FDA-approved
proteins, to control the essential target proteins. We
have also applied Liu’s method [6] to control the full
network and apply Gao’s method [8] and our method to
obtain the driver nodes to target control the network.
The results seen in Table 4, indicate that we can identify
less quantity of driver nodes by using TCOA compared
to Liu’s method [6] and Gao’s method [8]. Furthermore,
among the driver nodes, we can also obtain more drug
targetable nodes.
Furthermore, in Supplementary note 5 of Additional file 1.,

we also give the capacity [39] and the corresponding clin-
ical information of the identified driver proteins by using

Table 3 The properties of real networks

Network N L <k> E11 E21 E31 E12 E22 E32

Regulatory

TRN-EC 418 519 1.24 0.8119 0.8230 0.7717 0.5577 0.5963 0.6082

Yeast 688 1079 1.57 0.8083 0.7314 0.7141 0.5460 0.5798 0.5880

Foodweb

Chesapeake 39 177 4.54 0.3049 0.2331 0.2318 0.5521 0.7331 0.8374

ChesUpper 37 215 5.81 0.2777 0.2450 0.2164 0.5502 0.6999 0.8304

Florida 128 2106 16.45 0.2849 0.1923 0.1255 0.5383 0.7506 0.8390

Electronic circuits

s420 252 399 1.58 0.3466 0.1761 0.1666 0.5484 0.7315 0.7434

s208 122 189 1.55 0.3499 0.2106 0.2021 0.5582 0.6967 0.7826

s838 512 819 1.60 0.3563 0.1821 0.1780 0.5438 0.6797 0.6899

Airports

USAir97 332 2126 6.40 0.4410 0.3047 0.2870 0.5477 0.6545 0.6815

Trust

colledge_student 32 96 3.00 0.3285 0.3382 0.2103 0.5387 0.7457 0.8649

Words

glossGT 72 118 1.64 0.7010 0.6441 0.5630 0.5442 0.6192 0.6701

Web

Polblogs 1490 19,090 12.81 0.5414 0.4605 0.4572 0.5953 0.6430 0.6459

Genetic

Rattusp 2640 4268 1.62 0.7385 0.6808 0.6756 0.5990 0.6374 0.6397

Celegants 3879 8482 2.19 0.7250 0.6340 0.6315 0.5994 0.6370 0.6400

Plasmodium 1203 2522 2.10 0.5909 0.4489 0.4468 0.6044 0.6709 0.6766

Here, we list the network types, network name, quantity of nodes in network (N), quantity of edges in network (L), the average degree of network <k>, the
average ratio of drives to the targets by using Gao’s method (E11) and our TCOA without MCMC samplings (E21) and our TCOA (E31) respectively and average ratio of
drivers within the set of constrained (or pre-selected) nodes to all the identified drivers by using Gao’s method (E12) and our TCOA without MCMC samplings (E22)
and our TCOA (E32) respectively. The more detail descriptions of the real-world networks including the network types, names and references, quantity of nodes and
edges and brief description and the downloaded websites, are shown in Additional file 2: Table S1
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our algorithm TCOA. In the Supplementary note 5 of Add-
itional file 1, we have analyzed the drug-targetable proteins
identified by TCOA as part of the strategies to control the
cancer essential proteins, and we found that most of the
TOP-20 proteins could be a direct target in cancer therapy.
We also look for anti-cancer drugs for the drug target pro-
teins identified by TCOA, whose results are also listed in
Supplementary note 5 of Additional file 1. We find that in
some cases they have been used in current cancer type-
specific drugs and drug-therapies. Among the 42 identified
driver genes, 34 of them have not been previously reported
as the drug targets. This suggests that our TCOA will be
very useful in identifying potential drug targets.

Case studies on inflammatory bowel disease network
from KEGG
The causes of the common forms of idiopathic Inflamma-
tory bowel disease (IBD) remain unclear though consider-
able progress [40]. Here, we utilize the network, in KEGG
[41] as is listed in (Additional file 6: Table S5). The network
consits of 4798 nodes and 105,606 directed and undirected
edges (or bi-directed edges). To identify the drug targets, in
total 702 approved proteins (or genes) by the Food and
Drug Administration (FDA) have been selected in the net-
work from the Drug Bank database [42], see (Additional file 7:
Table S6) as the constrained nodes set in our TCOA.
In this study, we consider the genes in the Inflammatory

bowel disease (IBD) pathways which is listed in
(Additional file 6: Table S5) as the target nodes in our
TCOA. We apply both Gao’s algorithm [8] and our algo-
rithm to analyze the target controllability of the network
related with Inflammatory bowel disease (IBD). The re-
sults are shown in Table 4, and we find that the driver
nodes for control the whole network is more than the tar-
get nodes and is not necessary to control the full network
by using Liu’s algorithm [6]. Furthermore the quantity of
driven nodes needed for the control of target genes is ac-
tually much smaller than that of Gao’s method [8] accord-
ing to our method analysis. Our TCOA also found sets of
driver nodes containing more drug targetable nodes,
meanwhile Liu’s method [6] and Gao’s method [8] cannot
detect drug targetable nodes as drivers, which indicate the
applicability of TCOA. In addition, we calculate the fre-
quency that each network node acts as a driver in the

phase of MCMC sampling (or the control capacity [39])
as shown in Fig. 4. As is seen, STAT3, IL22, MAF and
TLR5 has higher probability to be potential drivers to
change the states of disease-related genes. Furthermore
the existed researches have reported that IL-22 and TLR5
can be a therapy target for IBD [43]. These results suggest
STAT3 and MAF can be future drug targets for IBD
therapy.

General topological properties of driver nodes in
inflammatory pancreatic cancer network and bowel
disease network
We have analyzed several topological properties of the
drug-target proteins included by TCOA in the set of driven
nodes. We calculated the average degree, the average be-
tweenness centrality of these drug-target proteins by using
our target control scheme, which are compared with Liu’s
full control scheme [6] and the average values over the en-
tire networks. We find that, in the disease networks, the
drug-target driver nodes would have higher average degree
than the average values over the entire networks as shown
in Fig. 5a. This shows that the driver nodes tend to be
high-degree nodes for target control the networks; In
addition to the summarized results on the two biological
networks, we have illustrated the network information of
the validated results in (supplementary note 6 of
Additional file 1: Figure S5). From Additional file 1: Figure
S5, we also found that the nodes with higher capacity have
higher node degrees in the network and it also proved our
statistic results in Fig. 5.

Table 4 The properties of detected driver nodes with Liu’s method, Gao’s method, and our method in Pancreatic cancer network

Method Pancreatic cancer network Inflammatory bowel disease network

f1 f2 f1 f2

Liu [6] 4.0952 0.0596 39.0208 0.0806

Gao [8] 0.8750 0.0748 0.7917 0.1316

Our method 0.4702 0.4302 0.1875 0.5506

The columns represent the following information per disease network: Different methods, the fraction of the quantity of drivers vs. the target nodes (f1), the
fraction of the driver nodes within drug target nodes in FDA vs. the quantity of driver nodes (f2)

Fig. 4 The frequency (fd) of the identified driver nodes within the
constrained nodes set for MCMC samplings in IBD disease network
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By using the full control scheme in the previous theoret-
ical research [6], there exists an observation and conclusion
that the driver nodes tend to be low-degree nodes as shown
in Fig. 5a. However, for target control the biological net-
works, we interestingly find that the driver nodes tend to
be high-degree nodes as shown in Fig. 5a, which is more
consistent with the biological experimental results. The
drug-target driven nodes also tend to have a higher average
betweeness centrality as shown in Fig. 5b, which indicates
that driver nodes would act as highly-traversed bridges in
networks. By contrast, driver nodes display different
weights on closeness centrality on particular disease net-
work, as shown in Fig. 5c, which would mean the modular-
ity around driver nodes would have significant rewiring in
different conditions [32].

Discussions
In fact, in our previous research, we studied another target
control problem, called constrained target control (CTC)
problem [19], which focuses on how to choose minimal
drivers only within the set of constrained control nodes to
change the states of the maximal targets. Different from
CTC, we do not require that all the selected driver nodes
must be in the constrained nodes set and our consider-
ation for TCO has a double optimization to minimize the
total quantity of driven nodes (on which a subsequent
intervention is needed) and to maximize the percentage of
constrained nodes among them (on which the findings are
consistent with prior-known knowledge). Our results sup-
ply the novel insights into how we can efficiently target
control a complex system, and especially many evidences
on the practical strategic utility of TCOA to incorporate
prior drug information into potential drug-target forecasts.
However, this study is limited to focus on how to obtain
the state transitions of the linear networks. It is more

practical and necessary to target control the system with
nonlinear dynamic in the future.

Conclusions
It is rather difficult to study how to control a complex net-
work, because we often do not know the true functional
form of the underlying dynamics, such as biological net-
works. However, most systems operate near homeostasis,
so in this study, we pose target control problem with
objectives-guided optimization (TCO) and also provide a
novel algorithm (TCOA) to study the local structural con-
trol of inherent nonlinear networks, which is more prac-
tical to target control the complex networks than the
existing methods. In this work, the application of our new
control tool TCOA provides more precision predictions
compared to the existing methods on the study of struc-
tural target control of networks. Particularly, our work
supports that the target control tools actually provide an
efficient way to control a network through known drug-
target nodes, in the cases of disease-associated networks.
In addition, this work supplies a better understanding of
the disease-associated biochemical networks and opens a
new way to recover the drug-target based control mecha-
nisms. This in turn could advance the future studies of
various disease diagnostic techniques based on network,
e.g., network biomarkers [44–47] and dynamic network
biomarkers [48–52], efficient therapeutic approaches and
personalized medicine [53].

Additional files

Additional file 1: Supplementary material of A novel algorithm for
finding optimal driver nodes to target control complex networks and its
applications for drug targets identification. (DOC 2101 kb)

Additional file 2: Descriptions of real world networks. (XLSX 12 kb)
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Fig. 5 Topological properties of driven proteins in Pancreatic cancer network (a) Average out degree of driven proteins for our target control in
compare to that in whole network (blue) and that of driver nodes for full control (green). (b) Average betweenness of driven proteins for our
target control in compare to that in whole network (blue) and that of driver nodes for full control (green)
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