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Abstract

Background: Since the establishment of the first biomedical ontology Gene Ontology (GO), the number of biomedical
ontology has increased dramatically. Nowadays over 300 ontologies have been built including extensively used Disease
Ontology (DO) and Human Phenotype Ontology (HPO). Because of the advantage of identifying novel relationships
between terms, calculating similarity between ontology terms is one of the major tasks in this research area. Though
similarities between terms within each ontology have been studied with in silico methods, term similarities across
different ontologies were not investigated as deeply. The latest method took advantage of gene functional interaction
network (GFIN) to explore such inter-ontology similarities of terms. However, it only used gene interactions and failed to
make full use of the connectivity among gene nodes of the network. In addition, all existent methods are particularly
designed for GO and their performances on the extended ontology community remain unknown.

Results: We proposed a method InfAcrOnt to infer similarities between terms across ontologies utilizing the entire GFIN.
InfAcrOnt builds a term-gene-gene network which comprised ontology annotations and GFIN, and acquires similarities
between terms across ontologies through modeling the information flow within the network by random walk. In our
benchmark experiments on sub-ontologies of GO, InfAcrOnt achieves a high average area under the receiver operating
characteristic curve (AUC) (0.9322 and 0.9309) and low standard deviations (1.8746e-6 and 3.0977e-6) in both human and
yeast benchmark datasets exhibiting superior performance. Meanwhile, comparisons of InfAcrOnt results and prior
knowledge on pair-wise DO-HPO terms and pair-wise DO-GO terms show high correlations.

Conclusions: The experiment results show that InfAcrOnt significantly improves the performance of inferring similarities
between terms across ontologies in benchmark set.
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Background
Bio-ontology has drawn more and more attention in the
standardization of terminology [1–3], functional annotation
of molecules and so on [4–7]. Especially, the relationships
between terms of an ontology play an important role in
clustering gene expression data for yielding biologically

meaningful gene clusters [8], prioritizing disease genes for
predicting novel disease-causing genes and etc. [9–11].
Nowadays, over 300 biomedical ontologies have been

manually curated [12, 13]. These ontologies are estab-
lished for describing different types of characteristics of
molecules, such as participation in biological processes
(BP), induction of diseases, and so on. As the wide appli-
cation of relationships in single ontology, relationships
between terms across ontologies would significantly
increase interoperability between molecules in multiple
aspects and enable new intelligent bioinformatics appli-
cations [14].
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Gene Ontology (GO) is the earliest and most
frequently used ontology, which contains three sub-on-
tologies (categories) describing molecular function (MF),
BP and cellular component (CC) of genes and gene
products (Fig. 1). Intra-relationships between terms of
each sub-ontology have been manually curated [15] and
quantitatively measured [16–19] for dozens of years. By
contrast, less attention has been paid to inter-
relationships between terms of the tree sub-ontologies.
Although several methods have been developed to
calculate similarities between terms across these sub-on-
tologies [20–22], it remains a challenge to achieve high
reliability.
Since GO has been widely utilized to annotate genes

and gene products of various organisms [5], relation-
ships between its terms can also be reflected by their an-
notated genes. Accordingly, three state-of-art algorithms
were designed to identify term relationships among the
three sub-ontologies, which include Association Rule
Mining (ASR) method [20], Vector Space Model (VSM)
method [21], and Cross-Category Gene Ontology Meas-
urement (CroGO) method [22, 23]. ASR method was
initially designed to identify products frequently bought
together [24]. It was introduced to calculate similarity
between terms across sub-ontologies based on the fre-
quency of their annotated gene sets [20]. Subsequently,
inter-relationships identified by ASR method across
GO’s three sub-ontologies were integrated into GO as a
complement [25]. VSM method describes each GO term
as a vector of genes based on a given annotation data-
base [21]. Then the relationships between terms can be
measured by the cosine of their corresponding vectors.
Both ASR and VSM methods assume genes are inde-
pendent and ignore the functional interactions between
genes which actually contain valuable information about
their corresponding terms. Gene functional interaction

network (GFIN) is the widely accepted source of gene
interactions at present [26–29]. CroGO utilizes GFIN to
enhance its power for the calculation of similarity
between terms [22]. It benefits from the additional infor-
mation stored within gene interaction network which
implicates correlations of genes’ annotation terms. How-
ever, CroGO calculates the similarity between terms only
through considering interactions between their anno-
tated genes, but ignores the connectivity among gene
nodes of the network. All of these three methods were
designed and validated for measuring similarities be-
tween terms across GO’s three sub-ontologies. They
should have the potential to be applied on ontologies
built after GO such as Disease Ontology (DO) (Kibbe et
al. 2015) and Human Phenotype Ontology (HPO) [30].
However, little work has been done on this aspect.
In this study, we proposed a new method InfAcrOnt

to calculate similarities between terms across ontologies
utilizing the entire GFIN. In our model, a weighted
term-gene-gene network (WTGGN) is created by com-
bining gene annotations and GFIN. Then the informa-
tion flow in the network is modeled by a random walk
[31, 32] to calculate term similarities. The method has
been validated with experiments on multiple ontologies
including DO and HPO.

Methods
InfAcrOnt has four steps to measure similarities
between terms across different ontologies (Fig. 2). First,
the weight of term-gene pair was defined. Each of the
term-gene pairs was got from a functional annotation of
gene. We also define weight of each term in the
ontologies. Second, we built a WTGGN based on the
weighted term-gene pairs and weighted gene interactions
from GFIN. Third, each term was represented as a
vector of genes through modeling information flow in

Fig. 1 Sub-graph of the Directed Acyclic Graph of three GO sub-ontologies. Each node indicates a term of GO, and each arrow symbol represents
an ‘IS_A’ relationship of GO. For example, “catalytic complex” is linked to “protein complex” by an ‘IS_A’ relationship
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the WTGGN by random walk. The dimension of vector
equals to the number of genes in the network. Fourth,
we calculated cosine between vectors and adjust the
value with the weight of terms. The results are used as
similarities between terms.

Step 1: Defining weight for each term-gene pair and
each term
Ontology annotations provide functional annotations
for each gene. Each entry of annotations can be ex-
tracted as a term-gene pair. To construct a WTGGN,
we define the weight of term-gene pair according to
the importance of the gene to a term-gene pair in Eq.
1, which is inversely proportional to the total number
of terms related to gene. Assuming a gene is anno-
tated with only one term, this term-gene relationship
should be very important for the WTGGN. On the
contrary, if a gene is annotated with multiple terms,
the importance of each of these term-gene relation-
ships should be divided equally.

wðti; gjÞ ¼ −log2
nj
NT

ð1Þ

where nj represents the number of terms associated
with the gene gj, NT represents the number of all the
annotation terms. Then the weight of each term-gene
pair is normalized with Eq. 2.

nwðti; gjÞ ¼
wðti; gjÞ−wtgmin

wtgmax−wtgmin
; ð2Þ

where wtgmin and wtgmax are the minimum and
maximum weights of term-gene pairs, respectively.
In an ontology, terms are stored as nodes in a Directed

Acyclic Graph (DAG) which are connected with ‘IS_A’
relationship (Fig. 1). According to the set inclusion rela-
tion by ‘IS_A’ relationships [33], if a gene is annotated by
a term, then the gene is also annotated by its ancestors.
Therefore, terms in the higher level of the DAG can
annotate more genes which lead to shallow annotation
[34]. Theoretically, the depth of a term in DAG should

Fig. 2 Overview of InfAcrOnt demonstrating the basic ideas of measuring similarity between terms across ontologies
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be inversely proportional to the number of the genes it
annotates. To avoid this problem we assign a weight to
each term. The weight of term is defined in Eq. 3 in
which terms with fewer annotated genes are assigned to
relatively higher weight.

w tið Þ ¼ −log2
ng
NG

; ð3Þ

where ng represents the number of genes annotated by
term ti, NG represents the number of all annotated
genes. Then the weight of each term is normalized
between 0 and 1 with Eq. 4.

nw tið Þ ¼ w tið Þ−wtmin

wtmax−wtmin
; ð4Þ

where wtmin and wtmax are the minimum and maximum
weights of terms, respectively.

Step 2: Constructing a weighted term-gene-gene network
We then construct a WTGGN with weighted term-gene
pairs achieved in step1 and weighted gene-gene inter-
action in GFIN. In this network, there are two types of
nodes, term nodes and gene nodes. There are also two
types of edges, term-gene edge (term node to gene node)
and gene-gene edge (gene node to gene node). Each
term-gene edge weight is calculated with Eqs. 1 & 2 and
gene-gene weight is sourced from GFIN. The latter is
further normalized with Eq. 5.

wðgi; gjÞ ¼
FISðgi; gjÞ−FISmin

FISmax−FISmin
; ð5Þ

where FIS(gi, gj) represents functional interaction score
between genes gi and gj from GFIN, FISmin and FISmax

are the minimum and maximum weights of gene-gene
edges, respectively.
The WTGGN contains all necessary information for

the calculation of similarities between terms across
ontology. This information involves term-gene pairs of
ontology annotations and gene-gene interactions of
GFIN. In other words, term nodes can be connected by
interactions between their annotated gene nodes and
intermediate gene nodes in the network, which provides
a potential possibility to calculate term similarity more
comprehensively.

Step 3: Modeling information flow in the network by a
random walk
Three models have been designed for modeling informa-
tion flow by a random walk with damping in the
network, such as absorbing, emitting and channel
models [35, 36]. The random walk starts from source
nodes and terminates either by dissipation or by

reaching a sink node. Source nodes and sink nodes are
boundary nodes while others are transient nodes. Unlike
the classical random walk, these models allow the walker
to dissipate or damp at each step under a certain prob-
ability. Each walk, if not dissipated, simulates a possible
information path from source node to sink node.
Absorbing model assigns nodes the random walk ends
at, emitting model assigns nodes the random walk starts
from and channel model integrates both absorbing and
emitting models for directed information flow.
Information Transduction Module (ITM) Probe [37]

program has implemented all of these three models. It
outputs the expected number of visits to each transient
and sink node by random walker originated from every
node. The ITM takes an undirected network as input,
for each source node it searches for a path to sink nodes
under a given dissipation rate. Smaller dissipation rate
allows random walks to explore nodes farther to the
source while larger dissipation rate evaporates most
walks more quickly. In channel model, dissipation rate
controls how much a random walk can deviate from the
shortest path from sources to sinks. The expected num-
ber of visits from the transient nodes to source nodes in
the network are scored and returned in terms of the
weights by ITM Probe.
Channel model is applied on our WTGGN by ITM

Probe. All genes in the network are transient nodes. To
access the weight of each gene for a given term, we
specified the term as the source node and sink node
based on the network. Based on this method, a term
could be represented as a weighted vector. Each
dimension of the vector is the weight score of a gene to
the term. Through random walk in the channel model,
the connectivity of the entire network of GFIN can be
fully utilized.
Here, the damping factor equals 0.85 according to the

previous study [35]. Assuming N genes exist in the
WTGGN, each term can be represented as N-dimension
vector based on channel model through the ITM Probe.
For a given term t1, the weighted vector can be
described as:

WV ti ¼ wi;1;wi;2;…;wi;N
� �

; ð6Þ
where WVti means a weighted vector of ti, and wi,j

represents the weight score of ti on the jth dimension.

Step 4: Calculating similarities between terms across
ontologies
Then we define the similarity between term t1 and t2 as
following:

Simðti; tjÞ ¼ cos θð Þ⋅nw tið Þ⋅nw tj
� �

; ð7Þ
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cos θð Þ ¼ PN
n¼1

wi;n⋅wj;nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1

wi;n
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1

wj;n
2

s
;

ð8Þ

where the cosine of the vectors of ti and tj is the similar-
ity between terms. The vectors of terms were obtained
based on step 3. nw(ti) and nw(tj) represent the normal-
ized weight of term ti and tj, which could be calculated
based on eqs. 3 & 4. Here, nw(ti) and nw(tj) is used to
avoid shallow annotation. The corresponding algorithm
was described in the Additional file 1.

Results
Performance evaluation of calculating similarities of
pair-wise BP-MF terms
A benchmark set for human has been built by extracting
similar pair-wise BP-MF terms in a previous study [22].
Taken pairs of the benchmark set as our positive group
(PG), we get random pairs as a negative group (NG).
Then the similarity score of PG and NG was calculated
to evaluate the performance of existing methods. e.g.
The performance of InfAcrOnt should be superior if the
similarity score of the PG can be prioritized at the top.
Pair-wise terms of the benchmark set were generated

based on their co-occurrence enzymes [25]. On the one
hand, BP terms are also defined as the name of meta-
bolic pathways, each of which is associated with several
enzymes. On the other hand, MF terms can also be linked
to enzymes with the official GO translations [38, 39]. As a
result, 80 pairs of BP-MF terms associated with common
enzymes based on HumanCyc [40] were obtained for
human as PG. Then 10 times (800 pairs) of benchmark set
were obtained randomly as a NG. Here each term of ran-
dom pairs is selected from the terms with annotated genes.
To calculate similarity of term pairs of PG and NG, we

need to construct a WTGGN for BP-MF terms and their
annotated genes. GO [15] was downloaded from open
source repositories (Table 1) which provided manually
curated ‘IS_A’ relationships between terms [33].
Currently, a total of 12,174 ‘IS_A’ relationships between
9988 MF terms and 54,502 ‘IS_A’ relationships between
28,245 BP terms are included in these ontologies. GO
annotations (GOA) of human genes were accessed from
GO Consortium (Table 1). Each entry of annotation of
GOA was tagged with a GO evidence code. An annota-
tion with the evidence code ‘IEA’ means it is non-
experimental annotation without confirmed by a human
annotator. After removing ‘IEA’ annotations, 3217 MF
terms and 9032 BP terms are used to annotate 14,435
human genes which generate 132,984 annotations were
obtained. To the best of our knowledge, HumanNet [29]
is the latest and most frequently used GFINs for human.

Currently, HumanNet contains 476,399 interactions
among 16,243 human genes. Using GO, GOA and
HumanNet a WTGGN for BP-MF terms and their anno-
tated genes was constructed based on step 1 and step 2
of the ‘Methods’ section. Then the similarity of term
pairs of PG and NG was calculated based on step 3 and
step 4 of the ‘Methods’ section.
The performances of existing methods are assessed by

drawing a receiver operating characteristic (ROC) curve.
We can get true-positive (TP), false-positive (FP), true-
negative (TN), and false-negative (FN) using various
similarity scores of PG and NG as threshold. Then the
curve is created by plotting the true positive rate (TPR
= (TP) / (TP + FN)) (or Sensitivity) against the false posi-
tive rate (FPR = 1-(TN) / (TN + FP)) (or 1-Specificity) at
various threshold settings. The area under the ROC
curve (AUC) showed the performance of each method
for distinguishing PG from NG. Figure 3a shows a ROC
curve of the existing method based on our PG and a
NG. The corresponding AUCs by the CroGO, VSM,
ASR, and InfAcrOnt methods are 0.6539, 0.7674, 0.7659,
and 0.9330 respectively. ASR and VSM methods are the
two classical approaches. The similar ROCs of these two
methods show that the performances of these two
methods are almost the same. Although CroGO method
introduced the interactions between genes, it did not
perform well. This may be caused by the fact that the
connectivity between genes through the GFIN wasn’t be
utilized. Fortunately, the entire GFIN was incorporated
in the InfAcrOnt method. And the significantly higher
AUC (0.9330) validates that our method helps to enhance
the true positive rate and reduces the false positive rate.
The experiment was iterated 100 times based on 100

random NGs. The AUCs of 100 iterations are shown in
Fig. 3b. The average AUCs of the CroGO, VSM, ASR,
and InfAcrOnt methods are 0.6509, 0.7721, 0.7690, and
0.9322 respectively. And the corresponding standard
deviations (SDs) of these AUCs are 1.5699e-4, 3.9732e-5,

Table 1 Data sources used for identifying novel relationships
across ontologies

Data source Web site

GO http://geneontology.org/page/download-ontology

GOA for
yeast

http://geneontology.org/gene-associations/
gene_association.sgd.gz

GOA for
human

http://geneontology.org/gene-associations/
gene_association.goa_ref_human.gz

YeastNet http://www.inetbio.org/yeastnet/

HumanNet http://www.functionalnet.org/humannet/

HPO & HPOA http://human-phenotype-ontology.github.io/

DO http://disease-ontology.org/

DOA http://www.bio-annotation.cn/gene2function/

PubMedA http://www.bio-annotation.cn/ARSSIC
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3.5278e-5, and 1.8746e-6 respectively. In comparison
with other methods, AUC is improved more than 0.15
by InfAcrOnt. The highest AUC and lowest SD of
InfAcrOnt shows a significant advantage of our method.
Peng et al. also provide another benchmark set of similar

pair-wise BP-MF terms for yeast [22]. Then the similar ex-
periment was done on yeast. The set was generated based
on their co-occurrence enzymes [25]. Finally, 175 pairs of
BP-MF terms related with common enzymes by YeastCyc
[41] were obtained for yeast as PG, and corresponding 1750
random pairs were obtained as a NG. The WTGGN for cal-
culating term pair similarity was built based on GO, GOA
for yeast, and YeastNet [28]. After removing ‘IEA’ annota-
tions, 1676 MF terms and 2655 BP terms are used to anno-
tate 6332 yeast genes which generate 26,488 annotations
were obtained. YeastNet [28] is the latest and most
frequently used GFINs for yeast. It includes 362,421
interactions between 5809 yeast genes.
The results of benchmark set for yeast are shown in

Additional file 2. According to this figure, the AUCs of one
of our experiments for yeast by the CroGO, VSM, ASR, and
InfAcrOnt methods are 0.6689, 0.7640, 0.7660, and 0.9307
respectively. The AUCs of 100 iterations for yeast are shown
in Additional file 2. The average AUCs of the CroGO, VSM,
ASR, and InfAcrOnt methods for yeast are 0.6546, 0.7608,
0.7664, and 0.9308 respectively. And the corresponding SDs
of these AUCs are 4.3988e-5, 2.1204e-5, 1.6300e-5 and
3.0977e-6 respectively. These results show the consistency
in both human and yeast. This indicates that the advantage
of InfAcrOnt in calculating similarity of BP-MF terms is
stable and reliable.

Performance evaluation of calculating similarities of
pair-wise DO-HPO terms
To show InfAcrOnt’s ability to work on ontologies other
than GO’s 3 sub-ontologies, we calculated similarities of

pair-wise DO-HPO terms. The similarity of DO-HPO
term pairs can also be calculated based on prior know-
ledge in HPO project [42] by Term Frequency Inverse
Document Frequency (TF-IDF) [43]. Theoretically, simi-
larity score between terms based on genes should be
consistent with this based on phenotypes. Therefore, we
calculated the Pearson correlation coefficient between
InfAcrOnt similarity score and TF-IDF similarity score
to evaluate the performance of InfAcrOnt.
A WTGGN for DO-HPO terms and their annotated

genes was built by DO, HPO, DO Annotations (DOA),
HPO Annotations (HPOA), and HumanNet (Table 1).
Then the similarities of pair-wise DO-HPO terms were
calculated by InfAcrOnt based on the WTGGN. DO
[44] and HPO [30] were downloaded from open source
repositories (Table 1) which provided manually curated
‘IS_A’ relationships between terms [33]. Currently,
15,459 ‘IS_A’ relationships between 11,673 HPO terms
and 7124 ‘IS_A’ relationships of 6920 DO terms are
included in these ontologies. DOA [10] were sourced from
the annotations of GeneRIF [45]. After removing duplica-
tion, 98,008 associations between 2576 diseases and 9991
genes were obtained. HPOA of human genes were
accessed from the HPO project [42] which provided anno-
tated genes relative to human phenotype. Currently, it
contains 120,890 associations between 5838 terms and
3496 genes. HumanNet has been accessed in 3.1 section.
HPO project [42] parsed textual descriptions of each

disease in the Clinical Synopsis section of OMIM entry.
And the phenotypes of the textual descriptions were
extracted and organized into HPO. Diseases of OMIM
entries were mapped to DO terms based on cross-
reference [44, 46]. Notably, a phenotype occurred in
textual descriptions of a disease only shows a text
relevance between the phenotype and the disease. Thus
we need to quantify this text relevance. To this end, we

a b
Fig. 3 ROC analysis of the benchmark set and random sets for human. a ROC curves for the experimental results on the benchmark set
and a random set for human. It shows 1-specificity versus sensitivity of each method for calculating the similarities of terms across BP
and MF. b Average of AUC for 100 iterators for human
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constructed a n-by-m matrix where N was the number
of DO terms and M was the number of HPO terms. The
(ith, jth) element of the matrix was valued with the
number of occurrences of jth row phenotype in the text-
ual descriptions of ith disease. Subsequently, we applied
TF-IDF [43], a typical model for quantifying text rele-
vance, to calculate the similarity between HPO terms
and DO terms based on the matrix.
Figure 4 shows the correlation between InfAcrOnt

similarity score and TF-IDF similarity score (Pearson
correlation, γ2 = 0.1158 p = 2.2e-16). The high correl-
ation validated the good performance of InfAcrOnt in
calculating the similarity of DO-HPO terms. To further
test the performance of the proposed method,
InfAcrOnt was compared with the state-of-art methods
including ASR, VSM, and CroGO. The comparison
results are shown in Fig. 4b and Additional file 3. The
similarity based on the ARS method accessed the lowest
correlation with the TF-IDF similarity (Pearson correl-
ation, γ2 = 0.0163 p = 0.0062), which is shown in Fig. 4b
and Additional file 3 In comparison, the TF-IDF similarity
is more correlated with the similarity based on the CroGO
method (Pearson correlation, γ2 = 0.1015 p = 2.2e-16;
Fig. 4b and Additional file 3), the VSM method (Pearson
correlation, γ2 = 0.1083 p = 2.2e-16; Fig. 4b and Additional
file 3). As expected, similar terms could be identified
based on existing methods and prior knowledge in HPO
project simultaneously. In comparison with these state-of-
art methods, InfAcrOnt similarity achieves the most
correlation with prior knowledge.

Performance evaluation of calculating similarities of
pair-wise DO-BP terms
To show InfAcrOnt’s ability to calculate similarity
between terms across GO’s sub-ontologies and other on-
tologies, we applied our method in DO-BP terms. An
alternative way to calculate the similarity of DO-BP term
pairs is based on prior knowledge in PubMed [47] by
the Extensional Mutual Information (EMI) method [48].
Then the correlation between InfAcrOnt similarity score

and EMI similarity score was utilized to evaluate the
performance of InfAcrOnt.
A WTGGN for DO-GO terms and their annotated

genes was constructed by DO, GO, DOA, GOA and
HumanNet. All of these data have been accessed in
3.1 and 3.2 sections. Then the similarities of pair-wise
DO-BP terms were calculated by InfAcrOnt based on
the WTGGN.
Literature of PubMed documents DO terms and GO

terms in its title and abstract. Two terms occur in a
literature is defined as a co-occurrence relationship
between them [48]. These co-occurrence relationships
can be quantified as the similarity of DO-BP term pairs.
One of the most frequently used algorithm to do this is
EMI by Wren et al. [48]. Here we downloaded the co-
occurrence relationships of DO-BP term pairs in
PubMed from the previous study [9], and then calcu-
lated the EMI similarity of DO-BP term pairs.
Figure 5 shows the correlation between InfAcrOnt simi-

larity score and EMI similarity score (Pearson correlation,
γ2 = 0.2429 p = 2.2e-16). The high correlation validated the
good performance of InfAcrOnt in calculating the similarity
of DO-BP terms. To further test the performance of the
proposed method, InfAcrOnt was compared with ASR,
VSM, and CroGO. The comparison results are shown in
Fig. 5b and Additional file 4. As expected, the results show
that EMI similarity is also positive correlated with the simi-
larity based on the CroGO method (Pearson correlation, γ2

= 0.0296 p = 2.2e-16; Fig. 5b and Additional file 4), the
VSM method (Pearson correlation, γ2 = 0.2092 p = 2.2e-16;
Fig. 5b and Additional file 4), the ASR method (Pearson
correlation, γ2 = 0.0605 p = 2.2e-16; Fig. 5b and Additional
file 4). In comparison, the similarity based on the InfA-
crOnt method is the most relevant with the EMI similarity.

Case studies: diabetes mellitus, alzheimer’s disease, and
neuroblastoma related biological process
To further indicate our method in identifying disease-
related BP, case studies of Diabetes Mellitus (DM),
Alzheimer’s Disease (AD), and Neuroblastoma were

a b
Fig. 4 The correlation between the term similarity based on ontology annotations and prior knowledge in HPO project. a The distribution of the
similarity scores by InfAcrOnt method. b Pearson Correlation Coefficient between similarity scores based on TF-IDF and other methods
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examined. The similarity of DO-BP terms was calcu-
lated in section 3.3. Here we ranked the BP terms of
diseases by the InfAcrOnt similarity score, and then
investigated top 5 similar BP terms of these three
diseases respectively. Their relationships were manu-
ally checked in the published studies and the results
were listed in Additional file 5. All of five DM-BP
relationships were validated. And four of five AD-BP
relationships and four of five neuroblastoma-BP
relationships were also validated. For example, DM
increases reactive oxygen species (GO:0000302)
production [49], DNA replication (GO:0006275) stress
is a key element of AD [50]. All of these results
indicate that our method can function in identifying
potential DO-BP terms.

Discussion
The importance of the relationship between terms across
ontologies had been reflected in the previous researches
[14, 51, 52]. However, few of these relationships were
manually curated in the existing vocabularies. Currently,
methods have been developed for measuring the similar-
ity between terms across ontologies based on term-gene
pairs of ontology annotations, which can prioritize these
inter-relationships [20–22]. Because of ignoring the con-
nectivity of the GFIN, existing methods were limited for
identifying novel relationships. To solve this problem, in
this article we devised a new method named InfAcrOnt
for improving the performance of calculating the simi-
larity of terms across ontologies by integrating ontology
annotations and GFIN through information flow.
The performance of InfAcrOnt was validated very well

in calculating similarities of BP-MF term pairs according
to the evaluation on two benchmark sets (Fig. 3 and
Additional file 2). The two benchmark sets were selected
strictly by their common enzymes (see ‘3.1’ section).
Therefore, our method is very suitable for identifying
strong relationships. Because two benchmark sets are
sourced from human and yeast, respectively, and the

experiment was iterated 100 times, the stability of our
method was also proved very well.
The superior performance of InfAcrOnt was also

validated in calculating the similarity of pair-wise
DO-HPO terms (Fig. 4) and pair-wise DO-GO terms
(Fig. 5). The high correlations between similarity
based on existing methods and similarity based on
prior knowledge show that the performance of the
ASR, VSM, CroGO, and InfAcrOnt methods are also
good for other ontologies besides sub-ontologies of
GO. Considering the fluctuation of the performance
of the ASR and CroGO (Figs. 4b and 5b) methods,
the VSM and InfAcrOnt methods perform better. In
comparison with other methods, InfAcrOnt achieves
the highest correlation, which means it is the most
consistent with prior knowledge.
Over 300 ontologies have been developed in the bio-

medical domain. The lack of relationships between
terms across these ontologies limited the interoperability
in term level. Fortunately, InfAcrOnt can function in
identifying novel relationships based on ontology anno-
tations and GFIN. Because most of the ontologies were
used to annotate genes and GFIN has been constructed
[28, 29], InfAcrOnt can be used widely for calculating
similarities between terms across these ontologies. Fur-
thermore, the case studies validate the method can func-
tion in identifying novel relationships.

Conclusions
In this article, we presented a novel method InfAcrOnt
for calculating cross-ontology term similarities using in-
formation flow by a random walk. The method mainly
focused on taking advantage of the connectivity of the
GFIN. To validate its performance, experiments were
conducted on InfAcrOnt and state-of-art methods on
sub-ontologies of GO and other frequently used ontol-
ogies. The highest AUC (0.9322 and 0.9309) and lowest
SDs (1.8746e-6 and 3.0977e-6) were achieved for InfA-
crOnt in both human and yeast benchmark datasets.

a b
Fig. 5 The correlation between the term similarity based on ontology annotations and prior knowledge in PubMed. a The distribution of the
similarity scores by InfAcrOnt method. b Pearson Correlation Coefficient between similarity score based on EMI and other methods
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And the highest correlation were also obtained be-
tween similarity score using InfAcrOnt and prior
knowledge for DO-HPO (Pearson correlation, γ2 =
0.1158 p = 2.2e-16) and DO-BP (Pearson correlation,
γ2 = 0.2429 p = 2.2e-16) terms. All of these results
exhibited the superiority of our method. In the case
study, novel identified BPs of DM and AD using
InfAcrOnt were verified in recent literatures. Cur-
rently, over 300 ontologies without interoperability in
term level have been developed in the biomedical do-
main. Therefore, it is valuable for using InfAcrOnt to
mine novel relationships across ontologies.

Additional files

Additional file 1: Algorithm for measuring term similarities across
ontologies. (PDF 193 kb)

Additional file 2: AUC analysis of the benchmark set and random sets
for yeast. (PDF 463 kb)

Additional file 3: The correlation between the term similarity by state-of-art
methods and prior knowledge in HPO project. (PDF 145 kb)

Additional file 4: The correlation between the term similarity by state-of-art
methods and prior knowledge in PubMed. (PDF 134 kb)

Additional file 5: Disease-related biological process confirmed by
literature mining. (PDF 102 kb)

Abbreviations
AD: Alzheimer’s disease; ASR: Association rule mining; AUC: Area under the
receiver operating characteristic curve; BP: Biological processes; CC: Cellular
component; CroGO: Cross-category gene ontology measurement;
DM: Diabetes mellitus; DO: Disease ontology; EMI: Extensional mutual
information; FN: False-negative; FP: False-positive; FPR: False positive rate;
GFIN: Gene functional interaction network; GO: Gene ontology; GOA: GO
annotations; HPO: Human phenotype ontology; HPOA: HPO annotations;
ITM: Information transduction module; MF: Molecular function; NG: Negative
group; PG: Positive group; ROC: Receiver operating characteristic;
SDs: Standard deviations; TF-IDF: Term frequency inverse document
frequency; TN: True-negative; TP: True-positive; TPR: True positive rate;
VSM: Vector space model; WTGGN: Weighted term-gene-gene network

Acknowledgments
We would like to thank Dr. Jin Chen, associate Professor at University of
Kentucky, for invaluable comments and suggestions to the project.

Funding
The publication costs of this article were supported by the National Natural
Science Foundation of China (Grant No. 61502125), Heilongjiang Postdoctoral
Fund (Grant No. LBH-Z15179), and China Postdoctoral Science Foundation
(Grant No. 2016 M590291). The funders had no roles in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
The datasets during and/or analyzed during the current study available from
the corresponding author on reasonable request.

About this supplement
This article has been published as part of BMC Genomics Volume 19
Supplement 1, 2017: 16th International Conference on Bioinformatics (InCoB
2017): Genomics. The full contents of the supplement are available online at
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-19-
supplement-1.

Authors’ contributions
LC, MZ, YH conceived and designed the experiments. LC, YJ, HJ, JS, and JP
analyzed data. LC and YJ wrote this manuscript. All authors read and
approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1College of Bioinformatics Science and Technology, Harbin Medical
University, Harbin 150081, People’s Republic of China. 2Hospital for Sick
Children, Toronto M5G 1X8, Canada. 3Department of Information
Engineering, Heilongjiang Biological Science and Technology Career
Academy, Harbin 150081, People’s Republic of China. 4School of Computer
Science, Northwestern Polytechnical University, Xian 710072, People’s
Republic of China. 5School of Life Science and Technology, Harbin Institute
of Technology, Harbin 150088, People’s Republic of China.

Published: 19 January 2018

References
1. Hastings J, de Matos P, Dekker A, Ennis M, Harsha B, Kale N, Muthukrishnan

V, Owen G, Turner S, Williams M. The ChEBI reference database and
ontology for biologically relevant chemistry: enhancements for 2013.
Nucleic Acids Res. 2013;41(D1):D456–63.

2. Schindelman G, Fernandes JS, Bastiani CA, Yook K, Sternberg PW. Worm
phenotype ontology: integrating phenotype data within and beyond the C.
Elegans community. BMC bioinformatics. 2011;12:32.

3. Smith CL, Goldsmith CA, Eppig JT. The mammalian phenotype ontology as
a tool for annotating, analyzing and comparing phenotypic information.
Genome Biol. 2005;6(1):R7.

4. Smith CL, Eppig JT. The mammalian phenotype ontology as a unifying
standard for experimental and high-throughput phenotyping data. Mamm
Genome. 2012;23(9–10):653–68.

5. Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Binns D, Harte
N, Lopez R, Apweiler R. The gene ontology annotation (goa) database:
sharing knowledge in uniprot with gene ontology. Nucleic Acids Res. 2004;
32(suppl 1):D262–6.

6. Osborne JD, Flatow J, Holko M, Lin SM, Kibbe WA, Zhu LJ, Danila MI, Feng
G, Chisholm RL. Annotating the human genome with disease ontology.
BMC Genomics. 2009;10(Suppl 1):S6.

7. Robinson PN, Kohler S, Bauer S, Seelow D, Horn D, Mundlos S. The human
phenotype ontology: a tool for annotating and analyzing human hereditary
disease. Am J Hum Genet. 2008;83(5):610–5.

8. Kustra R, Zagdanski A: Incorporating gene ontology in clustering gene
expression data. In: 19th IEEE Symposium on Computer-Based Medical
Systems (CBMS'06). 2006;555–63.

9. Cheng L, Li J, Hu Y, Jiang Y, Liu Y, Chu Y, Wang Z, Wang Y. Using semantic
association to extend and infer literature-oriented relativity between terms.
IEEE/ACM Trans. Comput. Biol. Bioinform. 2015;12(6):1219–26.

10. Hu Y, Zhou W, Ren J, Dong L, Wang Y, Jin S, Cheng L: Annotating the
function of the human genome with gene ontology and disease ontology.
BioMed Research International 2016.

11. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Method gene ontology
analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.

12. Whetzel PL, Team N. NCBO technology: powering semantically aware
applications. J biomed semant. 2013;4(Suppl 1):S8.

13. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ,
Eilbeck K, Ireland A, Mungall CJ, et al. The OBO foundry: coordinated
evolution of ontologies to support biomedical data integration. Nat
Biotechnol. 2007;25(11):1251–5.

Cheng et al. BMC Genomics 2018, 19(Suppl 1):919 Page 133 of 160

dx.doi.org/10.1186/s12864-017-4338-6
dx.doi.org/10.1186/s12864-017-4338-6
dx.doi.org/10.1186/s12864-017-4338-6
dx.doi.org/10.1186/s12864-017-4338-6
dx.doi.org/10.1186/s12864-017-4338-6
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-19-supplement-1
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-19-supplement-1


14. Soldatova LN, King RD. Are the current ontologies in biology good
ontologies? Nat Biotechnol. 2005;23(9):1095–8.

15. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT. Gene ontology: tool for the unification of
biology. Nat Genet. 2000;25(1):25–9.

16. Wang JZ, Du Z, Payattakool R, PS Y, Chen CF. A new method to
measure the semantic similarity of GO terms. Bioinformatics. 2007;
23(10):1274–81.

17. Resnik P: Using information content to evaluate semantic similarity in a
taxonomy. arXiv preprint cmp-lg/9511007 1995.

18. Lin D. An information-theoretic definition of similarity. In: ICML: 1998;
1998. p. 296–304.

19. Peng JJ, Xue HS, Shao YK, Shang XQ, Wang YD, Chen J. A novel method to
measure the semantic similarity of HPO terms. Int J Data Min Bioin. 2017;
17(2):173–88.

20. Kumar A, Smith B, Borgelt C: Dependence relationships between Gene
Ontology terms based on TIGR gene product annotations. In. 2008.

21. Bodenreider O, Aubry M, Burgun A. Non-lexical approaches to identifying
associative relations in the gene ontology. Pac. Symp. Biocomput.Pac. Symp.
Biocomput. 2005:91–102.

22. Peng J, Chen J, Wang Y. Identifying cross-category relations in gene
ontology and constructing genome-specific term association networks.
BMC Bioinf. 2013;14(2):1.

23. Peng J, Wang H, Lu J, Hui W, Wang Y, Shang X: Identifying term relations
cross different gene ontology categories. BMC bioinformatics 2017.

24. Borgelt C, Kruse R. Induction of association rules: Apriori implementation. In:
Compstat: 2002: Springer; 2002. p. 395–400.

25. Myhre S, Tveit H, Mollestad T, Laegreid A. Additional gene ontology structure
for improved biological reasoning. Bioinformatics. 2006;22(16):2020–7.

26. Hamaneh MB, YK Y. Relating diseases by integrating gene associations
and information flow through protein interaction network. PLoS One.
2014;9(10):e110936.

27. Cheng L, Shi H, Wang Z, Hu Y, Yang H, Zhou C, Sun J, Zhou M:
IntNetLncSim: an integrative network analysis method to infer human
lncRNA functional similarity. Oncotarget 2016.

28. Kim H, Shin J, Kim E, Kim H, Hwang S, Shim JE, Lee I: YeastNet v3: a public
database of data-specific and integrated functional gene networks for
Saccharomyces cerevisiae. Nucleic acids research. 2014;42(Database issue):
731-7.

29. Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM. Prioritizing candidate
disease genes by network-based boosting of genome-wide association
data. Genome Res. 2011;21(7):1109–21.

30. Robinson PN, Mundlos S. The human phenotype ontology. Clin Genet.
2010;77(6):525–34.

31. Wu Q, Ng MK, Ye Y, Li X, Shi R, Li Y. Multi-label collective classification via
Markov chain based learning method. Knowl-Based Syst. 2014;63(3):1–14.

32. Wu Q, Ng MK, Ye Y. Markov- Miml : a Markov chain-based multi-instance
multi-label learning algorithm. Knowl. Inf. Syst. 2013;37(1):83–104.

33. Smith B, Ceusters W, Klagges B, Köhler J, Kumar A, Lomax J, Mungall C,
Neuhaus F, Rector AL, Rosse C. Relations in biomedical ontologies. Genome
Biol. 2005;6(5):R46.

34. J. L S, V S, A. P, E. G, J. M M, M-C LA, F. J C, A R. Correlation between gene
expression and GO semantic similarity. IEEE/ACM Trans. Comput. Biol.
Bioinform. 2005;2(4):330–8.

35. Stojmirović A, Y-K Y. Information flow in interaction networks II: channels,
path lengths, and potentials. J Comput Biol. 2012;19(4):379–403.

36. Stojmirovic A, YK Y. Information flow in interaction networks. J. Comput.
Mol. Cell Biol. 2007;14(8):1115–43.

37. Stojmirović A, Y-K Y. ITM probe: analyzing information flow in protein
networks. Bioinformatics. 2009;25(18):2447–9.

38. Hill DP, Davis AP, Richardson JE, Corradi JP, Ringwald M, Eppig JT, Blake JA.
Program description: strategies for biological annotation of mammalian
systems: implementing gene ontologies in mouse genome informatics.
Genomics. 2001;74(1):121–8.

39. Camon EB, Barrell DG, Dimmer EC, Lee V, Magrane M, Maslen J, Binns D,
Apweiler R. An evaluation of GO annotation retrieval for BioCreAtIvE and
GOA. BMC Bioinf. 2005;6(1):1.

40. Caspi R, Foerster H, Fulcher CA, Hopkinson R, Ingraham J, Kaipa P,
Krummenacker M, Paley S, Pick J, Rhee SY. MetaCyc: a multiorganism
database of metabolic pathways and enzymes. Nucleic Acids Res. 2006;
34(suppl 1):D511–6.

41. Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M,
Paley S, Rhee SY, Shearer AG, Tissier C. The MetaCyc database of metabolic
pathways and enzymes and the BioCyc collection of pathway/genome
databases. Nucleic Acids Res. 2008;36(suppl 1):D623–31.

42. Köhler S, Doelken SC, Mungall CJ, Bauer S, Firth HV, Bailleul-Forestier I, Black
GC, Brown DL, Brudno M, Campbell J. The human phenotype ontology
project: linking molecular biology and disease through phenotype data.
Nucleic Acids Res. 2014;42(D1):D966–74.

43. Salton G, Wong A, Yang CS. A vector space model for automatic indexing.
Commun ACM. 1975;18(11):273–80.

44. Kibbe WA, Arze C, Felix V, Mitraka E, Bolton E, Fu G, Mungall CJ, Binder JX,
Malone J, Vasant D, et al. Disease ontology 2015 update: an expanded and
updated database of human diseases for linking biomedical knowledge
through disease data. Nucleic Acids Res. 2015;43(Database issue):D1071–8.

45. Osborne JD, Lin S, Kibbe W, Zhu L, Danila M, Chisholm RL. GeneRIF is a
more comprehensive, current and computationally tractable source of
gene-disease relationships than OMIM. Bioinf. Core, Northwes Univ Tec
Rep. 2007;

46. Cheng L, Wang G, Li J, Zhang T, Xu P, Wang Y. SIDD: a semantically
integrated database towards a global view of human disease. PLoS One.
2013;8(10):e75504.

47. Coordinators NR: Database Resources of the National Center for
Biotechnology Information. Nucleic Acids Res. 2013;41(Database issue):
D8-D20.

48. Wren JD. Extending the mutual information measure to rank inferred
literature relationships. BMC Bioinf. 2004;5:145.

49. Santos MC, Louzada RA, Souza EC, Fortunato RS, Vasconcelos AL, Souza KL,
Castro JP, Carvalho DP, Ferreira AC. Diabetes mellitus increases reactive
oxygen species production in the thyroid of male rats. Endocrinology. 2013;
154(3):1361–72.

50. Yurov YB, Vorsanova SG, Iourov IY. The DNA replication stress hypothesis of
Alzheimer's disease. TheScientificWorldJOURNAL. 2011;11:2602–12.

51. Sanchez D, Sole-Ribalta A, Batet M, Serratosa F. Enabling semantic similarity
estimation across multiple ontologies: an evaluation in the biomedical
domain. J Biomed Inform. 2012;45(1):141–55.

52. Kahn CE, Jr.: Integrating ontologies of rare diseases and radiological
diagnosis. J. Am. Med. Inform. Assoc. : JAMIA 2015, 22(6):1164-1168.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Cheng et al. BMC Genomics 2018, 19(Suppl 1):919 Page 134 of 160


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Step 1: Defining weight for each term-gene pair and each term
	Step 2: Constructing a weighted term-gene-gene network
	Step 3: Modeling information flow in the network by a random walk
	Step 4: Calculating similarities between terms across ontologies

	Results
	Performance evaluation of calculating similarities of pair-wise BP-MF terms
	Performance evaluation of calculating similarities of pair-wise DO-HPO terms
	Performance evaluation of calculating similarities of pair-wise DO-BP terms
	Case studies: diabetes mellitus, alzheimer’s disease, and neuroblastoma related biological process

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

