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Abstract

Background: Transcriptional target genes show functional enrichment of genes. However, how many and how
significantly transcriptional target genes include functional enrichments are still unclear. To address these issues,
I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding
sequences of transcription factors in databases, and examined functional enrichment and gene expression level
of putative transcriptional target genes.

Results: Gene Ontology annotations showed four times larger numbers of functional enrichments in putative
transcriptional target genes than gene expression information alone, independent of transcriptional target genes.
To compare the number of functional enrichments of putative transcriptional target genes between cells or search
conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of
transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest
normalized number of functional enrichments, compared with target genes including 5–60% of randomly
selected genes. The normalized number of functional enrichments was changed according to the criteria of
enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding
sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of
functional enrichments than the other orientations. Journal papers showed that the top five frequent functional
enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional
target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated
with the changes of the normalized number of functional enrichments of transcriptional target genes.

Conclusions: Human putative transcriptional target genes showed significant functional enrichments. Functional
enrichments were related to the cellular functions. The normalized number of functional enrichments of human
putative transcriptional target genes changed according to the criteria of enhancer-promoter assignments and
correlated with the median expression level of the target genes. These analyses and characters of human putative
transcriptional target genes would be useful to examine the criteria of enhancer-promoter assignments and to predict the
novel mechanisms and factors such as DNA binding proteins and DNA sequences of enhancer-promoter interactions.
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Background
More than 400 types of cells have been found in the
human body. Human development is accompanied by
the differentiation of stem cells into various cell types,
leading to a diversification of their phenotypes and func-
tions. For example, the development of the immune system
involves differentiation and diversification of stem cells into
various types of mature immune cells. The functions of
monocytes include phagocytosis and antigen presentation.
CD4+ T cells, however, play a central role in cell-mediated
immunity and are involved in the activation of phagocytes
and antigen-specific cytotoxic T-lymphocytes, and the
release of various cytokines in response to an antigen. The
CD20+ B cells are involved in the production of antibodies
against antigens.
Differentiation of cells is often triggered by the expression

of transcription factors (TF) followed by the expression of
their target genes, which results in the transformation of
cells into other cell types. For example, the transcription
factors PU.1 and CCAAT enhancer-binding protein α
(C/EBPα) play a critical role in the expression of myeloid-
specific genes and the generation of monocytes and macro-
phages [1, 2]. The transcription factor GATA-3 is essential
for early T cell development and the differentiation of naive
CD4+ T cells into Th2 effector cells [3]. E2A, EBF1, PAX5,
and Ikaros are among the most important transcription
factors that control early development in mice, thereby
conditioning homeostatic B cell lymphopoiesis [4].
We previously examined the differentiation of mono-

cytes and macrophages in mice, and discovered that the
transcription factor IRF8 was essential for cellular differ-
entiation [5]. An analysis of transcription factor-binding
sites (TFBS) revealed that IRF8 regulated the expression
of KLF4 through the IRF8 transcriptional cascade. Func-
tional enrichment analyses revealed that the target genes
of IRF8 showed functional enrichment for antigen presenta-
tion, whereas those of KLF4 showed functional enrichments
for phagocytosis and locomotion. These results suggested
that the transcriptional cascades of IRF8 and KLF4 included
different functional modules of target genes.
Functional enrichments of transcriptional cascades of

IRF8 and KLF4 appeared to be related to the cellular func-
tions of monocytes and macrophages. Although several
transcription factors were expressed in monocytes and
macrophages, the number of these transcriptional target
genes that resulted in functional enrichments remains
unknown. Whether transcriptional target genes in other
human cells show functional enrichments remain unclear.
If the transcriptional target genes showed significant
functional enrichment, analyzing transcriptional target
genes would be useful in identifying genes involved in a
specific cellular function. Using the budding yeast, previous
studies examined the functional enrichments on a genome-
scale genetic interaction map using the GeneMANIA

algorithm [6–8]. Using bacterial systems, the analyses
of functional enrichments of predicted regulatory networks
were performed using Gene Ontology annotations [9].
Various databases of functional annotations of genes and
pathways exist. Analysis of functional enrichments is
expected to be useful for understanding the association
of genes involved in similar functions and same path-
ways, and for predicting unknown gene functions such
as non-protein-coding RNAs. In addition, the extent of
enhancer contribution to functional enrichments of
transcriptional target genes remains unknown.
In this study, transcriptional target genes were predicted

using public databases of open chromatin regions of
human monocytes, naive CD4+ T, CD20+ B cells, HUVEC,
IMR90, MCF-7, HMEC, H1-hESC, iPSC, and ChIP-seq
data of human H1-hESC cells and known transcription
factor binding sequences. Functional enrichment analyses
of putative transcriptional target genes were conducted
using 10 different annotation databases of functional
annotations and pathways. The gene expression level of
transcriptional target genes was examined in the cells.

Results
Prediction of transcriptional target genes
To examine functional enrichments of transcriptional tar-
get genes in a genome scale, transcriptional target genes
were predicted in human monocytes, CD4+ T cells, and
CD20+ B cells. Searches for known transcription factor
binding sequences, which were collected from various
databases and papers, were conducted in open chromatin
regions of the promoter sequences of RefSeq transcripts
(Fig. 1, see Methods). Among 6277 transcription factor
binding sequences derived from vertebrates, 4373 were
linked to 1018 TF transcripts computationally (see
Methods). To maintain the sensitivity of the searches
for transcription factor binding sites and as some transcrip-
tion factors will recognize multiple distinctly different
sequence motifs, transcription factor binding sequences
that targeted the same genes were recognized as redundant,
and one of the sequences was used [10] (see Methods).
In total, 3337 transcription factor binding sequences in
human monocytes, 3652 in CD4+ T cells, and 3187 in
CD20+ B cells were identified with their target genes,
which were selected from highly expressed genes in a
cell (top 30% expression level, see Methods).
The total numbers of unique highly expressed target

genes of transcription factor binding sequences were
4481, 7558, and 4753 in monocytes, CD4+ T cells, and
CD20+ B cells respectively using promoters. The mean
target genes of a transcription factor were 124, 164, and
144 in monocytes, CD4+ T cells, and CD20+ B cells,
respectively, with the corresponding medians being 24,
33, and 24, respectively. With regard to the genomic
localizations of TFBS, 51%, 65%, and 61% of TFBS
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were located within promoters (±5 kb of TSS) of target
genes in monocytes, CD4+ T cells, and CD20+ B cells,
respectively (according to association rule 1, see Methods).

Functional enrichments of putative transcriptional target
genes
Functional enrichments of the putative target genes were
examined. The distribution of functional enrichments in
transcriptional target genes was predicted using genome
sequences of promoters in the three cell types (Fig. 1,
Table 1 and Additional file 1: Figure S3, see Methods).
Furthermore, the effect of transcriptional target genes
including randomly selected genes on functional enrich-
ments was investigated using DNase-DGF data of
monocytes, CD4+ T and CD20+ B cells, HUVEC, IMR90,
MCF-7, HMEC, and ChIP-seq data of H1-hESC (Fig. 2a
and b, and Additional file 1: Figure S1 and S2, see

Methods). The native putative transcriptional target genes
not including randomly selected genes showed the highest
functional enrichments using Gene Ontology, GO Slim,
KEGG, Pathway Commons, WikiPathways, InterPro and
UniProt functional regions (Domains) in both DNase-
DGF and ChIP-seq data of the five types of cells. Of the
10 databases used in this analysis, the Gene Ontology
database consists of three types of functional annotations,
i.e., 20,836 biological processes, 9020 molecular functions,
and 2847 cellular components. The numbers of functional
enrichments of Gene Ontology annotations in target
genes of a transcription factor were 2902, 4077, and 2778
in monocytes, CD4+ T cells, and CD20+ B cells, respect-
ively. An examination of functional enrichments of highly
expressed genes (top 30% expression level), independent
of transcriptional target genes, revealed 237, 301, and 239
‘unique’ Gene Ontology annotations in monocytes, CD4+

Fig. 1 Analyses of functional enrichments of putative transcriptional target genes. Transcriptional target genes were predicted using open chromatin
regions (DNase-DGF) and known transcription factor binding sequences. Functional enrichments of target genes were analyzed using 10 annotation
databases, and were changed based on the criteria of promoter and extended regions for enhancer-promoter association (EPA). To compare with the
tendency of the normalized numbers of functional enrichments, the median expression levels of target genes were examined using promoter and EPA

Table 1 Number of functional enrichments and unique functional enrichments of putative transcriptional target genes. (see the
colored table in Additional file 1: Figure S3)

Number of functional enrichments of putative transcriptional target genes

KEGG TF Targets CTD Ontology GO Slim GO Pathway Commons BioMarkers MicroRNA Domains WikiPathways

Monocyte 349 107 209 114 2902 1005 42 451 1202 242

CD4+ T cell 317 135 278 77 4077 1806 47 754 1401 405

CD20+ B cell 323 103 170 88 2778 821 39 948 950 288

Number of unique functional enrichments of gene expression information alone and putative transcriptional target genes

Gene expression information alone, independent of transcriptional target genes.

Monocyte 43 0 35 11 237 101 7 314 404 58

CD4+ T cell 47 0 19 9 301 165 9 136 397 81

CD20+ B cell 42 0 27 12 239 247 6 370 409 65

Putative transcriptional target genes.

Monocyte 95 16 127 12 1271 242 17 97 303 105

CD4+ T cell 105 26 146 23 1654 415 24 224 585 133

CD20+ B cell 93 23 96 23 1192 329 16 231 397 106
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T cells, and CD20+ B cells, respectively (Table 1). Further,
the examination of functional enrichments of highly
expressed target genes (top 30% expression level) in target
genes revealed 1271, 1654, and 1192 ‘unique’ Gene
Ontology annotations in monocytes, CD4+ T cells, and
CD20+ B cells, respectively i.e., These numbers were
four times larger than functional enrichments identified
by gene expression information alone, independent of
transcriptional target genes, suggesting that transcriptional

target genes were frequently associated with similar func-
tions or pathways (Additional file 1: Figure S8 and S9).
Functional enrichments of transcriptional target genes

from other databases were also examined (Table 1). KEGG,
Target genes of transcription factors, Disease Ontology,
GO Slim, Pathway Commons, Cellular biomarkers, Target
genes of microRNAs, Protein domains, and WikiPathways
had 95, 16, 127, 12, 242, 17, 97, 303, and 105 unique func-
tional annotations, respectively. The numbers of functional

a

b

Fig. 2 Effect of randomly selected genes on functional enrichments. a Effect of randomly selected genes on functional enrichments using DNase-DGF
data. Transcriptional target genes were predicted using DNase-DGF data in human monocytes, CD4+ T, CD20+ B, other four somatic and two stem cells
(H1-hESC and iPSC) (see also Additional file 1: Figure S1). To test whether slight changes of transcriptional target genes were reflected in the normalized
number of their functional enrichments, the ratio of randomly selected genes in the target genes of each TF was changed between 5% and 60%. In
the left part of the graphs, randomly selected genes were replaced with the target genes where the total number of target genes was unchanged. In
the right part of the graphs, randomly selected genes were added to the target genes where the total number of target genes was increased. The
result of Gene Ontology annotation was shown. The results of Pathway Commons and KEGG were shown in Additional file 1: Figure S1. Native target
genes showed the most functional enrichments in most cell types. b Effect of randomly selected genes on functional enrichments using ChIP-seq data.
Transcriptional target genes were predicted using ChIP-seq data of 19 TF in H1-hESC. The results of nine functional annotation databases were shown
and the result of target genes of microRNAs was shown in Additional file 1: Figure S2. Native target genes showed the most functional enrichments
using most annotation databases except for low frequent functional annotations. Putative transcriptional target genes tend to include similar function
of genes
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enrichments of transcriptional target genes in the other
annotation databases except for microRNAs and Protein
domains were significantly higher than gene expression
information alone, independent of transcriptional target
genes, as well as Gene Ontology annotations (Table 1).
The functional enrichments of transcriptional target genes
from Pathway Commons for monocytes, CD4+ T cells, and
CD20+ B cells are shown in Table 2 and Additional file 1:
Figure S10. Functional enrichments were found to be
related to cellular functions, e.g., interferon signaling,
GMCSF (Granulocyte-macrophage colony-stimulating
factor, a kind of cytokine)-mediated signaling events,
antigen processing-cross presentation in monocytes;
TCR (T-cell receptor) signaling in naive CD4+ T cells,
IL-12 (Interleukin-12, a kind of cytokine)-mediated
signaling events, and downstream signaling in naive CD8+

T cells in CD4+ T cells; interferon alpha/beta signaling,
IL8- and CXCR2 (Chemokine receptor type 2, a kind of
cytokine)-mediated signaling events, and BCR (B cell
antigen receptor) signaling pathway in CD20+ B cells.
WikiPathways, KEGG and GO also revealed that func-
tional enrichments were associated with cellular functions
(Additional file 1: Figure S11, S12 and S13).

Effect of enhancer-promoter association rules on functional
enrichments
To understand the effect of ‘promoter and extended
regions for enhancer-promoter association (EPA)’ on
the functional enrichments of target genes, the rule of
extended regions was modified according to four criteria
(Fig. 3a and see Methods) [11], and functional enrich-
ments were investigated.
According to the association rule (1), the means of

target genes were 177, 217, and 175 in monocytes, CD4+

T cells, and CD20+ B cells, respectively, whereas the
corresponding medians were 55, 58, and 37, respectively
(Additional file 1: Figure S14). The numbers of functional
enrichments of Pathway Commons annotations using
promoter regions were 1005, 1806, and 821 in monocytes,
CD4+ T cells, and CD20+ B cells, respectively (Additional
file 1: Figure S15). With the use of EPA (association
rule 1), the numbers of functional enrichments of
Pathway Commons annotations were 3087, 7216, and
3900, representing 3.07-, 4.00-, and 4.75-fold increases,
respectively, in the three cells types. Additionally, the
numbers of ‘unique’ Pathway Commons annotations with
promoter regions were 321, 415, and 329 in monocytes,
CD4+ T cells, and CD20+ B cells, respectively; the
corresponding numbers with the use of EPA (association
rule 1) were 364, 437, and 364, representing 1.13-, 1.05-,
and 1.11-fold increases, respectively, in the three cell
types. The normalized numbers of functional enrichments
of Pathway Commons annotations were 44.75, 84.51, and
59.32, representing 1.84-, 2.80-, and 3.32-fold increases,

respectively, in the three cell types (association rule 1,
Table 3 and Additional file 1: Figure S15). Other cell types
also showed the same tendencies (Table 3 and Additional
file 1: Figure S15).
The normalized numbers of the functional enrich-

ments of transcriptional target genes showed association
rule (4) as the highest number, followed by association
rule (1) and (2) in the three cell types. Although associ-
ation rule (3) was the longest among the four criteria, it
showed the lowest number of functional enrichments in
the three cell types (Fig. 3a and Table 3). ChIP-seq data
of 19 TF in H1-hESC (Human embryonic stem cells)
also showed almost the same tendency (difference
between association rule (4) and (1) was not statistically
significant, probably due to a large number of tran-
scriptional target genes predicted using 19 TF ChIP-seq
data. Several thousands of target genes of each TF were
predicted. Some of them would be indirect interactions
between TF and genome DNA, which were identified
by ChIP-seq experiments. (Additional file 1: Figure S16,
see Additional file 1).
Differences in functional enrichments using Pathway

Commons were examined between promoters versus EPA
(association rule 1) (Table 4 [12–26] and Additional file 1:
Figure S17). A comparison of 321 and 364 functional
enrichments using the promoters and EPA, respectively,
in monocytes revealed that 152 (47% in promoters, 42% in
extended regions) of them were common. For example,
IFN-gamma (Interferon gamma) pathway, GMCSF
(Granulocyte-macrophage colony-stimulating factor, a
kind of cytokine)-mediated signaling events, and PDGF
(Platelet-derived growth factor) receptor signaling net-
work were enriched using extended regions (association
rule 1) as opposed to promoters (Additional file 1:
Figure S17). The comparison of 415 (promoters) and
437 (extended regions) functional enrichments in CD4+

T cells revealed that 163 of them (39% in promoters,
37% in extended regions) were common. IFN-gamma
pathway, TCR (T-cell receptor) signaling in naive CD4+

Tcells, and IL3 (Interleukin-3, a kind of cytokine)-mediated
signaling events were enriched using extended regions. The
comparison of 329 (promoters) and 364 (extended regions)
functional enrichments in CD20+ B cells revealed that 171
of them (52% in promoters, 47% in extended regions) were
common. IL5-mediated signaling events, IL4-mediated
signaling events, and cytokine signaling in immune system
were enriched in CD20+ B cells using extended regions.
Only about 40% of functional enrichments of Pathway
Commons annotations were unchanged between promoters
and EPA. EPA significantly affected the functional enrich-
ments of transcriptional target genes. Journal papers showed
that frequent functional enrichments were related to the
cellular functions in the three cell types (Table 4). These
results showed that new functional enrichments related to
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cellular functions were identified using extended regions for
enhancer-promoter association.

Effect of CTCF-binding sites on functional enrichments
CTCF have the activity of insulators to block the inter-
action between enhancers and promoters [27]. Recent
studies identified a correlation between the orientation
of CTCF-binding sites and chromatin loops (Fig. 3b)
[28]. Forward–reverse (FR) orientation of CTCF-binding
sites are frequently found in chromatin loops. To examine
the effect of forward–reverse orientation of CTCF-binding
sites on functional enrichments of target genes, ‘promoter
and extended regions for enhancer-promoter association
(EPA)’ were shortened at the genomic locations of
forward–reverse orientation of CTCF-binding sites, and
transcriptional target genes were predicted from the short-
ened regions using TFBS (see Methods). The numbers of
functional enrichments of target genes were investigated.
According to EPA (association rule 4) that were shortened
at genomic locations of forward–reverse orientation of
CTCF-binding sites, the means of target genes were 67,
64, and 77 in monocytes, CD4+ T cells, and CD20+ B cells,
respectively, whereas the corresponding medians were
23, 21, and 20, respectively (Additional file 1: Figure S18).
The normalized numbers of functional enrichments of
Pathway Commons annotations using EPA were 71.42,
108.08, and 90.99 in monocytes, CD4+ T cells, and
CD20+ B cells, respectively (Table 5 and Additional
file 1: Figure S19). With the use of EPA shortened at
forward–reverse orientation of CTCF-binding sites,
the normalized numbers of functional enrichments of
Pathway Commons annotations were 196.58, 220.54,
and 220.77, representing 2.75-, 2.04-, and 2.43-fold
increases, respectively, in the three cells types. Addition-
ally, the normalized numbers of functional enrichments of
‘unique’ Pathway Commons annotations with EPA were
5.09, 5.34, and 6.00 in monocytes, CD4+ T cells, and
CD20+ B cells, respectively; the corresponding normalized
numbers with the use of EPA shortened at forward–
reverse orientation of CTCF-binding sites were 9.88,
10.72, and 9.10, representing 1.94-, 2.01-, and 1.52-fold
increases, respectively, in the three cell types (Additional
file 1: Figure S19). Other cell types also showed the same
tendencies (Table 5 and Additional file 1: Figure S19). The

Table 2 Functional enrichments of putative transcriptional
target genes using Pathway Commons

Monocytes – Pathway Commons No. of TFs

Proteoglycan syndecan-mediated signaling events 18

Regulation of CDC42 activity 15

LKB1 signaling events 14

Glypican pathway 13

Interferon Signaling 13

Sphingosine 1-phosphate (S1P) pathway 13

IL5-mediated signaling events 12

Syndecan-1-mediated signaling events 12

IL3-mediated signaling events 11

Mitotic Prophase 11

Golgi Cisternae Pericentriolar Stack Reorganization 11

Interferon alpha/beta signaling 11

IFN-gamma pathway 10

Signaling events mediated by Hepatocyte Growth Factor
Receptor (c-Met)

10

Recruitment of mitotic centrosome proteins and
complexes

10

CD4+ T cell – Pathway Commons No. of TFs

TCR signaling in naive CD8+ T cells 36

IL12-mediated signaling events 24

Downstream signaling in naive CD8+ T cells 21

TCR signaling in naive CD4+ T cells 21

IL12 signaling mediated by STAT4 20

Validated transcriptional targets of AP1 family members
Fra1 and Fra2

19

CXCR4-mediated signaling events 17

ATF-2 transcription factor network 15

Thrombin/protease-activated receptor (PAR) pathway 14

TCR signaling 14

PAR1-mediated thrombin signaling events 14

Downstream TCR signaling 14

Internalization of ErbB1 13

Urokinase-type plasminogen activator (uPA) and uPAR-
mediated signaling

13

ErbB receptor signaling network 13

CD20+ B cell – Pathway Commons No. of TFs

Interferon alpha/beta signaling 12

Alpha6Beta4Integrin 11

Validated targets of C-MYC transcriptional activation 11

IL8- and CXCR2-mediated signaling events 10

Antigen processing-Cross presentation 9

BCR signaling pathway 9

IL6-mediated signaling events 9

Cell junction organization 9

ER-Phagosome pathway 8

Table 2 Functional enrichments of putative transcriptional
target genes using Pathway Commons (Continued)

Regulation of CDC42 activity 8

CXCR4-mediated signaling events 8

CDC42 signaling events 8

Syndecan-4-mediated signaling events 8

Noncanonical Wnt signaling pathway 7

Class I MHC mediated antigen processing & presentation 7
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normalized numbers of functional enrichments were
significantly increased between EPA and EPA shortened at
forward–reverse orientation of CTCF-binding sites in
Gene Ontology, Disease Ontology, Pathway Commons,
GO Slim, WikiPathways, KEGG, InterPro and UniProt
functional regions (Domains) annotations. These increases
were also significant, compared with EPA shortened at
CTCF-binding sites without the consideration of their
orientation. Transcriptional target genes predicted from
EPA shortened at forward–reverse orientation of CTCF-
binding sites tend to include similar function of genes
significantly.
Differences in functional enrichments obtained using

EPA versus EPA shortened at forward–reverse orientation
of CTCF-binding sites were examined using the functional
enrichments of Pathway Commons (Table 6 [29–43] and
Results in Additional file 1). Transcriptional target genes
predicted from EPA shortened at the CTCF-binding sites
tended to include the similar function of genes. About
40–80% of functional enrichments were unchanged between
promoters and EPA shortened at forward–reverse orienta-
tion of CTCF-binding sites, and the functional enrichments
observed in EPA shortened at forward–reverse orientation
of CTCF-binding sites as opposed to promoters included

various immunological terms. Journal papers showed that
the top five frequent functional enrichments were related to
the cellular functions in the three cell types (Table 6). These
results showed that new functional enrichments related to
cellular functions were identified using forward–reverse
orientation of CTCF-binding sites.

Comparison of expression levels of putative
transcriptional target genes
To examine the relationship between functional enrich-
ments and expression levels of target genes, the expression
levels of target genes predicted from promoters and three
types of ‘promoter and extended regions for enhancer-
promoter assignment (EPA)’ were investigated in mono-
cytes, CD4+ T, H1-hESC and iPSC (Fig. 4). Median
expression levels of the target genes of the same transcrip-
tion factor binding sequences were compared between
promoters and three types of EPA. Red and blue dots in
Fig. 4 show statistically significant difference of the distri-
bution of expression levels of target genes between
promoters and EPA. Additionally, “red dots” show the
median expression level of target genes of a TFBS was
‘higher’ in EPA than promoters, and “blue dots” show the
median expression level of target genes of a TFBS was

Fig. 3 Criteria of promoter and extended regions for enhancer-promoter association and features of chromatin interactions. a Computationally-defined
regulatory domains [11]. The transcription start site (TSS) of each gene is indicated as an arrow. The corresponding regulatory domain for each gene is
shown in a matching color as a bracketed line. The basal plus extension association rule assigns a basal regulatory domain to each gene regardless of
genes nearby (thick line, Association rule 1 and 2) (see Methods). The domain is then extended to the basal regulatory domain of the nearest upstream
and downstream genes. The two nearest genes association rule extends the regulatory domain to the TSS of the nearest upstream and downstream
genes (Association rule 3). The single nearest gene association rule extends the regulatory domain to the midpoint between this gene’s TSS and the
nearest gene’s TSS both upstream and downstream (Association rule 4). b Forward–reverse orientation of CTCF-binding sites are frequently found in
chromatin interactions. CTCF can block the interaction between enhancers and promoters limiting the activity of enhancers to certain functional
domains. Figures adapted from [28, 69–71] with permission
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Table 3 Normalized number of functional enrichments of putative transcriptional target genes using promoter and extended
regions for enhancer-promoter association (see the colored table in Additional file 1: Figure S4)

Monocytes KEGG CTD Ontology GO Slim GO Pathway Commons Domains Wiki Pathways

Promoter 8.46 5.07 2.76 70.34 24.36 29.13 5.87

Association rule 1 10.44 6.48 2.01 133.54 44.75 42.19 11.10

Association rule 2 9.03 6.29 1.45 125.13 38.69 40.17 8.30

Association rule 3 8.06 5.29 1.37 106.60 24.25 38.96 7.62

Association rule 4 11.47 8.22 2.46 164.18 71.42 47.85 12.78

CD4+ T cell

Promoter 5.30 4.64 1.29 68.11 30.17 23.41 6.77

Association rule 1 13.60 7.07 2.74 142.40 84.51 43.78 13.65

Association rule 2 13.57 6.69 3.05 141.15 86.36 46.33 12.02

Association rule 3 12.40 5.89 2.50 115.76 68.84 41.85 10.00

Association rule 4 16.40 7.86 4.03 177.55 108.08 53.86 16.72

CD20+ B cell

Promoter 7.02 3.70 1.91 60.39 17.85 20.65 6.26

Association rule 1 8.88 6.21 2.59 104.55 59.32 34.34 8.29

Association rule 2 8.60 5.32 1.55 105.34 57.31 38.05 9.95

Association rule 3 9.01 5.28 1.42 88.85 26.49 35.17 8.26

Association rule 4 9.95 6.62 3.07 134.46 90.99 41.30 10.67

HUVEC

Promoter 7.50 5.74 1.34 79.71 22.21 22.40 4.59

Association rule 1 11.62 8.95 3.74 160.52 37.11 65.15 8.88

Association rule 2 11.87 8.77 4.76 176.26 36.86 74.71 8.66

Association rule 9.84 7.70 4.56 154.06 34.29 73.98 7.74

Association rule 4 13.46 8.99 5.08 191.73 59.10 82.65 10.13

IMR90

Promoter 6.63 5.21 2.43 68.31 11.64 25.50 5.47

Association rule 1 9.63 6.78 2.85 122.38 24.89 65.39 8.03

Association rule 2 9.32 6.56 1.43 115.31 16.36 60.36 7.47

Association rule 3 9.59 5.63 1.55 99.10 15.39 54.82 5.82

Association rule 4 10.55 7.68 3.76 142.10 30.05 74.86 8.78

MCF-7

Promoter 6.97 5.43 1.69 77.88 24.71 25.99 8.77

Association rule 1 9.45 6.26 2.03 121.84 22.38 55.19 9.86

Association rule 2 9.44 6.18 0.89 111.77 21.59 53.90 7.97

Association rule 3 9.83 5.13 1.12 100.35 18.96 55.30 7.37

Association rule 4 10.80 7.38 2.77 149.64 31.20 62.40 11.07

HMEC

Promoter 8.76 5.03 1.53 65.80 14.07 26.52 6.70

Association rule 1 10.88 7.04 1.96 138.27 18.28 72.55 8.08

Association rule 2 9.22 6.31 1.63 141.57 18.84 73.09 7.99

Association rule 3 9.30 6.50 1.68 123.46 17.27 64.67 7.75

Association rule 4 11.78 7.53 3.48 166.71 23.02 90.11 10.10

H1-hESC

Promoter 8.45 3.47 2.49 73.33 14.12 24.35 4.84

Association rule 1 9.54 4.82 1.97 113.37 21.86 37.66 6.30

Association rule 2 10.76 5.82 1.69 123.45 21.27 38.26 5.35
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‘lower’ in EPA than promoters. The ratios of red dots were
higher in EPA (association rule 4) that were shortened at for-
ward–reverse orientation of CTCF-binding sites versus pro-
moters (left graph in Fig. 4) than EPA (association rule 4)
versus promoters (right graph) in monocytes and CD4+ T
cells. The ratios of blue dots were higher in EPA (association
rule 4) that were shortened at forward–reverse orientation of
CTCF-binding sites versus promoters (left graph) than EPA
(association rule 4) versus promoters (right graph) in H1-
hESC and iPSC. Moreover, the ratio of the sum of median
expression levels between the three types of EPA and pro-
moters in monocytes and CD4+ T cells was the highest in
EPA shortened at forward–reverse orientation of CTCF-
binding sites (Additional file 1: Figure S21). Conversely,
the ratio of the sum of median expression levels be-
tween the three types of EPA and promoters in H1-

hESC and iPSC was the lowest in EPA shortened at for-
ward–reverse orientation of CTCF-binding sites.
EPA shortened at forward–reverse orientation of CTCF-

binding sites changed (i.e. increased or decreased) the
expression levels of target genes more than the other types of
EPA. This implied that gene expression tended to be activated
in monocytes and CD4+ T cells, but repressed in H1-hESC
and iPSC by enhancers. EPA shortened at forward–reverse
orientation of CTCF-binding sites also showed the highest
normalized number of functional enrichments of transcrip-
tional target genes, as shown in the previous paragraphs.

Discussion
Genome-wide functional enrichments and gene expression
levels of putative target genes of human transcription factors
were investigated. Human putative transcriptional target

Table 3 Normalized number of functional enrichments of putative transcriptional target genes using promoter and extended
regions for enhancer-promoter association (see the colored table in Additional file 1: Figure S4) (Continued)

Monocytes KEGG CTD Ontology GO Slim GO Pathway Commons Domains Wiki Pathways

Association rule 3 8.00 4.84 1.43 101.12 18.00 33.59 5.62

Association rule 4 10.56 5.37 3.27 141.38 35.12 46.16 6.73

iPSC

Promoter 8.64 2.05 1.58 67.32 22.75 12.36 6.42

Association rule 1 10.25 5.64 1.66 107.50 18.35 26.77 8.59

Association rule 2 11.70 6.20 1.01 101.76 17.00 28.13 8.16

Association rule 3 11.69 6.89 1.01 90.85 16.60 24.89 7.76

Association rule 4 11.39 7.21 2.53 136.46 23.60 31.49 9.27

The bold numbers are the highest numbers in each cell type and functional annotation database

Table 4 Differences in functional enrichments between EPA and promoters using Pathway Commons

Cell type Term of functional annotation No. of TF EPA
(Association rule 4)

No. of TF
Promoter

P-value Experimental support

Monocytes IFN-gamma pathway 51 10 6.89 × 10−4 [12]

IL3-mediated signaling events 46 11 4.69 × 10−3 [13]

GMCSF-mediated signaling events 43 10 5.25 × 10−3 [14]

PDGF receptor signaling network 43 8 1.34 × 10−2 [15]

VEGF and VEGFR signaling network 44 9 2.10 × 10−3 [16]

CD4+ T cell Integrin family cell surface interactions 112 13 2.59 × 10−12 [17]

IFN-gamma pathway 107 12 5.26 × 10−12 [18]

LKB1 signaling events 107 11 1.96 × 10−12 [19]

TCR signaling in naive CD4+ T cells 103 21 3.98 × 10−8 [20]

IL3-mediated signaling events 100 8 9.54 × 10−13 [21]

CD20+ B cell Integrin family cell surface interactions 69 2 5.17 × 10−11 [22]

IL5-mediated signaling events 64 0 2.21 × 10−11 [23]

Insulin Pathway 63 0 3.15 × 10−11 [24]

mTOR signaling pathway 63 0 3.15 × 10−11 [25]

Sphingosine 1-phosphate (S1P) pathway 63 0 3.15 × 10−11 [26]

Immune cell-related functional annotations were enriched more in ‘promoter and extended regions for enhancer-promoter association (EPA)’ than promoters. Five
annotations are shown in each cell type. These functions are confirmed to be related to the cellular functions by reference journal papers. Chi-square tests were
conducted using the total number of putative transcriptional target genes (Additional file 1: Figure S14)
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genes showed significantly larger numbers of functional en-
richments than gene expression information alone, inde-
pendent of transcriptional target genes. Moreover, when the
number of functional enrichments of human putative tran-
scriptional target genes was normalized by the total number
of transcriptional target genes, native putative transcrip-
tional target genes showed the highest ratio of functional
enrichments, compared with target genes partially including

randomly selected genes. The ratio of functional enrich-
ments was decreased according to the increase of the ratio
of randomly selected genes in target genes. These tenden-
cies were observed in putative transcriptional target
genes predicted from both open chromatin regions and
ChIP-seq data of transcription factors. Prediction of
transcriptional target genes from open chromatin re-
gions includes false positives, since DNase I cleavage

Table 5 Normalized number of functional enrichments of putative transcriptional target genes using CTCF binding sites (see the
colored table in Additional file 1: Figure S5)

Monocytes KEGG CTD Ontology GO Slim GO Pathway Commons Domains Wiki Pathways

Association rule 4 11.47 8.22 2.46 164.18 71.42 47.85 12.78

CTCF (FR + RF + FF + RR) 13.19 10.39 2.74 134.26 34.37 44.46 12.96

CTCF (FR) 42.92 19.53 5.66 509.86 196.58 112.14 35.11

CD4+ T cell

Association rule 4 16.40 7.86 4.03 177.55 108.08 53.86 16.72

CTCF (FR + RF + FF + RR) 26.33 8.73 5.11 206.05 130.71 57.53 23.56

CTCF (FR) 69.39 14.66 24.91 560.44 220.54 133.26 46.54

CD20+ B cell

Association rule 4 9.95 6.62 3.07 134.46 90.99 41.30 10.67

CTCF (FR + RF + FF + RR) 8.78 4.22 2.78 94.13 27.70 28.55 7.08

CTCF (FR) 28.86 9.72 6.61 304.01 220.77 99.89 22.68

HUVEC

Association rule 4 13.46 8.99 5.08 191.73 59.10 82.65 10.13

CTCF (FR + RF + FF + RR) 19.35 10.59 3.85 155.11 28.36 57.87 13.58

CTCF (FR) 33.71 14.82 16.33 454.47 61.85 163.38 29.38

IMR90

Association rule 4 10.55 7.68 3.76 142.10 30.05 74.86 8.78

CTCF (FR + RF + FF + RR) 13.88 17.55 9.22 252.24 39.92 123.18 22.45

CTCF (FR) 30.22 15.89 11.34 402.40 53.56 180.71 37.42

MCF-7

Association rule 4 10.80 7.38 2.77 149.64 31.20 62.40 11.07

CTCF (FR + RF + FF + RR) 11.39 8.30 4.92 234.48 30.40 126.70 13.99

CTCF (FR) 22.34 11.48 6.09 397.69 51.39 145.43 37.58

HMEC

Association rule 4 11.78 7.53 3.48 166.71 23.02 90.11 10.10

CTCF (FR + RF + FF + RR) 19.68 13.54 4.29 232.47 27.97 106.24 9.84

CTCF (FR) 29.59 14.46 6.97 390.45 43.90 124.81 30.78

H1-hESC

Association rule 4 10.56 5.37 3.27 141.38 35.12 46.16 6.73

CTCF (FR + RF + FF + RR) 12.95 5.37 2.45 131.46 29.57 44.15 11.08

CTCF (FR) 28.21 10.55 9.02 303.41 56.95 139.44 19.72

iPSC

Association rule 4 11.39 7.21 2.53 136.46 23.60 31.49 9.27

CTCF (FR + RF + FF + RR) 17.17 2.33 1.69 120.87 25.60 21.06 6.42

CTCF (FR) 36.94 6.09 6.86 274.30 31.37 83.40 16.80

The bold numbers are the highest numbers in each cell type and functional annotation database
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bias affects the computational analysis of DNase-seq
experiments [44]. However, the detection of ChIP-seq
peaks is also changed depending on the methods to
identify them and the depth of DNA sequencing of
ChIP-seq experiments [45]. Though human putative
transcriptional target genes include false positives, they
showed significantly the largest number of functional
enrichments, compared with target genes including 5–
60% of randomly selected genes (Fig. 2).
The median expression level of human putative transcrip-

tional target genes was changed according to the criteria of
enhancer-promoter assignments, and was correlated with
the normalized number of functional enrichments. The
median expression level of transcriptional target genes was
‘decreased’ significantly in transcriptional target genes
predicted using enhancers, compared with those predicted
using promoters in H1-hESC and iPSC, and the median
expression level was ‘increased’ significantly in target genes
predicted using enhancers, compared with those predicted
using promoters in monocytes and CD4+ T cells. These re-
sults implied that transcription factors bound in enhancers
act as repressors in H1-hESC (ES) and iPSC, but those act
as activators in monocytes and CD4+ T cells. The change of
functional roles of transcription factors depending on the
cell types would be analyzed and reported elsewhere.
The median expression level was increased significantly

in target genes predicted using enhancers, compared with
those predicted from promoters in immune cells using
gene expression data (Blueprint RNA-seq RPKM data;

GSE58310), but smaller number of target genes showed
the increase of median expression level using gene expres-
sion data (ENCODE; GSM984609). The results of the ana-
lyses may be slightly different depending on gene expression
data. H1-hESC (ES) and iPSC showed a strong tendency of
decrease of median expression levels of transcriptional
target genes between enhancers and promoters.
The gene symbols of transcription factors were sometimes

different among databases, because more than one gene
symbol are assigned to some transcription factors and some
gene symbols are spelled in several different ways. These dif-
ferences need to be identified with manual curations. This
analysis will be required to predict transcriptional cascades
by associating transcription factors with transcriptional target
genes consisting of transcription factors. In the analyses of
transcriptional cascades, to reduce false positive predic-
tions of enhancer-promoter associations from open chro-
matin regions, the identification of DNase peaks will be
modified using a new tool such as HINT [46].
In this study, I focused on three types of immune cells

and stem cells such as H1-hESC and iPSC to examine
transcriptional target genes in a genome scale, since in
my previous study, I examined transcriptional cascades
involved in the differentiation of immune cells as intro-
duced in Background [5]. Furthermore, I confirmed the
features of functional enrichments of putative transcrip-
tional target genes are commonly found in other four types
of normal and disease cells (HUVEC, IMR90, MCF-7 and
HMEF).

Table 6 Differences in functional enrichments between EPA shortened at FR CTCF and EPA without CTCF using Pathway Commons

Cell type Term of functional annotation No. of TF EPA (Association
rule 4) shortened at FR CTCF

No. of TF EPA (Association
rule 4) without CTCF

P-value Experimental
support

Monocytes CXCR4-mediated signaling events 33 14 7.81 × 10−12 [29]

GPVI-mediated activation cascade 26 3 8.97 × 10−15 [30]

Signaling events mediated by TCPTP 23 10 1.46 × 10−8 [31]

p38 MAPK signaling pathway 16 8 6.97 × 10−6 [32]

IL4-mediated signaling events 11 3 8.80 × 10−6 [33]

CD4+ T cell CXCR4-mediated signaling events 181 82 < 2.20 × 10−16 [34]

Fc-epsilon receptor I signaling in mast cells 85 25 < 2.20 × 10−16 [35]

JNK signaling in the CD4+ TCR pathway 65 18 < 2.20 × 10−16 [36]

Reelin signaling pathway 62 26 < 2.20 × 10−16 [37]

Semaphorin interactions 51 14 < 2.20 × 10−16 [38]

CD20+ B cell Syndecan-4-mediated signaling events 85 40 < 2.20 × 10−16 [39]

CXCR4-mediated signaling events 77 15 < 2.20 × 10−16 [40]

EPO signaling pathway 46 19 4.50 × 10−15 [41]

Stabilization and expansion of the
E-cadherin adherens junction

32 16 1.06 × 10−9 [42]

Interleukin-1 signaling 13 1 3.98 × 10−8 [43]

Immune cell-related functional annotations were enriched more in EPA shortened at genomic locations of forward–reverse orientation of CTCF-binding sites than
EPA without CTCF. Five annotations are shown in each cell type. These functions are confirmed to be related to the cellular functions by reference journal papers.
Chi-square tests were conducted using the total number of putative transcriptional target genes (Additional file 1: Figure S18)
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It is difficult to predict enhancer-promoter associations
using a single parameter, so that machine learning methods
to combine several parameters have been proposed
[47–49]. These methods showed high accuracy in predict-
ing enhancer-promoter associations (I tried to use some of

the tools, but they did not work properly. I am waiting for
the authors to update the tools). However, molecular
mechanisms of enhancer-promoter interactions are not
clearly understood. CTCF has been found to bind at chro-
matin interaction anchors and form chromatin interactions

Fig. 4 Comparison of the median expression levels of transcriptional target genes. The median expression levels of the target genes of the same
transcription factor binding sequences were compared between promoters and three types of promoter and extended regions for enhancer-promoter
association (EPA). Red and blue dots show statistically significant difference of the distribution of expression levels of target genes between promoters
and EPA. Red dots show the median expression level of target genes was higher in EPA than promoters, and blue dots show the median expression
level of target genes was lower in EPA than promoters. The median expression levels of putative transcriptional target genes were significantly lower
using TF bound in enhancers than using TF bound in promoters in stem cells such as H1-hESC and iPSC, and higher by TF bound in enhancers in
immune cells. These results implied that enhancers significantly affect the expression of target genes
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[27]. About 20–40% of chromatin interaction anchors
included DNA binding sequences of CTCF, when I
examined public Hi-C experimental data [50, 51].
Among 33,939 RefSeq transcripts, 7202 (21%), 4404
(13%), and 6921 (20%) (p-value <10−5 in the search for
CTCF-binding motifs using FIMO) to 9608 (28%), 5806
(17%), and 9137 (27%) (p-value <10−4) of transcripts
had forward–reverse orientation of CTCF-binding sites
within 1 Mb from transcriptional start sites in the three
immune cell types, respectively. These analyses implied
that other factors might be involved in chromatin interac-
tions. ZNF143 has been reported to locate at promoter
regions of chromatin interaction anchors [52]. To predict
the other factors and molecular mechanisms, the analyses
in this study would be useful to examine further the
criteria in predicting enhancer-promoter associations.
Machine learning methods need the information what
parameters should be used for prediction, so it would
be better to choose parameters involved in predicting
enhancer-promoter associations. To improve the prediction
and understand the molecular mechanisms of enhancer-
promoter interactions, I am promoting the analyses of
chromatin interaction anchors, and the results of the
analyses will be reported elsewhere.

Conclusion
In this study, human transcriptional target genes were
predicted using open chromatin regions, ChIP-seq data,
and DNA binding sequences of transcription factors in
databases. Human putative transcriptional target genes
showed significant functional enrichments. Journal papers
showed that frequent functional enrichments were related
to the cellular functions. The normalized number of
functional enrichments was the highest in native putative
transcriptional target genes, compared with target genes
partially replaced with randomly selected genes. The
normalized number of functional enrichments of human
putative transcriptional target genes changed according to
the criteria of enhancer-promoter assignments and corre-
lated with the median expression level of the target genes.
The normalized numbers of functional enrichments of
transcriptional target genes did not show the highest
number in the criterion of enhancer-promoter assign-
ments covering the longest distance from transcriptional
start site among four criteria. This suggested that there is
a criterion of enhancer-promoter assignments that shows
the highest normalized number of functional enrichments.
The median expression level of transcriptional target
genes was ‘decreased’ significantly in transcriptional target
genes predicted using enhancers, compared with those
predicted using promoters in H1-hESC and iPSC, and the
median expression level was ‘increased’ significantly in
target genes predicted using enhancers, compared with
those predicted using promoters in immune cells. These

results implied that transcription factors bound in enhancers
act as repressors in H1-hESC (ES) and iPSC, but those act
as activators in immune cells. These analyses and characters
of human putative transcriptional target genes would be
useful to examine the criteria of enhancer-promoter assign-
ments and to predict the novel mechanisms and factors
such as DNA binding proteins and DNA sequences of
enhancer-promoter interactions.

Methods
Searches for transcription factor binding sequences from
open chromatin regions
To examine transcriptional regulatory target genes, bed
files of hg19 narrow peaks of ENCODE DNase-DGF and
DNase data for Monocytes-CD14+_RO01746 (GSM10
24791; UCSC Accession: wgEncodeEH001196), CD4+_
Naive_Wb11970640 (GSM1014537; UCSC Accession:
wgEncodeEH003156), CD20+_RO01778 (GSM1014525;
UCSC Accession: wgEncodeEH002442), H1-hESC (GSM
816632; UCSC Accession: wgEncodeEH000556), iPSC
(GSM816642; UCSC Accession: wgEncodeEH001110),
HUVEC (GSM1014528; UCSC Accession: wgEncodeE
H002460), IMR90 (GSM1008586; UCSC Accession: wg
EncodeEH003482), MCF-7 (GSM816627; UCSC
Accession: wgEncodeEH000579), and HMEC (GSM8
16669; UCSC Accession: wgEncodeEH001101) from the
ENCODE website (http://hgdownload.cse.ucsc.edu/golden
Path/hg19/encodeDCC/; http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/encodeDCC/wgEncodeUwDnase/; http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wg
EncodeOpenChromDnase/) were used. For comparison
with transcriptional target genes predicted using ChIP-seq
data, bed files of hg19 narrow peaks of ENCODE ChIP-
seq data for 19 transcription factors (TF) (BACH1,
BRCA1, C/EBPbeta, CHD2, c-JUN, c-MYC, GTF2I,
JUND, MAFK, MAX, MXI1, NRF1, RAD21, RFX5,
SIN3A, SUZ12, TBP, USF2, ZNF143) in H1-hESC from
the ENCODE website (https://genome.ucsc.edu/cgi-
bin/hgFileUi?db=hg19&g=wgEncodeAwgTfbsUniform)
were utilized.
To identify transcription factor binding sites (TFBS)

from the DNase-DGF data, TRANSFAC (2013.2),
JASPAR (2010), UniPROBE, BEEML-PBM, high-
throughput SELEX, Human Protein-DNA Interactome,
and transcription factor binding sequences of ENCODE
ChIP-seq data were used [53–59]. Position weight matrices
of transcription factor binding sequences were transformed
into TRANSFAC matrices and then into MEME matrices
using in-house Perl scripts and transfac2meme in MEME
suite [60]. Transcription factor binding sequences of
transcription factors derived from vertebrates were
used for further analyses. Searches were conducted for
transcription factor binding sequences from the cen-
tral 50-bp regions of each narrow peak using FIMO
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with p-value threshold of 10−5 [61]. Transcription
factors corresponding to transcription factor binding
sequences were searched computationally by comparing
their names and gene symbols of HGNC (HUGO Gene
Nomenclature Committee) -approved gene nomenclature
and 31,848 UCSC known canonical transcripts (http://
hgdownload.cse.ucsc.edu/goldenpath/hg19/database/known
Canonical.txt.gz), as transcription factor binding sequences
were not linked to transcript IDs such as UCSC, RefSeq,
and Ensembl transcripts.

Prediction of transcriptional target genes
Target genes of a transcription factor were assigned
when its TFBS was found in DNase-DGF narrow peaks
in promoter or extended regions for enhancer-promoter
association of genes (EPA). Promoter and extended regions
were defined as follows: promoter regions were those that
were within distances of ±5 kb from transcriptional start
sites (TSS). Promoter and extended regions were defined
as per the following four association rules, which are simi-
lar or same as those defined in a previous study [11]: (1)
the basal plus extension association rule assigns a basal
regulatory domain to each gene regardless of other nearby
genes. The domain is then extended to the basal regulatory
domain of the nearest upstream and downstream genes,
and includes a 5 kb + 5 kb basal region and an extension
up to 300 kb or the midpoint between the TSS of the gene
and that of the nearest gene upstream and downstream;
(2) 5 kb + 1 kb basal region and an extension up to 1 Mb;
(3) the two nearest genes association rule, which extends
the regulatory domain to the TSS of the nearest upstream
and downstream genes without the limitation of extension
length; and (4) the single nearest gene association rule,
which extends the regulatory domain to the midpoint
between the TSS of the gene and that of the nearest gene
upstream and downstream without the limitation of exten-
sion length. Association rule (1) was used in our previous
study [5]. Association rule (2), (3), and (4) were the same
as those in Fig. 3a of the previous study [11], however,
association rules (3) and (4) did not have the limitation of
extension length in this study. The genomic positions of
genes were identified using ‘knownGene.txt.gz’ file in UCSC
bioinformatics sites [62]. The file ‘knownCanonical.txt.gz’
was also utilized for choosing representative transcripts
among various alternate forms for assigning promoter and
extended regions for enhancer-promoter association of
the genes. From the list of transcription factor binding
sequences and transcriptional target genes, redundant
transcription factor binding sequences were removed
by comparing the target genes of a transcription factor
binding sequence and its corresponding transcription
factor; if identical, one of the transcription factor binding
sequences was used. When the number of transcriptional
target genes predicted from a transcription factor binding

sequence was less than five, the transcription factor bind-
ing sequence was omitted.

Gene expression analyses
For gene expression data, RNA-seq reads mapped onto
human hg19 genome sequences were obtained, including
ENCODE long RNA-seq reads with poly-A of mono-
cytes CD14+ cells, CD20+ B cells, H1-hESC, iPSC,
HUVEC, IMR90, MCF-7, and HMEC (GSM984609,
GSM981256, GSE26284, GSM958733, GSM2344099,
GSM2344100, GSM958734, GSM2400222, GSM765388,
and GSM758571), and UCSF-UBC human reference
epigenome mapping project RNA-seq reads with poly-A
of naive CD4+ T cells (GSM669617). Two replicates
were present for monocytes CD14+ cells, CD20+ B cells,
H1-hESC, iPSC, HUVEC, IMR90, MCF-7, and HMEC
and a single one for CD4+ T cells. RPKMs of the RNA-seq
data were calculated using RSeQC [63]. For monocytes,
Blueprint RNA-seq RPKM data (GSE58310, GSE58310_
GeneExpression.csv.gz, Monocytes_Day0_RPMI) was also
used [64]. Based on RPKM, UCSC transcripts with expres-
sion levels among top 30% of all the transcripts were
selected in each cell type.

Functional enrichment analyses
The functional enrichments of target genes of a TFBS and
its corresponding transcription factor were examined using
GO-Elite v1.2.5 with p-value threshold at 1, and after GO-
Elite analyses a false discovery rate (FDR) test was per-
formed with q-value threshold at 10−3 to correct for mul-
tiple comparisons of thousands of groups of transcriptional
target genes in each cell type and condition [65]. For
examining functional enrichments of high or low
expressed genes independent of transcriptional target
genes, the p-value threshold was set to 0.01 or 0.05 to
confirm that the results were not significantly changed.
UCSC gene IDs were transformed into RefSeq IDs prior
to GO-Elite analyses. GO-Elite uses 10 databases for iden-
tifying functional enrichments: (1) Gene Ontology, (2)
Disease Ontology, (3) Pathway Commons, (4) GO Slim,
(5) WikiPathways, (6) KEGG, (7) Transcription factor to
target genes, (8) microRNA to target genes, (9) InterPro
and UniProt functional regions (Domains), and (10) Cellu-
lar biomarkers (BioMarkers). To calculate the normalized
numbers of functional enrichments of target genes, the
numbers of functional enrichments were divided by the
total number of target genes in each cell type and condi-
tion, and were multiplied by 105. In tables showing the
numbers of functional enrichments in 10 databases, heat
maps were plotted according to Z-scores calculated from
the numbers of functional enrichments of each database
using in-house Excel VBA scripts. In the comparisons of
the normalized numbers of functional enrichments of
target genes in cell types and conditions, if the number
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of a functional annotation in a cell type or condition
was two times larger than that in the other cell type or
condition, the functional annotation was recognized as
more enriched than the other cell type or condition.
To investigate whether the normalized numbers of func-

tional enrichments of transcriptional target genes correlate
with the prediction of target genes, a part of target genes
were changed with randomly selected genes with high
expression level (top 30% expression level), and functional
enrichments of the target genes were examined. First, 5%,
10%, 20%, 40%, and 60% of target genes were changed with
randomly selected genes with high expression level in
monocytes, CD4+ Tcells, and CD20+ B cells. Second, as an-
other randomization of target genes, the same number of
5%, 10%, 20%, 40%, and 60% of target genes were selected
randomly from highly expressed genes, then added them to
the original target genes, and functional enrichments of the
target genes were examined. All analyses were repeated
three times to estimate standard errors (Fig. 2a and b,
Additional file 1: Figure S1, S2, and S6). The same analysis
was performed using DNase-DGF data and ChIP-seq data
of 19 TF in H1-hESC. Transcriptional target genes were
predicted from promoter (Additional file 1: Figure S7).

CTCF-binding sites
CTCF ChIP-seq data for monocytes CD14+ cells (GSM
1003508_hg19_wgEncodeBroadHistoneMonocd14ro1746
CtcfPk.broadPeak.gz), CD4+ T cells (SRR001460.bam),
CD20+ B cells (GSM1003474_hg19_wgEncodeBroad
HistoneCd20CtcfPk.broadPeak.gz), H1-hESC (wgEnco
deAwgTfbsUtaH1hescCtcfUniPk.narrowPeak.gz), iPSC
(GSE96477), HUVEC (wgEncodeAwgTfbsUwHuvecCtcfU
niPk.narrowPeak.gz), IMR90 (wgEncodeAwgTfbsSydhImr
90CtcfbIggrabUniPktfbsf.narrowPeak.gz), MCF-7 (wgEn
codeAwgTfbsUwMcf7CtcfUniPktfbsf.narrowPeak.gz), and
HMEC (wgEncodeAwgTfbsUwHmecCtcfUniPktfbsf.narrow
Peak.gz) were used. SRR001460.bam was sorted and indexed
by SAMtools and transformed into a bed file using bam-
ToBed of BEDTools [66, 67]. ChIP-seq peaks were predicted
by SICER-rb.sh of SICER with optional parameters ‘hg19 1
200 150 0.74 200 100’ [68]. Extended regions for enhancer-
promoter association (association rule 4) were short-
ened at the genomic locations of CTCF-binding sites
that were the closest to a transcriptional start site, and
transcriptional target genes were predicted from the
shortened enhancer regions using TFBS. Furthermore,
promoter and extended regions for enhancer-promoter
association (association rule 4) were shortened at the
genomic locations of forward–reverse orientation of
CTCF-binding sites. When forward or reverse orienta-
tion of CTCF-binding sites were continuously located
in genome sequences several times, the most external
forward–reverse orientation of CTCF-binding sites
were selected.
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