
He et al. BMC Genomics 2018, 19(Suppl 2):110
https://doi.org/10.1186/s12864-018-4464-9

RESEARCH Open Access

Efficient algorithms for polyploid
haplotype phasing
Dan He1*, Subrata Saha2, Richard Finkers3 and Laxmi Parida2

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018

Abstract

Background: Inference of haplotypes, or the sequence of alleles along the same chromosomes, is a fundamental
problem in genetics and is a key component for many analyses including admixture mapping, identifying regions of
identity by descent and imputation. Haplotype phasing based on sequencing reads has attracted lots of attentions.
Diploid haplotype phasing where the two haplotypes are complimentary have been studied extensively. In this work,
we focused on Polyploid haplotype phasing where we aim to phase more than two haplotypes at the same time from
sequencing data. The problem is much more complicated as the search space becomes much larger and the
haplotypes do not need to be complimentary any more.

Results: We proposed two algorithms, (1) Poly-Harsh, a Gibbs Sampling based algorithm which alternatively samples
haplotypes and the read assignments to minimize the mismatches between the reads and the phased haplotypes, (2)
An efficient algorithm to concatenate haplotype blocks into contiguous haplotypes.

Conclusions: Our experiments showed that our method is able to improve the quality of the phased haplotypes
over the state-of-the-art methods. To our knowledge, our algorithm for haplotype blocks concatenation is the first
algorithm that leverages the shared information across multiple individuals to construct contiguous haplotypes. Our
experiments showed that it is both efficient and effective.

Background
Haplotype, or the sequence of alleles residing on the same
chromosome, is the fundamental unit of genetic variation.
Inference of haplotypes plays an important role in many
analyses, including identifying regions of IBD (Identity-
by-descent) [1–3], admixture mapping [4], imputation of
uncollected genetic variation [5, 6]. Molecular methods
[7] are expensive and not amenable to high throughput
technologies for obtaining haplotypes. Therefore most
studies rely on genotype information and infer haplo-
types from genotypes, referred to as haplotype inference
or haplotype phasing.
Next-generation sequencing (NGS) technologies have

been applied to haplotype phasing as each sequencing
read originates from a single chromosome and alleles

*Correspondence: hedanus@gmail.com
1College of Computer Science and Software, Shenzhen University, Shenzhen
518060, China
Full list of author information is available at the end of the article

spanned by that read are on the same haplotype. Phas-
ing diploid haplotypes, especially human haplotypes, has
been studied extensively. The human genome is diploid
and the two copies of each chromosome are mostly
homozygous, namely the alleles at the same positions
are mostly identical. However, there are some variations
between the pairs and if there are different alleles at the
same positions between the pair of chromosomes, they are
referred to as heterozygous alleles. For diploid haplotype
phasing, only heterozygous alleles are considered and thus
the two haplotypes are complimentary to each other.
For diploid haplotype phasing, since many reads over-

lap with each other, most methods infer haplotypes by
partitioning the reads into two sets corresponding to
chromosomal origin in such a way that the number of
conflicts between the reads and the predicted haplotypes
is minimized (such objective function is called Minimum
Error Correction, orMEC).Manymethods have been pro-
posed for the diploid haplotype phasing problem: HASH

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-018-4464-9&domain=pdf
mailto: hedanus@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

He et al. BMC Genomics 2018, 19(Suppl 2):110 Page 172 of 180

[8] and HAPCUT [9] are based on graph structure. He
et al. [10] proposed a dynamic programming method as
well as a Max-SAT formulation. Deng et al. [11] com-
bined this dynamic programming method with a heuristic
approach. Mousavi et al. [12] suggested a HapSat model
by converting the haplotype determination problem to a
Max-2-SAT problem. HapAssembly converts the haplo-
type assembly problem to an integer linear programming
problem for optimization [13]. Harsh [14] applied a Gibbs
Sampling algorithm to phase diploid haplotypes. What-
sHap [15] proposed a fixed parameter tractable approach
with coverage as the parameter and can optimize weighted
MEC in runtime linear in the number of SNPs.
Recently polyploid haplotype phasing, where more than

two haplotypes are phased at the same time, has attracted
lots of attention. Polyploid haplotypes mainly come from
plant genomes as the plants usually containmore than two
haplotypes. Examples of such organisms include potato
(which is tetraploid) and wheat (hexaploid). Compared
with diploid haplotype phasing, polyploid haplotype phas-
ing is much more challenging as the search space of
possible haplotypes increase quadratically with the num-
ber of haplotypes. For k-haplotypes each with n SNPs, the
search space isO

(
2(k−1)n). Therefore it is very challenging

to find the optimal haplotypes.
Various polyploid haplotype phasing methods have

been developed. HapCompass [16] relied on a graphi-
cal approach to develop a scheme which resolves con-
flicts arising from incorrect haplotype phasing. HapTree
[17] investigated the polyploid setup using a branch-
and-bound scheme. SDhaP [18] formulates the haplotype
assembly problem as a semi-definite program and exploits
its special structure, the low rank of the underlying solu-
tion, to solve it rapidly and with high accuracy. H-PoP
and H-PoPG [19] conducted Polyploid Balanced Optimal
Partition (PBOP).
In this work, we proposed a Gibbs Sampling based algo-

rithm Poly-Harsh. The Gibbs Sampling algorithm consid-
ers the polyploid haplotype phasing problem as sampling
k haplotypes from a huge search space (O

(
2(k−1)n), where

k is the ploidy, n is the number of SNPs). The k haplo-
types minimizes certain objective function (In this work,
we take MEC (Minimum Error Correction) as objective
function). Poly-Harsh samples the conditional probabil-
ity of read assignment with fixed haplotypes and haplo-
type values with fixed read assignment alternatively. We
derived a formula for the conditional probability which
depends not only on the correct assignment of a read to
a haplotype, but also depends on correctly not assign-
ing a read to a haplotype. Our experiments on simu-
lated data showed that the alternative sampling converges
fast (usually in less than 100 iterations) and our method
achieves a better performance than the state-of-the-art
methods.

Haplotype phasing algorithms usually produce blocks
of haplotypes due to low coverage or sequencing error.
How the blocks should be concatenated is a very chal-
lenging problem and has never been resolved. When a
single individual is phased, we in general do not have
enough information to concatenate the haplotype blocks
and the blocks can be only concatenated randomly. How-
ever, when a set of individuals inherited from the same
founders are phased together, we could leverage the haplo-
type blocks from all the individuals to better concatenate
them. Thus we also proposed an efficient algorithm to
concatenate haplotype blocks of a set of individuals from
their sequencing data simultaneously. The algorithm con-
sists of three steps (1) candidates generation (2) frequent
candidates detection (3) true candidates detection. We
showed that our algorithm achieves a much better accu-
racy than a baseline method, the random concatenation.

Methods
Gibbs-sampling
Our method is based on Gibbs sampling and we first
introduce the general idea of Gibbs sampling below. Con-
sider the following distribution typically used to perform
optimization in graphical models:

P(X) = 1
Z
exp

⎛

⎝μ
∑

i=1

∑

j=1
φij(xi, xj)

⎞

⎠ (1)

where X = (x1, x2, . . . , xd) is a d-dimensional vector and
Z is a normalization factor. The function φ specifies the
edge potential for two variables with an edge between
them. We would like to collect samples of X based on this
distribution P(X).
Gibbs sampler is a special case of Monte Carlo Markov

Chain (MCMC) method [20], which is guaranteed to
converge to the equilibrium distribution after sufficient
burn-in iterations. In each iteration, it randomly sam-
ples one variable xi based on the conditional prob-
ability P(xi|x[−i]) where all other variables x[−i] =
(x1, x2, . . . , xi−1, xi+1, . . . , xd) are fixed. Formally, this con-
ditional probability can be written based on bayesian rule:

P(xi = t|x[−i]) = P(xi = t, x[−i])∑
t′ P(xi = t′, x[−i])

(2)

Readers can refer to [21] for a more detailed description
of Monte Carlo Markov Chain.

Polyploid haplotype phasing
The inputs for the polyploid haplotype phasing problem
is the ploidy k (the number of haplotypes to be phased),
the set of aligned sequencing reads X (We assume the
raw reads have been aligned to a reference sequence and
thus the SNPs spanned by the reads are identified already),

He et al. BMC Genomics 2018, 19(Suppl 2):110 Page 173 of 180

a sequencing error rate ε. The VCF (Variant Call For-
mat) file containing the SNP positions and dosages could
be optional. The dosage information gives the number of
reference alleles and alternative alleles for a given SNP
position and therefore can be used to reduce the phasing
search space and to improve the phasing accuracy. Notice
for some programs such as HapCompass, the dosage
information is mandatory.
The output of the phasing algorithms is the k phased

haplotypes. There are a few popular metrics to evalu-
ate the performance of the phasing algorithms, such as
MEC (minimum error correction) [22], minimum frag-
ment removal, MSR (minimum single nucleotide poly-
morphism (SNP) removal) [23], and two recent models
MFC (maximum fragments cut) [24] and BOP (balanced
optimal partition) [25]. In this work, we focused on MEC
as our metric.

MEC
We focus on minimizing MEC between the phased haplo-
types and the input read matrix, which is calculated as the
total number of mismatches between the reads and their
assigned haplotypes. The following formula is the MEC
for polyploid haplotypes:

MEC(X,H) =
m∑

j=1

n∑

k=1
rjk × D(xj, hk) (3)

where X is a set of m sequencing reads, H is the set of
n haplotypes, xj is the j-th read, hk is the k-th haplotype,
D(xj, hk) is the number of mismatches between xj and
hk , rjk is 1 if the j-the read is assigned to the k-the hap-
lotype and 0 vice versa. A read is assigned to a haplotype
which minimizes its number of mismatches. Notice mis-
matches only occur at SNP positions as all other positions
are homozygous. Thus the polyploid haplotype phasing
problem is to phase k haplotypes H given the set of reads
X and the SNP positions so that the objective function
MEC(X,H) is minimized. It is known [8] that minimizing
MEC is NP-hard even for diploid haplotype phasing when
the length of the reads is greater than one.
Recently various methods have been proposed to the

polyploid haplotype phasing problem. HapCompass [16]
builds a compass graph from the sequencing reads, which
is an undirected weighted graph. In the compass graph,
the vertices are the SNPs and an edge between a pair of
SNPs indicates that at least one read spans the two SNPs.
There is an integer weight associated with each edge. It is
shown that a compass graph has a unique phasing if it has
no conflicting cycles, which is a simple cycle that contains
either an odd number of negative edges or at least one 0-
weight edge or both. Haplotype phasings correspond to
spanning trees in the graph. The phasing problem is con-
verted to a minimumweighted edge removal optimization

on the graph and an algorithm based on cycle basis local
optimizations for resolving conflicting cycles is proposed.
HapTree [17] aims to trim down the search space for

all the possible haplotypes to a much smaller set of more
likely solutions. It takes an inductive approach, generat-
ing a collection of likely phasing solutions for the first two
SNPs in the genome, and then extending those to phas-
ing solutions of the first three SNPs, and those to the first
four SNPs, and so on.When extending any particular solu-
tion, HapTree chooses (based on computing likelihoods)
how the alleles of the newly added SNPmay be assigned to
chromosomes; it includes only those assignments that are
sufficiently likely. Upon including all SNPs to be phased,
HapTree randomly chooses a solution of maximum likeli-
hood from amongst the solutions it has found. It is shown
[18] that the trimming process might be time consuming
for some cases.
SDHaP [18] formulates the haplotype assembly problem

as a semi-definite program and exploits its special struc-
ture, namely the low rank of the underlying solution, to
solve the problem rapidly and with high accuracy. A graph
is defined where the nodes are the reads, the edge between
two nodes indicate that the two corresponding reads over-
lap by at least one SNP. A weight is associated with each
edge and the weight is computed as the following:

Wij = ksim − kdissim
ksim + kdissim

(4)

where ksim denotes the number of overlapping positions
where the reads have an identical alleles and kdissim is the
number of positions where they are different. Then giving
the graph and the ploidy, SDHaP aims to find k − 1 cuts
such that the sum of intra-partition edge weights is max-
imized and inter-partition edge weights is minimized and
the problem is solved via correlation clustering. SDhaP
formulates the problem as a semi-definite program (SDP),
and employs a low-rank Lagrangian scheme followed by
randomized projections and a greedy refinement of the
k-ploid haplotypes to solve the SDP.
H-PoP and H-PoPG [19] try to partition the DNA reads

sequenced from a k-ploid organism into k groups such
that the reads of the same group share the same alleles
on as many SNP loci as possible and the reads from dif-
ferent groups are different on as many loci as possible.
Heuristic strategies are proposed by limiting the number
of intermediate solutions at each iteration of a dynamic
programming algorithm. Notice H-PoP assumes no VCF
file, which contains the dosage information of the variants.
is provided while H-PoPG accepts VCF file as an input.
The polyploid haplotype phasing method we proposed

in this work is an extension of Harsh [14], which applies
the Gibbs Sampling algorithm to phase diploid haplotypes
(namely two haplotypes). For diploid scenario, the two
haplotypes are complimentary. Therefore indeed only one

He et al. BMC Genomics 2018, 19(Suppl 2):110 Page 174 of 180

haplotype needs to be phased. For polyploid scenario, the
haplotypes are more than two and they can share com-
mon segments and are not necessarily complimentary.
Thus the problem is much more challenging. Harsh can
not be applied to polyploid haplotype phasing in that the
conditional probability estimation for the Gibbs Sampling
process needs to be completely re-invented.

Poly-Harsh
Haplotype blocks
Notice that there are cases where haplotype compo-
nents are disconnected, i.e., we need to identify haplotype
blocks that are not connected by any reads. There are
two possible reasons for disconnected haplotype compo-
nents, or blocks: the adjacent SNPsmight be far from each
other, namely their distance is longer than the length of
the reads and thus they will not be spanned by any read;
the sequencing coverage is low and thus not all SNPs are
covered. To identify the haplotype blocks, we can create a
graph where the nodes are SNPs and an edge between two
SNPs indicates that the two SNPs are connected by some
reads. Then we identify the connected components of the
graph, which are the SNPs contained in each haplotype
block. There would not be any read spanning two blocks
and every read only covers the SNPs from a single block.
We next phase each block independently, using only the
reads covering the SNPs for that specific block.

Gibbs sampling
In this work, we developed a Gibbs Sampling based
method Poly-Harsh for polyploid haplotype phasing. Our
algorithm consists of two major steps: fix the haplotypes,
compute read assignments; then fix the read assignments,
compute the haplotypes. Here when we compare a haplo-
type to the reference haplotype, if the allele is the same as
the reference, the genotype value is 0. If the allele is alter-
native, the genotype value is 1. In cases where the allele is
neither the reference nor the alternative, we simply assign
the genotype value as 1. For each SNP position i, we define
a genotype value vector hi = [g1,i, g2,i, . . . , gk,i], where gj,i
is the genotype value of the j-th haplotype at the i-th SNP.
For a given ploidy k (for illustration purpose and without
losing generality, assuming k = 4), the genotype value vec-
tor could be one of 2k binary vectors [1, 0, 0, 0], [1, 1, 0, 0],
. . ., [0, 1, 1, 1]. Notice we ignore vectors [0,0,0,0] and
[1,1,1,1] as they indicate the allele is homozygous. We also
define a read assignment vector r as a k-dimensional vec-
tor r = [a1, a2, . . . , ak], where ai = 1 if the read is assigned
to the i-th haplotype and ai = 0 if the read is not assigned
to the i-th haplotype. For example, for k = 4, if the read is
assigned to the first haplotype, r = [1, 0, 0, 0]. If the read is
assigned to the second haplotype, r = [0, 1, 0, 0] and so on
so forth. Notice a read can not be assigned to more than
one haplotype and on the other hand it has to be assigned

to one haplotype. Given the genotype value vector hi for
the i-th SNP and a read assignment vector rj for the j-th
read xj, we define a function as below:

θ(hi, rj, xj) = ln(1 − ε)t + ln(ε)k−t (5)
t = match(hi, rj × xj,i)

where ε is the sequencing error rate, xj,i is the i-th value
of the xj,match(A,B) is the vector-wise matches between
two vectors A and B where the number of matches is
increased by 1 if two vector elements are identical (either
both 1 or both 0). For example, for hi = [1, 1, 0, 0] ,
rj =[1, 0, 0, 0] , xj,i = 1, we have rj × xj,i = [1, 0, 0, 0] and
thus t = match(hi, rj × xj,i) = 3. For hi = [1, 1, 0, 0] , rj =
[1, 0, 0, 0] , xj,i = 0, we have rj × xj,i =[0, 0, 0, 0] and thus t
= match(hi, rj × xj,i) = 2. The θ function essentially mod-
els the probability of the correct read assignment given
the matches between the read and the haplotypes. Notice
the function considers the mismatches due to sequencing
error.
Given ploidy as k, the set of genotype value vectors

H = [h1, h2, . . . , hn] where hi = [g1,i, g2,i, . . . , gki] as we
have defined and n is the number of SNPs, the set
of read assignment vectors R = [r1, r2, . . . , rn] where
ri =[a1, a2, . . . , ak] is the assignment vector for the i-th
read as we have defined, the sampling process proceeds
as follows: We first randomly initiate H, then we fix H
and compute the conditional probability P(R|H). We sam-
ple the reads assignment R based on P(R|H). Next we fix
R and compute the conditional probability P(H|R). We
sample the genotype value vectors H based on P(H|R).
For ploidy k, we have 2k haplotype values for a specific
SNP. Assuming the genotype value vector is h and the
set of reads X = [x1, x2, . . . , xn], we could compute its
probability as

P(h|R) =
exp

(∑n
j=1 θ(h, rj, xj)

)

exp
(∑i=2k ,j=n

i=1,j=1 θ(hi, rj, xj)
) (6)

where the function θ is defined in Eq. 5, hi is the i-th
genotype value vector, rj is the assignment vector for the
j-th read xj. Then we apply sampling to update the geno-
type values of the SNP. We do a similar Gibbs sampling
step for read origin given fixed haplotypes. Again, we con-
duct sampling to update the read assignment vector on the
fixed haplotypes H for a given read x as below:

P(r|H) =
exp

(∑2k
j=1 θ(hj, r, x)

)

exp
(∑i=k,j=2k

i=1,j=1 θ(hj, ri, x)
) (7)

where the function θ is defined in Eq. 5, hj is the j-th geno-
type value vector, ri is the assignment vector when the
read x is assigned to the i-th haplotype.

He et al. BMC Genomics 2018, 19(Suppl 2):110 Page 175 of 180

Given H and R, we can easily compute the MEC of the
phasing. Notice the k haplotypes can be constructed from
the genotype value vectors H, by concatenating all the
genotype values from the same haplotype. For example,
haplotype one can be constructed as [g1,1, g1,2, . . . , g1,n].
Therefore, the haplotype phasing problem becomes iden-
tifying the optimal H that minimizes MEC.

Algorithm 1 Algorithm Poly-Harsh
Require: ploidy k, set of aligned reads X, error rate ε

Ensure: k phased haplotypes
1: Randomly Initialize k haplotypes H
2: For fixed haplotype H, sample read origin R
3: For fixed read origin R, sample haplotype H
4:mec ← MEC(H ,R)

5: Repeat steps 2 and 3 for sufficient rounds until
equilibrium
6: Collect haplotypes and the corresponding MEC by
repeating steps 2 and 3, and output the one with the
minimumMEC.

Notice for diploid scenario and polyploid scenario, the
computations for P(r|H) and P(h|R) are significantly dif-
ferent, as for polyploid scenario, r and h are k-dimensional
vectors. The probabilities not only depends on the hap-
lotype the read is assigned to, but also depends on the
remaining haplotypes: if one haplotype has a mismatch at
a SNP position to a read and the read is not assigned to the
haplotype, it is considered as a correct operation to not
assign the read to the haplotype.
We repeat the above two steps iteratively. For each itera-

tion, we compute theMEC score of the reads. The process
converges when the MEC does not improve or we have
reached certain number of iterations. As Gibbs Sampling
is sampling based and its performance is affected by the
initial random simulation of H, it may fall into local opti-
mum solutions. Therefore we re-run the programmultiple
times, each time started from a different random seed H.
This helps the program to escape from local optimum.
A pseudocode of the algorithm is shown in Algorithm 1.
Notice the algorithm shows only one run of the procedure.
If we would like to run the algorithm multiple times, we
need to repeat steps 1 to 5 multiple times, each time with
a different randomly initialized H.

Contiguous haplotype reconstruction
As discussed previously each sample consists of 4 hap-
lotypes. The phasing algorithms may not always pro-
duce contiguous sequence of haplotypes for each sample.
Instead it produces broken haplotypes due to low coverage
depth and/or errors. We can think of the output as blocks
of sequences where each block contains contiguous subse-
quences of 4 broken haplotypes. If the cardinality of blocks

is k for a particular sample, the number of possible candi-
dates will be 4k . As there is no prior information available,
it is computationally impossible to construct all the 4 hap-
lotypes from 4k candidates. Fortunately we have multiple
samples and by extracting information from shared haplo-
types among samples, we can detect true haplotypes with
a very high level of confidence. In this article we propose
a randomized algorithm for constructing all 4 haplotypes
of each sample.
Here we briefly summarize the 3 fundamental steps of

our algorithm. At the beginning for each sample it builds
all the candidate haplotypes by concatenating the subse-
quences in each possible ways from the ordered list of
blocks. In the second step the algorithm finds the set of
candidate haplotypes which occurs at least twice across
the entire set of samples. By utilizing the pruned set of
candidate haplotypes, we detect all the 4 haplotypes of
each sample. We now describe our algorithm next.

Generate candidates
At first we recursively construct all possible candidate
haplotypes for each sample. Let the number of samples
and length of each candidate be n and t, respectively.
Without loss of generality, let each sample consists of k
blocks of broken haplotypes. If each block contains 4 hap-
lotypes, the number of possible candidates will be 4k as
stated above.We recursively construct candidates for each
sample. The time complexity for constructing all possible
candidate haplotypes for m samples is O

(
4kmt

)
which is

exponential with respect to k. It is computationally very
expensive task when k is large and the execution time can
be very large. However in reality k is very small and we can
safely assume that 1 ≤ k ≤ 8.

Detect frequent candidates
Frequent candidates are those candidate haplotypes which
occurs multiple times (i.e., at least twice) across m sam-
ples. This set of candidates contains highly accurate
haplotypes because of their multiple occurrences. Exact
algorithm is quadratic in the number of candidate haplo-
types

(
i.e.,O

((
4km

)2 t
))

. To reduce the runtime we are
proposing a randomized algorithm. The expected runtime
is sub-quadratic in the number of candidate haplotypes
and at the same time the algorithm is also highly accu-
rate in computing the set of frequent candidates. At first
we illustrate how to find most similar pair of candidates.
By naturally extending it, we will describe the process of
finding the set of frequent candidates. We describe our
randomized algorithm next.
Suppose we are given n vectors b̂1, b̂2, . . . , b̂n each of

length t. The problem is to find the pair of vectors that
are the most similar (i.e., the Hamming distance between
them is the smallest). Note that, given two vectors, we

He et al. BMC Genomics 2018, 19(Suppl 2):110 Page 176 of 180

can find the Hamming distance between them in O(t)
time. A straight forward algorithm to identify the most
correlated pair of vectors takes O

(
n2t

)
time. This algo-

rithm computes the Hamming distance between every
pair of vectors. We can achieve a better run time using
randomization. We say that the correlation between a pair
of strings is p if the Hamming distance between them is
t(1−p). Let p1 be the correlation between the most corre-
lated pair of strings and p2 be the correlation between the
second most correlated pair of strings.
The idea of our algorithm is to iteratively collect pairs

of strings that are candidates to be the most correlated.
Once we collect enough pairs, we compute the distance
between each pair in this collection and output the clos-
est. In each iteration we pick q columns randomly. For
any vector (or string), the values in these columns can be
concatenated to get a q-bit integer. We hash the vectors
based this integer value. Subsequently, we generate pairs
as follows: Consider any bucket in the hash table. If there
are m vectors in this bucket, then each pair of vectors in
this bucket is added as a candidate to a list C. There are
O

(
n

logp1
logp2 log n

)
iterations in the algorithm. We can show

that after O
(
n

logp1
logp2 log n

)
iterations, C will have the most

correlated pair of bulbs with a high probability (i.e., with a
probability of 1 − n−�(1)). For details readers are refereed
to [26].
We can naturally extend the above algorithm to get the

frequent candidate haplotypes. In each iteration we com-
pute similarity coefficients for all the the pairs in each hash
bucket. The similarity coefficient is defined as SC = t−d

t
where t is the length of the haplotype and d is the Ham-
ming distance between a pair of interest. The more the
similarity coefficient, the more similar will be the pair. We
retain that pair which has the similarity coefficient ≥ a
threshold, V. The individual candidate haplotype belong-
ing in each pair is then hashed into a hash map H. The
keys and values of hash map H is the candidate strings
and frequency of occurrences, respectively. Finally we sort
H with respect to its values (i.e., the frequency of occur-
rences) and output candidates occurring at least twice
across m samples. For each iteration the expected num-
ber of pairs generated is O(n) as described in [26]. The
expected time to build the hash map H will be also O(n)

for a particular iteration. As the expected time to resolve a
collision (i.e., look up and update) for H is O(1), the total

time spent for all the iterations will beO
(
n1+

log p1
log p2

)
. Since

we can sort the map by using any integer sorting algo-
rithm, the expected runtime of this step is O

(
n1+εt log n

)

where n = 4km and 0 < ε < 1. We have used fixed num-
ber of iterations (i.e., 50) in the experimentations. Let the
number of frequent candidates be s.

Detect true candidates
Frequent set of candidates contains all the haplotypes
shared twice across the samples. Each sample has 4k can-
didate haplotypes. We need to find 4 haplotypes for each
sample. Let S′ and S′′ be the sets of 4k candidate hap-
lotypes of a particular sample and frequent candidates,
respectively. Intuitively if we find the closest (i.e., most
similar) pair of haplotypes (c′ ∈ S′, c′′ ∈ S′′), c′ will be one
of the 4 haplotypes of a particular sample. Haplotypes c′
and c′′ may be identical but it is not guaranteed. c′ may not
be in the set of frequent candidates due to large number of
errors. In this case the closest one (i.e., c′′) from s gives us
the best possible information to find c′. Next we illustrate
this step algorithmically.
Each sample has 4k candidates and the size of pruned

set is s as described in 3. For each candidate c′ ∈ S′ and
c′′ ∈ S′′, we compute pair-wise similarity coefficient. We
then sort all the pairs (c′, c′′) with respect to SC in non-
increasing order and then rank of frequent candidates in
non-decreasing order. We traverse the sorted list of pairs
and collect first 4 candidate haplotypes c′ with the fol-
lowing restrictions: (1) No candidate haplotype c′ will be
chosen more than once; and (2) Each subsequence from
each block will be used exactly once. If the size of each
candidate is t, we needO

(
4kst

)
time to compute pair-wise

similarity coefficients (since the number such pairs is 4ks).
Sorting the list of pairs with respect to similarity score and
then by rank of frequent candidate haplotypes will take
nomore thanO

(
4ks(k + log s)

)
time. After sorting detect-

ing first 4 haplotypes could take O
(
4kst

)
time. In total

the time complexity to find 4 candidate haplotypes for m
samples will be O

(
4kms(k + t + log s)

)
.

Results and discussion
Polyploid haplotype phasing
In this work, we focused on phasing relatively short
regions such as genes, rather than the whole genome. Our
simulation pipeline is as below:We randomly simulate one
gene of length 1300bp which contains 30 biallelic SNPs.
For tetraploid case (k = 4) we simulate four haplotypes
for each individual. Then we constructed a VCF for each
individual according to their simulated haplotypes. Given
the VCF and the haplotypes, we next use Mason [27] to
simulate the paired-end reads. Mason is a read simulator
software for Illumina, 454 and Sanger reads. Its features
include coverage, read length, position specific error rates
and base quality values. We feed Mason with the VCF
with dosage information and set the error rate as 0.01
across all SNP positions and vary the coverage and the
read length as shown in Table 1. Illumina paired-end reads
are simulated.
In order to show that re-running Poly-Harsh multiple

times in usual leads to better performance as the program
could escape from the local optimum, we show in Fig. 1

He et al. BMC Genomics 2018, 19(Suppl 2):110 Page 177 of 180

Table 1 Different parameters for the simulated data

Parameters Coverage Read Length

Parameter Set 1 40 100

Parameter Set 2 80 100

Parameter Set 3 40 200

Parameter Set 4 80 200

Parameter Set 5 100 100

the minimum, the mean and the standard deviation of
8 rounds of running of Poly-Harsh with respect to each
parameter settings. As we can see that for all parameter
settings, with 8 rounds of running, the minimum MEC
we obtained is in usual much better than the mean MEC,
especially when the MEC is relatively large. This indicates
that running the program multiple times could in gen-
eral improve the performance. In our experiments, we see
that in general the performance converges in 8 rounds
of running. Also we can observe that larger coverage
and longer reads lead to larger MEC and larger standard
deviation.
Next we compare the phasing performance of Poly-

Harsh with Hapcompass [16] and H-PoP/H-PoPG [19].
We again take the parameter settings specified in Table 1.
For each parameter setting, we randomly simulate 10 data
sets and we show the average performance. For Poly-
Harsh, we conducted 8 rounds of running, each with
100 iterations. Notice that HapCompass does require the
dosage information while both Poly-Harsh and H-PoPG
(the version of H-PoP that takes VCF) take the dosage
information as optional. Therefore, for a fair comparison,

1 2 3 4 5

50
10

0
15

0
20

0
25

0

Scatter Plot of MEC for Different Parameter Settings

Parameter Settings

M
E

C
 (

M
in

, M
ea

n,
 M

ea
n+

S
D

)

Fig. 1 The min, mean and mean+sd of the MEC for Poly-Harsh on 8
rounds of running with respect to different parameter settings

we first feed the dosage information to all three methods.
We show the MEC of the three methods in Fig. 2. We
can see that both Poly-Harsh and H-PoPG achieved better
results compared with HapCompass. Poly-Harsh achieved
the best performance for all experiments.
Next we feed only the aligned sequencing reads infor-

mation to H-PoP and Poly-Harsh for comparison purpose.
HapCompass is excluded in the experiments as it requires
dosage information.We show that theMEC of both meth-
ods in Fig. 3. We can see again Poly-Harsh achieved better
results compared with H-PoP. Also the MEC is in gen-
eral larger when dosage is not provided, indicating that
without dosage, the phasing becomes less accurate.
Finally, the execution time of Poly-Harsh depends on the

number of rounds of running. For one round of running,
on our data sets, the execution time for all three meth-
ods are comparable, all less than 1 second. The execution
time of Poly-Harsh increases linearly with respect to the
number of rounds of running.

Contiguous haplotype reconstruction
We created 15 simulated datasets each having 30 samples.
As described above each sample contains 4 haplotypes.
Each haplotype is a binary string of length 1,300 bps.
Binary string is created by concatenating randomly cho-
sen binary values (i.e., either 0 or 1) under uniform distri-
bution. As the phased haplotypes usually contain errors,
we introduce errors in the haplotypes by flipping bases
according to given error rates. For example, if an error rate
is 1%, the probability that a base in a haplotype will be
flipped is 0.01. Each sample is randomly partitioned into
a number of blocks. The number of such blocks will be 1

Set1 Set2 Set3 Set4 Set5

Phasing on Simulated Data With Dosage

M
E

C

0
20

40
60

80
10

0
12

0
14

0 HapCompass
H−PoPG
Poly−Harsh

Fig. 2 The comparison of MEC for HapCompass, H-PoPG and
Poly-Harsh on simulated data with parameter settings specified in
Table 1. We feed all methods with the VCF file and dosage information

He et al. BMC Genomics 2018, 19(Suppl 2):110 Page 178 of 180

Set1 Set2 Set3 Set4 Set5

Phasing on Simulated Data Without Dosage

M
E

C

0
20

40
60

80
10

0 H−PoP
Poly−Harsh

Fig. 3 The comparison of MEC for H-PoP and Poly-Harsh on simulated
data with parameter settings specified in Table 1. No VCF file is
provided

through 8. As described we are able to construct a haplo-
type correctly, if it occurs at least twice across the dataset
of interest. To make the datasets more realistic, we intro-
duce the concept of Shared. If a dataset is told to be X%
shared, it means X haplotypes occurs 2× across all the 30
samples.
Wemeasure the effectiveness of our proposed algorithm

using two different metrics. These metrics are defined
below.

1 Sensitivity: The fraction of the haplotypes correctly
constructed. Let the number of constructed and true
haplotypes be P and T, respectively. Now, the
Sensitivity can be written as SN = P

T
2 Time:Measured elapsed time using total number of

CPU clock cycles consumed by each of the algorithm.

At first consider datasets D1-D5 (please, see Table 2).
These datasets are generated in a way such that each hap-
lotype must occur 2× across the samples. By varying the
error rate we measure the performance of our algorithm.
For error rate 1−2% our algorithm could able to correctly
construct all the haplotypes from the set of broken subse-
quences. For the high error rate (such as, 10% or 20%), it
correctly constructs 96.7% haplotypes.
Now consider datasets D6-D10. 80% haplotypes in each

dataset occur twice across the samples. Thus the sensi-
tivity should be at least 80%. But the correctness of our
algorithm is above 90%. It is due to the fact that if we
can construct 3 haplotypes of a sample correctly, the rest
will be formed accurately. The same observation applies

Table 2 Performance evaluations by varying shared and error
rates. The length of each haplotype is 1,300 bp. Each dataset
contain 30 samples. Each sample contains contiguous
subsequence of 4 broken haplotypes

Dataset % Shared % Error rate % Sensitivity Time in seconds

D1 100 0 100.00 19.51

D2 1 100.00 22.02

D3 5 100.00 25.75

D4 10 96.67 35.13

D5 20 96.67 25.88

D6 80 0 96.67 25.53

D7 1 91.66 25.69

D8 5 91.66 26.20

D9 10 94.16 23.51

D10 20 90.00 12.33

D11 60 0 82.50 23.44

D12 1 76.67 19.45

D13 5 72.71 10.49

D14 10 77.50 9.91

D15 20 71.50 12.04

to datasets D11-D15. We visualize the results in Figs. 4
and 5.
As our method is the very first algorithm that tries to

construct contiguous haplotypes from the phased haplo-
type blocks, we compared our method against a simple
baseline method: concatenate the blocks randomly. The
baseline method has a sensitivity of around 25% among
all scenarios, as the random concatenation doesn’t rely
on any information from the dataset. Thus our method
is much more accurate than the random concatenation
algorithm.

 50

 60

 70

 80

 90

 100

Shared-100% Shared-80% Shared-60%

Sensitivity

Error-0%
Error-1%

Error-5%
Error-10%

Error-20%

Fig. 4 Sensitivity of our algorithm

He et al. BMC Genomics 2018, 19(Suppl 2):110 Page 179 of 180

 5

 10

 15

 20

 25

 30

Shared-100% Shared-80% Shared-60%

Time in seconds

Error-0%
Error-1%

Error-5%
Error-10%

Error-20%

Fig. 5 Elapsed time of our algorithm

The experimental evaluations show that our algorithm
is indeed effective and efficient in terms of both accuracy
and runtime. For synthetic dataset, our algorithm achieves
nearly 100% accuracy where the datasets have less errors
and modest number of shared haplotypes. Here accuracy
is defined as the fraction of haplotypes constructed cor-
rectly. In some datsets the median of accuracy is 70−80%.
This is due to the fact that the haplotype construction
may be affected if the dataset of interest has very low
discriminative power. In this case, there is no sufficient
information to distinguish true and false haplotypes accu-
rately. It has cumulative effects also. Each sample has 4
haplotypes as stated above. Suppose we are not able to
correctly construct the first haplotype. Then there is a
high chance that the rest will be constructed incorrectly.
This case arises when (1) dataset contains large number of
errors and/or (2) there is little shared information across
the samples. In case 2 it is impossible to construct all the
haplotypes accurately. In order to construct haplotypes
correctly, 3 out of 4 haplotypes of each sample must be
occurred at least twice across the samples. In case 1 shared
information may be lost because of noise (such as, missing
values, phasing errors) in the dataset.

Conclusion
In this work we proposed a novel polyploid haplotype
phasing algorithm that is applicable to any ploidy. The
algorithm is based on Gibbs Sampling, where given the set
of sequencing reads, we fix the haplotypes and the read
assignments alternatively, then estimate the conditional
probability of each other and sample their values based on
their corresponding conditional probabilities. The Gibbs
sampling method has been shown to work well on diploid
haplotype phasing [14]. Our experiments illustrate that
for tetraploid haplotypes, our method is able to improve
the quality of the phased haplotypes (based on Minimum
Error Correction) over the state-of-the-art methods. Due

to low coverage or sequencing errors, the phased hap-
lotypes usually contain isolated blocks. We proposed an
algorithm to construct contiguous haplotypes from the
phased haplotype blocks of a set of individuals whose hap-
lotypes are inherited from the same set of founders. To
our knowledge, this is the first algorithm that leverages
the shared information across multiple individuals to con-
struct contiguous haplotypes. Our experiments showed
that our method is both efficient and effective.
Also in our future work, we will evaluate our methods

on different metrics like switch error, hamming distance
etc. We would also like to evaluate our method on differ-
ent ploidies to investigate its performance regarding to the
number of phased haplotypes.

Abbreviations
MCMC: Monte carlo markov chain; MEC: Minimum error correction; NGS: Next
generation of sequencing; SNP: Single nucleotide polymorphism; VCF: Variant
call format

Acknowledgements
The authors want to acknowledge Enrico Siragusa and Nina Haiminen from
IBM T.J. Watson Research for their help on generating the simulated data.

Funding
Funding for the publication of this article was provided by IBM T.J. Watson
Research

Availability of data andmaterials
The data is simulated and the simulation procedure is described in the
manuscript.

About this supplement
This article has been published as part of BMC Genomics Volume 19
Supplement 2, 2018: Selected articles from the 16th Asia Pacific Bioinformatics
Conference (APBC 2018): genomics. The full contents of the supplement are
available online at https://bmcgenomics.biomedcentral.com/articles/
supplements/volume-19-supplement-2.

Authors’ contributions
DH designed and implemented the Poly-harsh algorithm for polyploid
haplotype phasing. SS designed and implemented the algorithm to
concatenate haplotype blocks into contiguous haplotypes. RF introduced the
polyploid haplotype phasing problem and helped on the simulation. LP
helped design both algorithms and suggested the integration of the two
algorithms. DH, SS and LP made contributions to writing the manuscript, with
additional input from all remaining authors. All authors read and approved the
final manuscript.

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1College of Computer Science and Software, Shenzhen University, Shenzhen
518060, China. 2IBM T.J. Watson Research Center, 1101 Kitchawan Rd,
Yorktown Heights, NY 10598, USA. 3Wageningen University & Research, 6708
PB, Wageningen, Netherlands.

https://bmcgenomics.biomedcentral.com/articles/supplements/volume-19-supplement-2
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-19-supplement-2

He et al. BMC Genomics 2018, 19(Suppl 2):110 Page 180 of 180

Published: 9 May 2018

References
1. Gusev A, Lowe JK, Stoffel M, Daly MJ, Altshuler D, Breslow JL,

Friedman JM, Pe’er I. Whole population, genome-wide mapping of
hidden relatedness. Genome Res. 2009;19(2):318–26.

2. Browning SR, Browning BL. High-resolution detection of identity by
descent in unrelated individuals. Am J Hum Genet. 2010;86(4):526–39.
https://doi.org/10.1016/j.ajhg.2010.02.021.

3. Browning BL, Browning SR. A fast, powerful method for detecting
identity by descent. Am J Hum Genet. 2011;88(2):173–82. https://doi.org/
10.1016/j.ajhg.2011.01.010.

4. Patterson N, Hattangadi N, Lane B, Lohmueller KE, Hafler DA,
Oksenberg JR, Hauser SL, Smith MW, OBrien SJ, Altshuler D, et al.
Methods for high-density admixture mapping of disease genes. Am J
Hum Genet. 2004;74(5):979–1000.

5. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint
method for genome-wide association studies by imputation of
genotypes. Nat Genet. 2007;39(7):906–13.

6. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-y, Freimer NB, Sabatti C,
Eskin E, et al. Variance component model to account for sample structure
in genome-wide association studies. Nat Genet. 2010;42(4):348–54.

7. Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR,
Kautzer CR, Lee DH, Marjoribanks C, McDonough DP, et al. Blocks of
limited haplotype diversity revealed by high-resolution scanning of
human chromosome 21. Science. 2001;294(5547):1719–23.

8. Bansal V, Halpern AL, Axelrod N, Bafna V. An MCMC algorithm for
haplotype assembly from whole-genome sequence data. Genome Res.
2008;18(8):1336.

9. Bansal V, Bafna V. HapCUT: an efficient and accurate algorithm for the
haplotype assembly problem. Bioinformatics. 2008;24(16):153.

10. He D, Choi A, Pipatsrisawat K, Darwiche A, Eskin E. Optimal algorithms
for haplotype assembly from whole-genome sequence data.
Bioinformatics. 2010;26(12):183–90.

11. Deng F, Cui W, Wang L. A highly accurate heuristic algorithm for the
haplotype assembly problem. BMC Genomics. 2013;14(2):1.

12. Mousavi SR, Mirabolghasemi M, Bargesteh N, Talebi M. Effective
haplotype assembly via maximum boolean satisfiability. Biochem Biophys
Res Commun. 2011;404(2):593–8.

13. Chen ZZ, Deng F, Wang L. Exact algorithms for haplotype assembly from
whole-genome sequence data. Bioinformatics. 2013;29(16):1938–45.

14. Yang WY, Hormozdiari F, Wang Z, He D, Pasaniuc B, Eskin E. Leveraging
reads that span multiple single nucleotide polymorphisms for haplotype
inference from sequencing data. Bioinformatics. 2013;29(18):2245–52.

15. Patterson M, Marschall T, Pisanti N, Van Iersel L, Stougie L, Klau GW,
Schönhuth A. Whatshap: weighted haplotype assembly for
future-generation sequencing reads. J Comput Biol. 2015;22(6):498–509.

16. Aguiar D, Istrail S. Hapcompass: a fast cycle basis algorithm for accurate
haplotype assembly of sequence data. J Comput Biol. 2012;19(6):577–90.

17. Berger E, Yorukoglu D, Peng J, Berger B. Haptree: A novel bayesian
framework for single individual polyplotyping using ngs data. PLoS
Comput Biol. 2014;10(3):1003502.

18. Das S, Vikalo H. Sdhap: haplotype assembly for diploids and polyploids
via semi-definite programming. BMC Genomics. 2015;16(1):1.

19. Xie M, Wu Q, Wang J, Jiang T. H-pop and h-popg: heuristic partitioning
algorithms for single individual haplotyping of polyploids. Bioinformatics.
2016;32(24):3735–44.

20. Geman S, Geman D. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell.
1984;PAMI-6(6):721–41.

21. Liu JS. Monte Carlo Strategies in Scientific Computing. New York:
Springer; 2008.

22. Lippert R, Schwartz R, Lancia G, Istrail S. Algorithmic strategies for the
single nucleotide polymorphism haplotype assembly problem. Brief
Bioinform. 2002;3(1):23.

23. Lancia G, Bafna V, Istrail S, Lippert R, Schwartz R. SNPs problems,
complexity, and algorithms. In: Proceedings of the 9th Annual European
Symposium on Algorithms. Lecture Notes in Computer Science. New
York: Springer-Verlag; 2001. p. 182–93.

24. Duitama J, Huebsch T, McEwen G, Suk EK, Hoehe MR. Refhap: a reliable
and fast algorithm for single individual haplotyping. In: Proceedings of

the First ACM International Conference on Bioinformatics and
Computational Biology. Niagara Falls: ACM; 2010. p. 160–9.

25. Xie M, Wang J, Jiang T. A fast and accurate algorithm for single individual
haplotyping. BMC Syst Biol. 2012;6(Suppl 2):8.

26. Rajasekaran S, Saha S. Efficient algorithms for the two locus problem in
genome-wide association study: Algorithms for the two locus problem. In:
Proceedings of the 25th ACM International on Conference on Information
and Knowledge Management. Seattle: ACM; 2016. p. 2305–10.

27. Holtgrewe M. Mason–a read simulator for second generation sequencing
data. Technical report FU Berlin. Berlin: Freie University; 2010. http://
publications.imp.fu-berlin.de/962/. Accessed 8 Oct 2011.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

https://doi.org/10.1016/j.ajhg.2010.02.021
https://doi.org/10.1016/j.ajhg.2011.01.010
https://doi.org/10.1016/j.ajhg.2011.01.010
http://publications.imp.fu-berlin.de/962/
http://publications.imp.fu-berlin.de/962/

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Gibbs-sampling
	Polyploid haplotype phasing
	MEC
	Poly-Harsh
	Haplotype blocks
	Gibbs sampling

	Contiguous haplotype reconstruction
	Generate candidates
	Detect frequent candidates
	Detect true candidates

	Results and discussion
	Polyploid haplotype phasing
	Contiguous haplotype reconstruction

	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

