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Abstract

Background: High throughput sequencing technologies have been an increasingly critical aspect of precision
medicine owing to a better identification of disease targets, which contributes to improved health care cost and
clinical outcomes. In particular, disease-oriented targeted enrichment sequencing is becoming a widely-accepted
application for diagnostic purposes, which can interrogate known diagnostic variants as well as identify novel
biomarkers from panels of entire human coding exome or disease-associated genes.

Results: We introduce a workflow named VAReporter to facilitate the management of variant assessment in
disease-targeted sequencing, the identification of pathogenic variants, the interpretation of biological effects and
the prioritization of clinically actionable targets. State-of-art algorithms that account for mutation phenotypes are
used to rank the importance of mutated genes through visual analytic strategies. We established an extensive
annotation source by integrating a wide variety of biomedical databases and followed the American College of
Medical Genetics and Genomics (ACMG) guidelines for interpretation and reporting of sequence variations.

Conclusions: In summary, VAReporter is the first web server designed to provide a “one-stop” resource for
individual’s diagnosis and large-scale cohort studies, and is freely available at http://rnd.cgu.edu.tw/vareporter.
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Background
Precision medicine based on massive parallel sequencing
technologies is becoming a new trend in the treatment
of diseases because it enables improved identification of
disease targets, which can reduce health care costs and
improve clinical outcomes. This has prompted the move
of massive parallel sequencing into the clinic – the U.S.
Food and Drug Administration (FDA) approved the first
massive parallel sequencer in 2013 for use in clinical set-
ting for searching known diagnostic variants in known
disease genes [1]. Many massive parallel sequencing-
based multiplexing assays with panels of disease genes

have been developed to offer precise molecular diagno-
ses; these assays comprise nearly all of the Mendelian
genes listed in the Online Mendelian Inheritance in Man
(OMIM) database [2] and the cancer-associated genes in
the Catalogue of Somatic Mutations in Cancer (COS-
MIC) [3], reflecting the increasing needs of and advances
in genetic testing.
While most rare or novel variants are not covered by

the currently available disease-targeted sequencing
methods, more extensive screening approaches, such as
whole-exome sequencing (WES) and whole-genome
sequencing (WGS), may assure the most comprehensive
collection of variant spectra from individual genomes.
Recently, WES has gradually become a dominant genetic
test in the diagnostic setting – it decreases the cost of
sequencing and has revealed several pathogenic muta-
tions [4–6] and medically actionable targets for subse-
quent therapeutic research. Despite the potential to
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provide comprehensive catalogues of genetic profiles,
the cost, time and computing resources required to
gather all of the genomic information have limited the
wide adoption of the WGS assay for clinical applications
[7]. Nevertheless, notable accomplishments, such as
uncovering important roles of rare genetic variants in
common diseases, providing deep characterization of
genetic polymorphisms in different human populations,
and finalizing the mutation landscapes for the most
common cancer types, have still been primarily based on
the use of WGS by large-scale genome sequencing
centers [8, 9]. However, exploiting such large amounts of
data is a substantial challenge for most researchers
without bioinformatics support.
To the best of our knowledge, targeted enrichment

sequencing is becoming a widely-accepted application
for diagnostic purposes and is able to interrogate known
diagnostic variants in addition to identifying novel dis-
ease markers from panels of entire human coding
exomes or disease-associated genes. Although sequencer
manufacturers have provided cloud-based solutions for
general analysis purposes, these tools are bundled with
specific genetic testing products from the relevant
manufacturers, which substantially limits their usability.
Moreover, most of the existing variant annotation tools
[10–12] can perform well on single datasets and are thus
suitable for clinical diagnostic tests for individuals. How-
ever, they are less likely to meet the requirements for
cohort studies because cross-sample analysis is often
resource demanding and not readily resolved. Here, we
present VAReporter, which is web-based application with
an intuitive and friendly environment for prioritizing
disease-relevant abnormalities from single patients or
study cohorts. VAReporter can provide comprehensive
annotation by integrating a wide variety of biomedical
databases. Comparison of gene mutation spectra be-
tween study cohorts and the Cancer Genome Atlas
(TCGA) tumors is feasible with the aid of the visual ana-
lytic framework embedded in VAReporter. Moreover,
state-of-art algorithms that account for mutation pheno-
types are used to rank the importance of mutated genes.
Our system also follows the American College of Med-
ical Genetics and Genomics (ACMG) guidelines [13] for
nomenclature, interpretation and reporting of sequence
variations. In conclusion, VAReporter is designed to
meet the requirements of massive parallel sequencing
variome studies, ranging from individual diagnostic tests
to large-scale cohort studies.

Methods
VAReporter framework
VAReporter provides an intuitive interface and flexible in-
frastructure for the management and analysis of genetic
variants identified from massively parallel sequencing

projects (Fig. 1). The system has functionalities that
prioritize phenotype-associated variants by annotation,
functional prediction, multi-sample comparison, and
visual interpretation of the genetic variants. VAReporter
has the ability to accept heterogeneous variant call file
(VCF) formats from state-of-the-art variant callers, such
as GATK [14], VarScan [15], MuTect [16] and VarDict
[17], and provides the most comprehensive list of support
formats with respect to single and paired samples. A wide
variety of biomedical databases, including dbSNP [18],
1000 Genomes [19], COSMIC, the Cancer Gene Census
[20], dbNSFP [21], Clinvar [22], OMIM [2], RefSeq [23],
UniProt [24], Pfam [25], GO [26], KEGG [27], DrugBank
[28], the DGIdb [29] and the Human Gene Mutation
Database [30] (HGMD), were compiled as local annotation
databases to facilitate the interpretation of biological effects
introduced by genetic alterations. A high-performance
computing cluster with Sun Grid Engine was used to fulfil

Fig. 1 Framework of VAReporter. VAReporter takes genetic variants
from gene panel or whole-exome sequencing as input materials,
supporting heterogeneous VCF formats such as GATK, VarScan, MuTect
and VarDict. A wide variety of biomedical databases were compiled as
local annotation resources to facilitate the interpretation of biological
effects introduced by genetic alterations. MutSigCV algorithm was also
incorporated into the framework to detect significantly altered genes
in study cohorts. Visualization modules are widely used for displaying
sample-wide mutation profiles, landscapes, spectra and affected
pathways. Dynamic tables with filtering and sorting functionalities are
provided to facilitate the prioritization of clinically actionable targets
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the computational requirements for measuring variant
accuracy and quality, annotating genetic variants, identify-
ing significant mutated genes, and comparing mutation
spectra across samples. Dynamic charts, filterable tables
and reproducible reports were constructed with Shiny
(https://shiny.rstudio.com), which is a web application
framework for R, to facilitate data interpretation and target
prioritization. For large-scale cohort studies of paired
tumor-normal (T/N) samples, lists of single-nucleotide
variations, insertions and deletions were subjected to the
MutSigCV algorithm to identify the significantly mutated
genes from WES or WGS.

Data input
VAReporter begins by uploading a compressed file con-
taining VCF files into the R data structure and storing
the genomic features of the individual variants in a
sample-specific manner. To make the subsequent quality
control and annotation easier and to provide compre-
hensive support for the data formats of commonly used
variant calling tools, such as GATK [14], VarScan [15],
MuTect [16] and VarDict [17], the user can assign the
corresponding data formats to the relevant VCF files via
a drop-down list of variant callers before uploading the
compressed file. For cohort studies, sample metadata
records can also be uploaded alongside the variant files

regardless of whether they are in the VCF format, the
International Cancer Genome Consortium (ICGC) TSV,
or TCGA MAF formats to perform in-depth compari-
sons between experimental designs or features. Detailed
instructions on the metadata formats can be found on
the tutorial page (http://rnd.cgu.edu.tw/vareporter/book-
down-tutorial/_book/intro.html). Timestamps are used
as job identifiers and are returned to the user to retrieve
the finished jobs.

Quality control and association analysis
The R programming language is used to retrieve the
variant allele frequencies from sample pairs according to
unique mutation events defined by chromosome, pos-
ition, reference allele and variant allele. The correlation
coefficients between the samples are rendered according
to the degree of association between the variables. The R
ggplot2 [31] and corrplot [32] packages are used to
render the variant frequencies from multiple sample
pairs into a grid layout of multiple scatter plots (Fig. 2).
Generally, a significant portion of shared mutations from
T/N paired samples are distributed closer to the diag-
onal of the scatter plot with a fair number of sample-
specific variants located on the X- or Y-axes. Two
additional groups of points located at the top and right
axis as indicated by red ovals in Fig. 1b can be easily

Fig. 2 Identification of mislabeled specimens. The variant allele frequencies are extracted from T/N paired samples according to unique mutation
events defined by chromosome, position, reference allele and variant allele, subsequently used to generate a scatter plot between two samples. a A
significant portion of shared mutations from correct T/N paired samples are distributed closer to the diagonal of the scatter plot with a large majority
of heterozygous and homozygous variants located at regions of 50 and 100% allele frequencies. b Two additional groups of points located at the top
and right axis as indicated by red ovals in the scatter plot can be easily depicted when T/N mismatched samples were used to generate this figure,
based on the concept that these variants are less likely to change all their variant frequencies from 50 to 100% through mutation events
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depicted when T/N mismatched samples were used to
generate this figure, based on the concept that these
variants are less likely to change all their variant fre-
quencies from 50 to 100% through mutation events.

Variant annotation and functional effect prediction
As mentioned in a previous study [33], the majority of the
existing variant annotation tools, including ANNOVAR
[10], SNPeff [11], and Variant Effect Predictor [12], were
developed for general non-cancer applications and lack the
functionality to automatically select the correct transcript
to capture the expected variant annotations in concordance
with the existing cancer sequencing studies. The transcript
list can be downloaded from Broad Institute through the
following link (https://www.broadinstitute.org/~lichtens/
oncobeta/tx_exact_uniprot_matches.AKT1_CRLF2_FGFR
1.txt) [33], which was constructed from GENCODE version
19, composed of transcripts with 100% sequence identity
with UniProt records, followed by manual selection to
achieve 100% annotation in concordance with MyCancer-
Genome [34]. These records were subsequently utilized to
determine the consequences on mutations in transcripts
and proteins. Functional prediction and conservation scores
for coding variants can be retrieved from pre-computed
results with algorithms, such as SIFT [35], PolyPhen2 [36],
LRT [37], MutationTaster [38], Mutation Assessor [39],
FATHMM [40], GERP++ [41] and PhyloP [42] through
dbNSFP, which can ease the prioritization of variants based
on the functional influences of protein alterations.

Dynamic tables, charts and filters
The JavaScript library DataTables [43] is used to provide
features such as filtering, sorting, pagination and saving
the table as a PDF. Bar charts are used to present the
most frequently mutated genes, highly affected protein
domains and detailed variant compositions in individual
samples. Flexible filters are provided based on items,
such as gene symbol, genomic location, sample name,
variant classification, affected protein domain, protein
change, and SNVs, in specific ethnic groups in addition
to disease information. A highly-integrated framework
that seamlessly connects filters, tables, and charts was
created with the R Shiny web application (https://shin
y.rstudio.com) and is useful in both the exploratory and
discovery stages for grasping the global mutational char-
acteristics of a cohort as well as prioritizing candidate
targets of interest.

Visual summary of genetic mutations in cancer cohorts
(CoMut plot)
CoMut plots are often used in cancer research publica-
tions for visual summaries of the genetic mutations in
cancer study cohorts [44]. Additionally, the MutSigCV
algorithm is used to detect significantly altered genes in

cancer cohorts. Because the source code for creating
CoMut plots is not currently available, VAReporter uses
an in-house script to render significantly altered genes
into graphics similar to CoMut plots. The plots are
ensembles of multiple simpler plots, such as heat maps
and bar graphs, which are aligned and interconnected
via common X- or Y-axes and display mutation events
in a grid-like form that is particularly suitable for pre-
senting data with intricate and associative natures
(Fig. 3). Somatic genome alteration events that affect
protein-coding genes within a common signaling path-
way exhibit mutual exclusivity among samples, which is
a well-known characteristic that is often used to identify
driver mutations in cancers. To perform systematic eval-
uations against all signaling pathways that are plausibly
perturbed by somatic mutations, the OncoPrint sorting
method [45] is adapted to display genomic alterations in
the gene sets of specific signaling pathways in a mutually
exclusive manner.

Comparative analysis and visualization of mutation-affected
pathways
Pathway component genes are defined as gene sets
collected in the Molecular Signatures Database v5.0
(MSigDB) [46] that are curated from KEGG [27], Bio-
Carta [47], Pathway Interaction Database [48], Reactome
and Signaling Gateway [49]. VAReporter can assess the
mutational events of pathway component genes and dis-
play subsets of patients as pie charts and heat maps to
identify the most frequently altered pathways in specific
TCGA/ICGC tumors and in custom study cohorts. The
GenVisR package [50] is integrated into our pipeline to
facilitate the identification and visualization of mutually
exclusive genetic events in pathway components (Fig. 4a).
Mutational events in individual pathway component
genes can be retrieved from the mutation profile, which
is subsequently mapped to the relevant pathway graph
downloaded from KEGG [51]. The R pathview package
[52] is used to facilitate pathway-based data integration
and visualization (Fig. 4b). However, only KEGG path-
way maps are supported by the R pathview package.

Comprehensive mutational spectrum analysis
Over 3 million simple somatic mutations from 66 cancer
projects of the TCGA and ICGC were downloaded from
the ICGC Data Portal [53] and compiled into our local
index databases. Lollipop plots are a simple and widely
used graphics for interpreting genetic mutations with
protein annotations. An in-house script is used to trans-
late the gene symbols into SwissProt accession numbers
that can be used to retrieve protein domains and their
corresponding colors from the Pfam database [25]. Di-
verse mutation types (e.g., missense and nonsense muta-
tions) are denoted by different colors with marker sizes
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that are exponentially proportional to the number of
affected samples, which provides an intuitive method for
inspecting the mutational spectra in individual genes.
The lollipop module can display gene-specific muta-
tional spectra from custom cohort studies and TCGA/
ICGA cancer studies at the simultaneously and side by
side, which is also a unique feature of VAReporter.

Custom gene panels and reports
As mentioned previously, VAReporter supports almost
all of the available disease-targeted gene panels and
whole-exome panels ranging from inherited disease
genes to cancer-associated genes. Disease testing panels
with known diagnostic mutations and their correspond-
ing genes can be selected through a drop-down list
provided on the web. In addition to the gene lists de-
fined by existing commercially available gene panels,
VAReporter also enables users to create gene lists for
their custom-made gene panels through the panel man-
agement button.

Results and discussion
Example of use
As a proof-of-principle experiment, we applied VAReporter
to perform an in-depth analysis of the ICGC open-access
datasets, which contain 216 sets of whole-exome sequen-
cing data from colon cancer patients in United States [54].
In this study cohort, over 796,781 mutation events that cor-
respond to 105,739 unique somatic mutations were identi-
fied and recorded in the tab-separated TSV file, which can
be downloaded from the ICGC Data Portal through the fol-
lowing link: (https://dcc.icgc.org/api/v1/download?fn=/re
lease_20/Projects/COAD-US/simple_somatic_mutation.ope
n.COAD-US.tsv.gz). A previous study [55] mentioned that
calculating statistics for such huge data sets in real-time is a
computationally taxing task. To address this issue, the R
data structure and Shiny web framework were used to
optimize the interactive visualization between the graphs
and data sets. Detailed exemplary outputs for 216 mutational
profiles of colon tumors can be found on the VAReporter
demonstration page at (http://rnd.cgu.edu.tw/vareporter/

Fig. 3 Displaying mutation landscapes by CoMut plot. In-house script is used to render significantly altered genes and their relevant mutation
events into heat maps and bar graphs, which are aligned and interconnected via a common X- or Y-axes, particularly suitable for presenting data
with intricate and associative natures. The OncoPrint sorting method is also adapted to display genomic alterations in the gene sets of specific
signaling pathways in a mutually exclusive manner and to identify driver mutations in cancers
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main.php?jobId=demo.COAD-US). While this demonstra-
tion is used to profile somatic mutations, samples related to
hereditary diseases may also be analyzed, from which qualita-
tive and quantitative features of causative germline variants
could be illustrated with equal efficiency. Detailed instruc-
tions can refer to the following link http://rnd.cgu.edu.tw/
vareporter/bookdown-tutorial/_book/example-of-use.html .

Output summary
After the successful submission of a job, processing
statuses, such as job queuing, file format conversion,
variant annotation, significant mutant gene predic-
tion, and report generation, are displayed using a
dynamic progress indicator. The output section of
tutorial page (http://rnd.cgu.edu.tw/vareporter/tutori
al.php) displays the standard output of VAReporter
based on the demonstration data sets mentioned
above. The standard output consists of eight-page
sections.

Global analyses of mutation patterns
The first section summarizes various mutation types as pro-
portions of the total mutations per samples using a stacked
bar graph to provide a global view of the mutation patterns
in a sample-wide manner. Samples with relatively high or low
compositions of specific mutation types can be easily depicted
with this graph, which may provide some clues about the
sample characteristics and their biological relevance.
The second section uses a bar chart to display the

most frequently affected genes and protein domains
across the samples. Basic information about each of the
mutations in the affected genes and the published rank-
ings of mutated genes for individual TCGA cancer types
are also provided to facilitate comparison between the
user’s data and the published results.

Evaluating mutational consequences from the perspective
of the central dogma
The third section provides a series of tables with search-
ing, sorting, and filtering functionalities. The mutational

Fig. 4 Pathway visualization. a VAReporter can assess the mutational events of pathway component genes and display subsets of patients as pie charts
and heat maps to identify the most frequently altered pathways in a study cohort. b The R pathview package is used to facilitate pathway-based data
integration and visualization based on mutational events identified in the component genes of specific pathway [51]
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consequences at the DNA, RNA, and protein levels are
provided to enable inspection of mutations from the
perspective of the central dogma. Human population
genetic diversity and disease-related information [22, 30]
can also be used as filters to identify ethnic-specific vari-
ants and disease-specific germline or somatic variants,
respectively. For evaluating the biological consequences
of novel candidate variants or mutations that have not
been categorized in known variant databases [3, 18],
nearly all of the available algorithms are applied to pre-
dict the importance and functional effects of each candi-
date variation.

Mutational landscapes, spectra and significant mutation
genes
The fourth and fifth sections employ visual analytic
strategies for interactive exploration of multidimensional
genomics datasets. CoMut plots are often used in TCGA
cancer research publications as visual summaries of
genetic variations in study cohorts. OncoPrint is a
widely used strategy for identifying cancer-driver genes
and pathways and can identify mutations in gene sets of
specific pathways that exhibit a pattern of mutually ex-
clusive mutations across a study cohort [56]. However,
the source code for generating CoMut plot has not been
released to the public and the cBioPortal constrains the
OncoPrint module for use with web services only, which
make their usability limited to large research institutions
with well-established bioinformatics units. Although the
GenVisR package [50] provides an alternative method
for mimicking the functions of both CoMut plot and
OncoPrint, cumbersome steps are required to annotate
and render complex genomic alteration events in a
cohort into the acceptable format of this visualization
package. VAReporter integrates the GenVisR package
and has simplified the overall data processing proce-
dures and automated every step, including variant anno-
tation, format conversion and CoMut plot generation.
Notably, the resulting CoMut plot can be further
focused on specific pathway component genes for the
convenience of inspecting the mutually exclusive muta-
tional events in individual pathways, which is a unique
and novel feature of VAReporter. With the aim of identi-
fying the dominant altered pathways in a study cohort,
VAReporter can assess the mutational events of pathway
component genes to identify the most frequently altered
pathways in specific tumors. Lollipop plots were first in-
troduced by cBioPortal [45] and are simple and widely
used to inspect mutational spectra for individual genes
and interpret genetic mutations with protein annotation.
The major difference between the VAReporter lollipop
module and cBioPortal is that VAReporter can simultan-
eously display gene-specific mutation spectra from both
custom cohort studies and TCGA/ICGA cancer studies,

which is also a unique feature of VAReporter. MutSigCV
[57] has become a widely-accepted algorithm for distin-
guishing cancer driver genes from the background of
random mutations and incorporates covariate factors,
such as patient-specific mutation frequencies, mutation
spectra, gene-specific mutation rates, gene expression
levels and DNA replication timing, into the evaluation
model. This design can substantially reduce false positives
in the generated lists of significant genes. To simplify each
data processing and preparation step, VAReporter incor-
porates MutSigCV [57] as a critical component for the
identification of cancer driver genes. As illustrated in tu-
torial page (http://rnd.cgu.edu.tw/vareporter/tutorial.php),
not only the significant gene list but also the summary
chart of the types of genetic alterations across all samples
can be created in an automatic manner.

Mining clinically actionable drug targets
The sixth section provides tables with known informa-
tion about gene-disease associations to inform clinicians
of the reported mutation spectra associated with heredi-
tary disorders or cancers. Because hundreds to thou-
sands of coding variants can be observed in an
individual’s cancer genome, prioritizing causative vari-
ants becomes a major challenge. VAReporter incorpo-
rates clinically relevant drug-gene interactions from the
Drug Gene Interaction Database [29] (DGIdb) that was
assembled through an extensive manual curation effort
from 27 sources, including seven resources specifically
focused on interactions linked to clinical trials. Users
can prioritize clinically actionable drug targets by sorting
scores that account for both the number of distinct
sources and distinct PubMed IDs. With the potential of
directly benefitting the patient, clinically actionable
genes are reported alongside their drug recommenda-
tions, which may assist physicians in providing the right
drug to the right patient.

Experimental validation
The seventh section offers nucleotide sequences that span
variant sites for the convenience of subsequent PCR
primer design and Sanger validation. Because the Cancer
Cell Line Encyclopedia (CCLE) project [58] has conducted
a detailed genetic characterization of approximately 1000
human cancer cell lines, and the CCLE recorded variants
are generally considered to be known mutations or veri-
fied variants, information or validation statuses on cancer-
specific somatic mutations are provided to facilitate the
prioritization of novel candidate mutations before experi-
mental validations are performed.

Identification of mislabeling errors
The final section was designed to fix the problem of
mislabeled specimens in clinical labs. Specimen labeling
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errors account for a large proportion of identification
problems during the sample collection process. Literature
reviews have revealed that specimen mislabeling occurs
commonly and introduces errors at rates of 0.1 to 6.5%
[59]. However, existing quality assessment tools [60] only
provide quality checks on sequencing data. These quality
assessment methods can only provide information about
the per-base sequence quality and laboratory contamin-
ation events and thus lack the ability to identify specimens
with labeling errors. To provide a quick view of whether
there are any problems in the data, the Pearson correla-
tions are calculated between the samples based on the
mutant allele frequencies extracted from VCF files and
rendered into a correlation matrix like that displayed in
Fig. 1. A scatter plot is used for the detailed inspection of
variant allele frequencies between samples (Fig. 1). The
user can easily identify specimen labeling errors and
incorrect T/N paired samples based on the concept that
these variants are less likely to change all their frequencies
from 50 to 100% through mutation events.

Comparison of the feature of different tools for variant
annotation and interpretation
Over the past few years, several packages have been
developed to meet the needs of variant annotation and
interpretation for massively parallel sequencing. Some tools
have been designed to handle the annotation task, while
other tools focus mainly on the filtering and interpretation
functionalities. Despite the maturation of current tools,
there still are to different extent technical weaknesses. VAR-
eporter aims to provide the most comprehensive set of

features to address all plausible issues. A more detailed
comparison of the current tools is summarized in Table 1.

Benchmarking
The VAReporter web server runs Apache 2.2.15 on a Centos
6.8 Linux machine housing single Intel i7-5820 K 3.30 GHz
processor and 64 GB RAM. To test the utility of this pipe-
line, 200 of variant calling files were randomly selected from
WES datasets of colorectal cancer through ICGC Data Portal
(https://dcc.icgc.org/api/v1/download?fn=/release_20/Proje
cts/COAD-US/simple_somatic_mutation.open.COAD-US.tsv
.gz). For the performance of VAReporter, please refer to
http://rnd.cgu.edu.tw/vareporter/tutorial.php?target=bench
mark.

Conclusions
In this paper, we proposed the application of VARepor-
ter to meet the requirements for all types of variome
studies, including individual diagnostics tests and large-
scale cohort studies ranging from single genes to WES/
WGS. VAReporter is dedicated to the incorporation of a
series of visual analytic and prediction modules for the
identification of cancer driver genes, the inspection of
mutational landscapes and spectra, the prioritization of
clinically actionable genes, and the identification of likely
mislabeled samples. Additionally, VAReporter also pro-
vides a portal for comparing in-house cancer genomic
data with those from TCGA/ICGA to support compre-
hensive comparisons of the mutational landscapes
between cohorts. Overall, VAReporter represents a
highly-integrated framework for the in-depth analyses of
genetic variants for all types of massively parallel

Table 1 Comparison of features of different tools for massive parallel sequencing annotation and interpretation

Tool VARepoter Vanno
[61]

Annotate-it
[55]

ANNOVAR
[10]

Anntools
[62]

KGGSeq
[63]

SeqAnt
[64]

TREAT
[65]

Oncotator
[33]

Availability Web Web Web Command
line

Command
line

Command
line

Web Command
line

Both

Tracking mislabeled specimen ✓

SNPs/1000Genomes/COSMIC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Indels ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cross-sample comparison ✓ ✓

Filters ✓ ✓ ✓ ✓ ✓ ✓

Domain information ✓ ✓

Dynamic summarized chart ✓ ✓

Gene Ontology ✓ ✓ ✓ ✓

Mutational Landscape ✓

OMIM ✓ ✓ ✓ ✓

Pathway visualization ✓ ✓ ✓ ✓

dbNSFP ✓ ✓ ✓ ✓

Sequence retrieval ✓ ✓ ✓

ICGC/TCGA comparison ✓ TCGA only
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sequencing applications with the aim of translating gen-
omic data into useful clinical insights and moving
toward precision medicine.

Availability and requirements
Project name: VAReporter.
Project home page: http://rnd.cgu.edu.tw/vareporter/
Operating system(s): Platform independent.
Programming language(s): R, PHP, Shell Script and

JavaScript.
Other requirements: Supported browsers Safari, Google

Chrome, Firefox, Internet Explorer 11 and Microsoft Edge.
License: GNU GPL version 3.
Any restrictions to use by non-academics: none
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DGIdb: Drug gene interaction database; GNU: General Public License;
HGMD: Human gene mutation database; ICGC: International Cancer Genome
Consortium; MAF: Mutation annotation format; OMIM: Online Mendelian
Inheritance in Man (OMIM) database; TCGA: The Cancer Genome Atlas;
VCF: Variant call format; WES: Whole-exome sequencing; WGS: Whole-
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