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Abstract

Background: Recent advances in single-molecule sequencing techniques, such as Nanopore sequencing, improved
read length, increased sequencing throughput, and enabled direct detection of DNA modifications through the
analysis of raw signals. These DNA modifications include naturally occurring modifications such as DNA methylations,
as well as modifications that are introduced by DNA damage or through synthetic modifications to one of the four
standard nucleotides.

Methods: To improve the performance of detecting DNA modifications, especially synthetically introduced modifications,
we developed a novel computational tool called NanoMod. NanoMod takes raw signal data on a pair of DNA samples
with and without modified bases, extracts signal intensities, performs base error correction based on a reference sequence,
and then identifies bases with modifications by comparing the distribution of raw signals between two samples, while
taking into account of the effects of neighboring bases on modified bases (“neighborhood effects”).

Results: We evaluated NanoMod on simulation data sets, based on different types of modifications and different
magnitudes of neighborhood effects, and found that NanoMod outperformed other methods in identifying
known modified bases. Additionally, we demonstrated superior performance of NanoMod on an E. coli data set
with 5mC (5-methylcytosine) modifications.

Conclusions: In summary, NanoMod is a flexible tool to detect DNA modifications with single-base resolution
from raw signals in Nanopore sequencing, and will facilitate large-scale functional genomics experiments that use
modified nucleotides.

Keywords: DNA modifications, Nanopore long-read data, Statistics analysis, Computational tool, Nanopore signal
annotation

Background
An important type of covalent modification in epigenetics is
DNA modification, where a chemical residue can be added
to one of the four standard nucleotides (A, C, G, T) in a
DNA molecule [1]. Those added residues can be methyl,
carboxyl, ethyl, formyl, hydroxymethyl, dimethyl groups and

other larger chemicals such as biotin and Idoxuridine,
resulting in various types of DNA modifications. DNA
modifications can exist naturally in genomes or can be
introduced synthetically into DNA molecules for research
purposes. For example, DNA methylation, a common and
well-studied type of modification, is formed when a methyl
group is added into the adenines or cytosines in a DNA
molecule, and different types of methylations exist de-
pending on which atomic position in an adenine or
cytosine is modified, such as 5-methylcytosine (5mC) and
N6-methyladenosine (6mA). Various naturally occurring
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DNA modifications have been widely discovered in all
kingdoms of life [2]. They play a critical role in regulating
cellular states and functions, controlling which genes are
turned on/off, dramatically affecting gene expression and
eventual production of proteins and their functions [3]. In
comparison, synthetically introduced DNA modifications
can mark specific positions in genome sequence, facilitating
functional genomics studies. For example, labeling specific
DNA sequence motifs by fluorescence signals in a genome
can facilitate optical mapping of genomes and the detection
of structural variants [4]. Furthermore, incorporation of
modified DNA bases during DNA synthesis can be used
to track patterns of DNA replication in a genome-wide
scale through optical mapping [5]. However, there are
currently no genome-wide methods that allow the detec-
tion of replicated and non-replicated DNA with base-pair
resolution.
Several different genomic techniques have been devel-

oped to detect DNA modifications, especially for DNA
methylations. For example, bisulfite sequencing is a widely
used method for detecting DNA methylations, where
unmethylated cytosines are converted to uracil and Illumina
short-read sequencing techniques are used to call methyl-
ated and unmethylated cytosines from sequence data [6].
However, the harsh process in bisulfite treatment results in
a large fraction of DNA fragmentation, which generally re-
quires large quantity of DNA and complicates the analysis
of highly variable, heterogeneous epigenome [3]. Immuno-
precipitation together with Illumina short-read sequencing
were also used to detect DNA or RNA modifications [7, 8],
but these methods can detect only broad genomic regions
with methylation without single base resolution. Further-
more, short read sequencing averages signals across differ-
ent cells, and does not answer the question whether two
reads mapping to adjacent locations in the genome are
from the same cell or from a different cell. Other studies
took advantage of PacBio single-molecule real-time (SMRT)
sequencing techniques to directly detect DNA modifica-
tions using the principle that the existence of DNA modifi-
cations would affect DNA polymerase kinetics during
SMRT sequencing [9–12]. Modifications in RNA can also
be detected using PacBio SMRT sequencing [13]. However,
there was reduced signal-to-noise ratio for 5mC modifi-
cations [14] and the improved enzymatic treatment of
5mC detection using Tet1 [15] also had incomplete and
context-dependent treatment [3]. A comprehensive review
can be found in [16].
Recent studies have explored the use of Oxford Nanopore

sequencing techniques for the detection of DNA modifica-
tions. In Nanopore sequencing, electric current change
occurs when a k-mer passes through a nanopore, and
different molecules (such as standard nucleotides and
their modified versions) generate different current change,
depending on sequence contexts. Several prior studies

[17, 18] have carefully analyzed ionic current signals
and demonstrated the feasibility of using Nanopore signals
to identify DNA modifications by comparing current levels
of methylated (that is, 5mC and 5-hydroxymethylcytosine
(5hmC)) DNA copies with current levels of unmethylated
DNA copies. They found that more C5-cytosine variants
(1 unmethylated cytosine and 4 cytosine modifications)
could also be identified using Nanopore sequencing
data with higher accuracy in a background of known
sequences [19]. Recently, three groups have quantified
the strength of using Nanopore platform for detecting
DNA modifications at a large scale [3, 20, 21]: Simpson
et. al. developed a HMM (hidden Markov model) to
distinguish 5mC from cytosine [3] in E. coli and Homo
sapiens and integrated it in nanopolish, but this method
cannot detect non-CpG methylations; Mclntyre et.al.
designed mCaller to improve the detection of 6mA and
tested the 6mA detection in mouse, E. coli and Lambda
phage DNA [20]; Rand et. al. analyzed three types of
cytosine (i.e., cytosine, 5mC and 5hmC) and also 6mA
in E. coli with different phases using HMM with a hier-
archical Dirichlet process, with an implementation in
the signalAlign package [21]. The results demonstrated
feasibility to achieve improved performance in detecting
DNA modifications [3, 20, 21], but they needed large prior
training datasets for HMM [2], and therefore cannot be
extended for detecting different types of modifications
(especially synthetically introduced modifications). Stoiber
et. al. proposed MoD-seq in the nanoraw package to identify
modifications in the absence of large prior training dataset
[2]. Here we developed NanoMod to achieve improved per-
formance in the detection of modified bases in the absence
of any training data, though NanoMod can optionally lever-
age existing training data to further improve performance.
NanoMod was designed for the detection of de novo

DNA modifications (for example, synthetically intro-
duced modifications). The inputs of NanoMod were a
group of reads from a DNA sample with modification
at specific bases and a group of reads from the matched
non-modified sample. The nucleotide sequence for the
sample is assumed to be known, that is, the reference
genome must be already known a priori. Currently,
within NanoMod, we used albacore for basecalling, and
then performed an indel error correction by aligning
the events of electric signals to a reference genome,
similar to the procedure implemented in nanoraw [2].
After that, two groups of electric signals for each genomic
position were compared using the Kolmogorov-Smirnov
test [22] in a per-base level to identify bases with signifi-
cantly different distributions of signals between the two
groups. Finally, weighted Stouffer’s method was used to
combine the effects of neighboring bases since some mod-
ifications (especially bulky ones) may have strong neighbor
effects that affect electric signals in neighboring
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non-modified bases. We evaluated NanoMod on simula-
tion data of modifications with different properties and on
a published E. coli methylation data set. NanoMod can be
accessed at https://github.com/WGLab/NanoMod.

Methods
Summary of NanoMod
The input of NanoMod is a dataset with two groups of
reads: one from a sample with DNA modifications at spe-
cific positions and the other is the matched non-modified
sample. The output is the ranked list of positions with
potential modifications, as shown in Fig. 1. NanoMod
does not require prior training data, but it cannot detect
the specific type of modification either. However, given a
large-scale data set with known modifications at known
positions, it is possible to use them as prior information to
train a model and analyze a new dataset with the same
type of modifications by NanoMod. The several steps
involved in NanoMod are illustrated below.

Basecalling by albacore
Nanopore raw data on a long read consists of a time
series of raw signals measured by the Oxford Nanopore
sequencer such as MinION or GridION. Each raw signal
is a digital integer value, a measure of the changes of
electric current when a k-mer (for example, 5-mer) passes
through nanopores. Since the acquisition frequency is
usually much higher than the speed of translocation of
bases passing through nanopores, the same k-mer may be
measured multiple times when it passes through the pore.
Since the speed of translocation is not constant, different

k-mers may have different numbers of measurements.
More importantly, errors and noises may exist during
signals acquisition on the k-mers, making the precise
interpretation of bases from raw signals more challenging.
In other words, given a set of electric signals when a DNA
molecule passes through the pore, it is not straightforward
to convert them directly into a series of nucleotides.
To generate bases from Nanopore signals, raw signals

are typically segmented into separate “events” in albacore
(Note that the latest version albacore uses raw signals for
basecalling, thus the segmentation step is no longer
needed). Each event consists of a consecutive series of raw
signals that significantly deviate from the two direct neigh-
boring events. The joint analysis of neighboring events
with multiple overlapping bases would finally generate a
sequence of bases with the highest probability, which is a
procedure that uses deep recurrent neural network as
implemented in albacore. The output of albacore contains
a read from a FAST5 file and the signal information of all
its bases.

Error correction and signal annotation
Long reads generated on Nanopore platform usually
have high error rates which may negatively affect down-
stream analysis. Since we assume that a reference genome
is already available (i.e. the true nucleotide identity is as-
sumed to be known in advance), to correct the base calling
errors, BWA-MEM [23] was used to align Nanopore long
reads to the known sequence, and then the indels (possible
basecalling errors) were corrected by a re-segmentation
process which is similar to the indel correction procedure

Fig. 1 The flowchart of NanoMod. The squares with dotted line refer to components that require external tools, while the dotted arrow line
suggests an alternative solution. This procedure is similar to nanoraw [2]
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in nanoraw [2]. An insertion error suggests that two
adjacent segmented events might be from the same
k-mer, and thus, one of the two neighbor events of the
insertion is merged with the insertion event for generating
a new neighbor event. A deletion error suggests that the
neighboring events of the deletion are be generated by
one additional k-mer, and thus, the several closest
neighbor events of the deletion are re-segmented so
that one additional event can be generated. When the
neighboring events to be re-segmented contain other
indels, the collection of events are first merged together
and then re-segmented so that proper events can be

generated. The number of neighboring events is automatic-
ally determined so that there are enough number of signal
measurements for each event after the re-segmentation.
Meanwhile, to address the issue of homopolymer error, if
there are Lr > 5 single nucleotide repeats in the sequence,
the middle Lr − 4 new positions would share a certain new
event after re-segmentation.
To illustrate this further, examples of the deletion correc-

tion procedure and insertion correction procedure are
shown in Figs. 2 and 3, respectively. In Fig. 2, there is a de-
letion. To generate the correct events in Fig. 2, we grouped
the deletion together (shadowed region in green) with one

Fig. 2 An example of the deletion correction procedure in NanoMod. X axis represents time of signal acquisition, and y axis denotes detected
signal values by Nanopore sequencers before standardization. ‘Albacore’ represents a sequence of bases called based on original events before
error correction, and ‘Known’ represents the known sequence. Each red horizontal bar represents an event split by vertical lines. ‘-’ in ‘Albacore’
suggests a deletion. The region shadowed in green shows the deleted bases together with one upstream and one downstream neighbors
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upstream adjacent neighbor and one downstream adjacent
neighbor. We then re-segmented those signals associated
with the bases in the shadowed region, and obtained one
additional event from the correction procedure. In
Fig. 3, we grouped the insertion event, one upstream ad-
jacent neighbor and one downstream adjacent neighbor
(shadowed region in yellow), and then re-segmented the
signals to generate two events from the correction
procedure.
After that, raw signals in a long read are normalized

using the median subtraction and the standardization by
averaged difference, and the normalized signal was limited
between − 5 to 5. Normalized signal information of each

position in a long read subsequently anchors a position in
the known reference sequence. This process is similar to
what is described in nanoraw [2].

Signal summarization for positions in the known
sequence
Based on the corrected alignment of a long read with
the known sequence, the normalized signal of a position
in a long read can be assigned to the corresponding
aligned position in the known sequence. Given two
groups of aligned long reads, each position in the known
sequence will have two groups of normalized signals,

Fig. 3 An example of the insertion correction procedure in NanoMod. The region shadowed in yellow shows the insertion base together with
one upstream and one downstream neighbors. For other notations, see Fig. 2
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one from reads of the sample with modifications and the
other from the matched non-modified sample.
Sometimes, a position may have a much smaller number

of associated reads in one sample versus the other sample,
possibly due to random fluctuation of coverage or due to
other issues (for example, PCR amplification biases). Thus,
those positions with limited data on signals in either group
are filtered and excluded from the downstream analysis,
based on user-specified criteria.

Detection of modifications
Assuming that signals of a base for a position in a known
sequence are generated from a specific but unknown
distribution with some noises. The signals for a position
of the known sequence in the two groups would be
highly similar to each other if the position and its closest
neighbors are not modified. However, if a position con-
tains a modified base, the signals of the two groups for the
position and/or its neighbors would be different, in term
of mean, standard deviation or shape. In other words, a
position has high probability to have a modified base if the
signals between the two groups for the position or its
neighbors are statistically different.
In NanoMod, Kolmogorov-Smirnov test is used for this

purpose, since our purpose is to detect de novo modifica-
tions and since the actual distribution of signal intensity
is not known a priori. Additionally, our experience and
manual examination showed that the distribution of
signal intensities at a modified position (or neighbors of
a modified position) can be of various different shapes,
such as increased/decreased mean, increased variance,
a change from unimodal to bimodal distribution, etc.
Kolmogorov-Smirnov test [22] is one of the most useful
nonparametric test methods to quantify the distance
between empirical distribution functions of two groups
of samples. It is sensitive to the differences in both the
locations and shapes of the two distribution functions.
The Kolmogorov-Smirnov statistic Dm, n is defined below.

F1;m xð Þ ¼ 1
m

Xm

i¼1

I −∞;x½ � Xið Þ

F2;n xð Þ ¼ 1
n

Xn

i¼1

I −∞;x½ � Xið Þ
Dm;n ¼ supx F1;m xð Þ−F2;n xð Þ�� ��

Where Xi is a signal, and I[−∞, x](Xi) is 1 if Xi ≤ x and 0
otherwise. F1, m(x) is for a group of m modified reads,
and F2, n(x) is for a group of n non-modified reads. sup
is a supremum function giving the least upper bound,
that is, the least difference which is not less than all
differences between the two F(x)s. P-values of the
Kolmogorov-Smirnov test indicate the probability of
the base at a position to be modified: the smaller
p-value is, the more likely the base is modified.

The combination of neighbor p-values
Measured signals in Nanopore data are usually for
k-mers, that is, a modification of a base at a specific pos-
ition may affect the signals of its neighbors. Therefore,
p-values of neighboring positions may also suggest the
presence of modifications. To take into account the
neighborhood effect, p-values within k closest positions
of a given position can be used to generate a combined
p-values. k could be specified by users and by default k = 2.
Weighted Stouffer’s method is used for this purpose, so
that the center position has higher weights, and the further
neighbors, the lesser the weights. The weighted Stouffer
statistic for k + 1 consecutive positions (k closest positions

plus the center position) is Z �
Pkþ1

i¼1
wi∅−1ð1−piÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkþ1

i¼1
w2
i

q where pi

is the probability of a position with a weight of wi and
∅−1(1 − pi) returns a Z score of pi with a standard normal
cumulative distribution function.
When a position has extremely small p-value, its neighbor-

ing positions tend to also have very small p-values, and these
positions will rank very high among all positions. Therefore,
the rank for a position gives redundant information on
whether a neighborhood region has a modification. We thus
used neighborhood-based ranking. In neighborhood-based
ranking, if a position has a higher rank, its neighbor
positions (within 1 or 2 base window size for both left
and right sides) with lower rank are not considered.

Simulation of nanopore long-read data
To evaluate how NanoMod works on modifications
with different properties, we generated several simulation
datasets where samples have multiple types of modifications.
In the simulation, we assumed that we had a sequence and
each 5-mer produces signals according to a normal distribu-
tion of the mean Ek and the standard deviation Δk plus some
random noises, then a basic simulation process for a given
sequence can be described as below:

1. Generate n signals for each 5-mer in the given
sequence, and sequentially merge all signals
together for the given sequence. n is a random
number which varies from 5 to 15.

2. Repeat Step 1 for 100 times, and treat them as raw
reads of a non-modified sample.

3. Sample h positions in the given sequence, and
assume that those bases are modified.

4. For each position hi with simulated modifications and
its neighborhood position hj, ‖j − i‖ ≤ 2, the mean
was increased by wi

a ¼ α=2k j−ik, and the standard
deviation was increased by wi

b ¼ β=ðk j−ik:+ 1). If a
position is adjacent to two modifications, hu and hv, its
wa ¼ wu

a þ wv
a and wb ¼ wu

b þ wv
b, otherwise if a
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position is only close to a modifications hi, wa ¼ wi
a

and wb ¼ wi
b. In this study, α was set to 0.2, while β

was set to 1.
5. For those positions with modifications or are

adjacent to the modified bases, generate m signals
according to a normal distribution of the mean
Ek ∗ (1 + wa) and the standard deviation Δk ∗ (1 + wb)
plus some random noises. Here Ek and Δk are the
mean and standard deviation of the corresponding
non-modified 5-mer, and m was a random number,
which varies from 5 to 15.

6. For other positions without modified bases and are
not in the vicinity of modified bases, generate m
signals as what has been done in Step 1.

7. Repeat Steps 4, 5 and 6 for 100 times, and treat
them as reads of a modified sample.

8. Run NanoMod on two groups of reads.
9. Repeat Steps 1 to 8 for 100 times so that 100 pairs

of datasets were used to evaluate NanoMod.

To simulate modifications with different properties,
we generated several types of simulation data sets below:

i) ‘MeanDif ’ simulation: The modification of a base
only affects signal mean of the 5-mer centered at
that base, i.e., wa > 0. Signal standard deviation
of the 5-mer has no change (wb = 0) and no
neighborhood effect (wa = 0 and wb = 0 for
non-modified bases).

ii) “STDDif ” simulation: The modification of a base
only affects signal standard deviation of the 5-mer
centered at that base, i.e., wb > 0. Signal mean of the
5-mer has no change (wa = 0) and no neighborhood
effect (wa = 0 and wb = 0 for non-modified bases).

iii) “Mean_STDDif” simulation: The modification of a
base affects both signal mean and standard deviation of
the 5-mer centered at that base, i.e., wa > 0 and wb > 0,

but no neighborhood effect (wa = 0 and wb= 0 for
non-modified bases).

iv) “Mean_STDDif_NE” simulation: The modification
of a base affects both signal mean and the standard
deviation of the 5-mer centered at that base, i.e.,
wa > 0 and wb > 0, and also adjacent neighbors, i.e.,
wa>0 and wb > 0 for adjacent non-modified 5-mer
of the modified bases.

A summary of these simulation data sets was also pro-
vided in Table 1.

A Nanopore long-read sequencing data set on E. coli
A publicly available Nanopore long-read sequencing data
of E. coli [3] was also used to evaluate NanoMod. This
dataset contains two groups of samples, one was generated
from PCR product where DNA modifications are not ex-
pected to be present, and the other was from PCR product
after enzymatic methylation with the M.SssI methyltrans-
ferase where almost all of cytosines in a CpG context were
converted to 5-mC [3]. These dataset was downloaded
from the European Nucleotide Archive under accession
number PRJEB13021 [3]. On this data set, the known E.
coli sample has ~ 4.64Mb nucleotides and ~ 693,586 CpG
sites, which were also included in Table 1.

Measurement for performance evaluation
To measure the performance of ranking modified bases
at the top among all bases, we used the percentiles of
0.1, 0.25, 0.5, 1, 2, 3, 4 and 5% to split the ranking into 9
categories for simulation data. Then, at each percentile,
we calculated precision (i.e., the number of correctly
identified modifications divided by the number of modi-
fication predictions at a percentile) and recall (i.e., the
number of correctly identified modifications divided by
the number of modifications) for correctly detecting the
known modifications, and generated precision-recall plot.

Table 1 A summary of simulation data and real data used in the analysis

Datasets #base in ref a #reads b #modification c Modification types

100 ‘MeanDif’ simulation datasets 6184-bp 200 in each dataset a group of 60
modifications

Only signal mean of modified bases was affected
without neighborhood effect.

100 ‘STDDif’ simulation datasets 6184-bp 200 in each dataset a group of 60
modifications

Only signal standard deviation of modified bases
was affected without neighborhood effect.

100 ‘Mean_STDDif’ simulation
datasets

6184-bp 200 in each dataset a group of 60
modifications

Both signal mean and standard deviation of modified
bases were affected without neighborhood effect.

100 ‘Mean_STDDif_NE’ simulation
datasets

6184-bp 200 in each dataset a group of 60
modifications

Both signal mean and standard deviation of modified
bases were affected with neighborhood effect.

E. coli [3] ~ 4.64 Mb 181,092 693,586 Methylation at all CpG sites
aThe number of bases in the reference sequence
bThe number of reads in a dataset. For simulation data, half of reads have modifications and the other half do not have modifications. For E. Coli, 111,213 reads
have methylations and 69,879 do not have methylations
cThe number of modifications in each dataset
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On the E. coli data set [3], we used the percentiles of 0.1,
0.25, 0.5, 1, 2, 3, 4, 5, 10, 15, 20, 25 and 30% to split the
ranking, because there are many methylated CpG sites.

Results
NanoMod was designed to detect candidate positions
with DNA modifications using raw electric signals generated
from Nanopore long-read sequencing techniques. Briefly,
two groups of reads, one containing modified bases and the
other without modified bases, were used as input of Nano-
Mod, and were then subject to basecalling, error correction
and signal annotation of positions in a known sequence.
After that, we ranked all positions for the presence of poten-
tial DNA modifications. NanoMod was evaluated on simu-
lation data where raw signals were simulated according
to the mean and standard deviation of 5-mer and on a
publicly available methylation data. The results are de-
scribed in detail below.

Evaluation on simulation data with multiple DNA
modifications in a sequence
We simulated 200 reads of a 6184-bp sequence (100 with
and 100 without modification on specific positions) on a
sample based on the means and standard deviations of

observed 5-mers (1024 distributions) from large-scale
Nanopore sequencing experiments. Each of the simu-
lated modification reads has 60 modifications randomly
dispersed across the whole sequence. DNA modifications
with different properties were simulations as described in
the Method section. Each type of modification was also
generated 100 times. The performance of NanoMod was
evaluated using precision and recall, as the percentile of
the rank which ranges from 0.1, 0.25, to 0.5%, 1, 2, 3, 4%
and then to 5%. Typically, when the percentile value
increases, the recall would increase. We compared the
performance of Mann–Whitney U test, Student’s T test
and Kolmogorov-Smirnov test on signals of single bases,
and also two combined statistics methods including
Stouffer’s method and Fisher’s method. The results
were shown in Fig. 4, where precision and recall were
the averaged values on 100 simulation data sets.
We found that on the MeanDif simulation (see the

Method section), Mann–Whitney U test and Student’s T
test worked better than Kolmogorov-Smirnov test, be-
cause the first two statistics methods were more powerful
to detect the change of the mean of 5-mers, yet signal
mean of modified bases were simulated on the MeanDif
simulation. However, for the other three simulations (the

Fig. 4 The average precision and recall rates of NanoMod on 100 simulation data sets. “U test”: Mann–Whitney U test, “T test”: Student’s T test,
“KS test”: Kolmogorov-Smirnov test, “Stouffer’s M”: Stouffer’s method and “Fisher’s M”: Fisher’s method. “MeanDif”: modified bases only have the
mean difference for signals from non-modified bases, “STDDif”: modified bases only have the difference of standard deviation for signals from
non-modified bases, “Mean_STDDif”: modified bases have the difference of the mean and standard deviation for signals from non-modified bases,
and “Mean_STDDif_NE”: the simulation of “Mean_STDDif” plus neighborhood effect. Precision was calculated using the number of correctly
identified modifications divided by the number of modification predictions at a percentile (i.e., 0.1, 0.25, 0.5, 1, 2, 3, 4 and 5%), and recall was
calculated using the number of correctly identified modifications divided by the number of modifications
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STDDif, Mean_STDDif, and Mean_STDDif_NE simula-
tions) where differences of standard deviation of 5-mers
were considered, Kolmogorov-Smirnov test significantly
outperformed Mann–Whitney U test and Student’s T test.
In particular, when only differences of standard deviation
of modified 5-mers were simulated, Mann–Whitney U
test and Student’s T test had no predictive power, as ex-
pected (refer to STDDif in Fig. 4). Since it is unusual for
DNA modifications to change only mean or variance of
signal intensity values, Kolmogorov-Smirnov test is used by
default in NanoMod for capturing all types of alterations in
signals.
When the two combined statistics methods were used,

the performance was worse than Kolmogorov-Smirnov test
for the MeanDif, STDDif and Mean_STDDif simulations.
This is because no neighborhood effects were considered in
these types of simulations. When neighborhood effects
were simulated in Mean_STDDif_NE, both Stouffer’s
Method and Fisher’s method improved the detection of
DNA modification. In particular, Stouffer’s method per-
formed much better than Fisher’s method, and 75% modi-
fications detected by Stouffer’s method were ranked at top.
This suggested that Stouffer’s method is preferred over
single-base Kolmogorov-Smirnov test when neighborhood
effects are present.

Evaluation on E. coli methylation data
To test the usefulness of NanoMod on synthetically intro-
duced modifications rather than simulated data, we also
evaluated NanoMod on a publicly available Nanopore long-
read sequencing data on E. coli [3] where CpG sites were
almost all methylated by the M.SssI methyltransferase.
Given a rank list of detected modifications, we calculated
precision and recall at each splitting percentile value for
evaluating five statistical methods (implemented in Nano-
Mod) and nanoraw. The results were shown in Fig. 5.
We found that the combined statistical testing methods

achieved better performance than the various methods on
single bases, indicating strong neighborhood effects
caused by the methylation. In particular, Fisher’s method
and Stouffer’s method (both implemented in NanoMod)
outperformed nanoraw especially to detect methylations
at the top rank (the smaller recall in Fig. 5), where the
precision of nanoraw was about 0.70 while the precision
of Nanomod was more than 0.9. (We note that nanoraw
itself incorporated Fisher’s method to combine p-values.)
Therefore, NanoMod significantly improved the perform-
ance to detect modified DNA bases.
In Fig. 5, the better performance of Fisher’s method

(implemented in NanoMod) is due to the fact that
the E. coli sequence has many modified regions

Fig. 5 The performance of modification detection using nanoraw and 5 statistics methods implemented in NanoMod. “U test”: Mann–Whitney U
test, “T test”: Student’s T test, “KS test”: Kolmogorov-Smirnov test, “Stouffer’s M”: Stouffer’s method and “Fisher’s M”: Fisher’s method. The percentile
definition was in the method section. Precision was calculated using the number of correctly identified modifications divided by the number of
modification predictions at a percentile (i.e., 0.1, 0.25, 0.5, 1, 2, 3, 4, 5% and then to 30%), and recall was calculated using the number of correctly
identified modifications divided by the number of modifications
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containing multiple CpG sites together. Note that the
original data set was generated on DNA molecules
treated with the M.SssI methyltransferase, where
nearly all of cytosines in a CpG context were con-
verted to 5-mC, yet in practice de novo modifications
in living organisms should occur only in a very minor
fraction of bases. Indeed, upon further examination,
among about half of CpG sites, we can found another
CpG sites within 5 bps. In such scenarios, Stouffer’s
method cannot work as well as Fisher’s method, because
Stouffer’s method give less weights to neighbors of a
methylation site.

Example plots of top ranked CpG sites
We used the top three ranked CpG sites detected by
NanoMod in the methylation data of E. coli to dem-
onstrate details of how NanoMod identified signal dif-
ference at methylated CpG sites. The results were
shown in Fig. 6. As can be seen from Fig. 6(a) and

(b), NanoMod generated the smallest p-values of the
position and its closest neighbors at the center of the
plot. In contrast, those positions, which were far from
the CpG sites (the both left and right sides of Fig. 6(a)
and the right side of Fig. 6(b), had much larger
p-values using either Kolmogorov-Smirnov test or the
Stouffer’s method. This observation demonstrated that
methylated bases changed the Nanopore signals. In
the left side of Fig. 6 (b) and (c), the methylated CpG
site in the center had smaller p-values. Meanwhile,
the left side of Fig. 6(b) and the left and right sides of
Fig. 6(c) also had p-values which were smaller than the
both left and right sides of Fig. 6(a) and the right side
of Fig. 6(b). This is because there are two additional
CpG sites on the right side of Fig. 6(b) and two additional
CpG sites on either side of Fig. 6(c). These observations
clearly demonstrated that NanoMod captured statistically
significant signals of modified bases between modified
reads and non-modified bases.

Fig. 6 Analysis of DNA methylation in E. coli using NanoMod. Data of the top three ranked modifications are shown. ‘p-value/Comb Pv’ is the
combined p-values calculated using the Stouffer’s method, ‘KS test/KS Pv’ is the p-value calculated using Kolmogorov-Smirnov test. ‘DS 1’
represents the non-methylated sample, and ‘DS 2’ represents the methylated sample. In each panel, the first line is the position of the base in the
reference genome followed by the base in reads. The position is based on the reference genome. For reverse strand, the 3′ to 5′ of reads is from
right to left while for forward strand of reads is from left to right

Liu et al. BMC Genomics 2019, 20(Suppl 1):78 Page 40 of 54



Discussion
The advent of Nanopore long-read sequencing technique
provides valuable opportunities to detect DNA modifica-
tions directly from signal intensity data at a large scale and
at low costs. Although several existing tools were developed
for the detection of DNA modifications using Nanopore
long-read data, they either need large training data [3, 20,
21] or require further tweaking of algorithms to improve
the detection of modifications [2]. In this study, we
proposed NanoMod to identify DNA modifications
using raw signals of reads generated by the Nanopore
long-read sequencing technique. NanoMod does not
require any training data so it can detect DNA modifica-
tions de novo. NanoMod achieved improved performance
when it was evaluated on simulation data with modifica-
tions of different properties and on an E. coli data set with
5mC (5-methylcytosine) modifications.
Compared with existing methods [3, 20, 21], one limi-

tation of NanoMod is that it is designed to detect DNA
modifications de novo and hence cannot predict the
specific type of modification (such as whether a modifi-
cation is 4mA or 5mC). However, given large-scale
training data sets, it is possible to generate prior models
in NanoMod to detect specific type of modifications.
For example, assume that a specific modification on a
base will impact the signals on a 7-bp window around the
base, then from a large training data set, we can generate
the signal distributions for all 7-mers surrounding the spe-
cific modification as the prior model. Long reads on a new
sample can be compared to the prior model as well as a
control model (from samples without modifications) to
detect whether the specific type of modification exist in
each position in the new sample.
Both nanoraw [2] and NanoMod require two groups

of reads, one from a sample with modifications and the
other from a matched control sample known to contain
no modifications. They both used the error correction
procedure from the alignment. After aligning long reads
to a known sequence, signals of bases in long reads can be
used to annotate the corresponding mapped positions.
However, Nanopore long reads have high insertion/deletion
errors especially when the bases are called from segmenta-
tion events (the latest version of albacore no longer use this
procedure, partly due to the inherent error in the segmen-
tation process). Thus, the indel correction step is crucial to
rescue signal annotations for many positions. In some spe-
cific cases, the reference sequence used in NanoMod may
contain true indels themselves (for example, when using E.
coli reference genome sequence in the analysis for an E. coli
strain with real indels at specific positions); in these scenar-
ios, it may be necessary to generate confidence sets of indel
calls on the sample first, then use a modified version of
reference sequence (by incorporating highly confident
indels) in the error correction procedure in NanoMod.

Integrated statistical testing is another critical component
of NanoMod, because different types of modifications can
result in different types of alterations on the signal distribu-
tions. Modifications might (i) only change signal mean of a
modified base, or (ii) only change variance of the signals for
a modified base, or (iii) result in the change of both signal
mean and standard deviation, or (iv) change the overall
shape of distribution such as from unimodal to bimodal, or
(v) affect several adjacent neighborhood positions, and so
on. Different statistical tests may have different power to
detect modifications based on the property of the modifica-
tions. For example, Student’s T test and Mann–Whitney U
test outperformed Kolmogorov-Smirnov test for the first
category of modifications, but had no prediction power for
the second category of modifications and had limited
power for the other categories of modifications (see Fig. 4).
Kolmogorov-Smirnov test outperformed other methods for
the second and third categories of modifications, and
achieved worse performance than the combined statistical
testing for the fifth category of modifications. In short,
Kolmogorov-Smirnov test on single bases and the com-
bined Stouffer’s method on multiple bases are better choice
for modification detections than Mann–Whitney U test
used in nanoraw [2] when data set is large enough. This
comparison was supported by additional preliminary
studies (data not shown) where NanoMod could achieve
much better prediction performance than nanoraw for
multiple different types of modifications that we intro-
duced synthetically into DNA molecules.
More accurate detection of DNA modifications, espe-

cially synthetically introduced modifications, has many
downstream applications. For example, accurate detec-
tion of DNA modifications can facilitate studies on the
role of epigenetic modifications [24] in different human
diseases such as cancer, and help identity candidate
genes where epigenetic switch is important for disease
progression. Similarly, incorporation of modified DNA
bases during DNA synthesis can be used to track patterns
of DNA replication [25, 26], so accurate detection of de
novo DNA modifications on newly synthesized DNA
strands enables genome-wide studies on DNA replication
timing and patterns.

Conclusion
We have developed a new computational tool, NanoMod,
for the detection of DNA modifications using Nanopore
long-read sequencing data. We evaluated NanoMod on
simulation data with different types of modifications and
also on a methylation data of E. coli. Our results suggested
that NanoMod achieved better performance than other
existing tools in detecting modifications without training
data. Therefore, NanoMod will greatly facilitate functional
genomics experiments for single base resolution mapping
of modified nucleotides in the genome.
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