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Abstract

Background: Closing gaps in draft genomes is an important post processing step in genome assembly. It leads to
more complete genomes, which benefits downstream genome analysis such as annotation and genotyping. Several
tools have been developed for gap closing. However, these tools don’t fully utilize the information contained in the
sequence data. For example, while it is known that many gaps are caused by genomic repeats, existing tools often
ignore many sequence reads that originate from a repeat-related gap.

Results: We compare GAPPadder with GapCloser, GapFiller and Sealer on one bacterial genome, human
chromosome 14 and the human whole genome with paired-end and mate-paired reads with both short and long
insert sizes. Empirical results show that GAPPadder can close more gaps than these existing tools. Besides closing
gaps on draft genomes assembled only from short sequence reads, GAPPadder can also be used to close gaps for
draft genomes assembled with long reads. We show GAPPadder can close gaps on the bed bug genome and the
Asian sea bass genome that are assembled partially and fully with long reads respectively. We also show GAPPadder is
efficient in both time and memory usage.

Conclusion: In this paper, we propose a new approach called GAPPadder for gap closing. The main advantage of
GAPPadder is that it uses more information in sequence data for gap closing. In particular, GAPPadder finds and uses
reads that originate from repeat-related gaps. We show that these repeat-associated reads are useful for gap closing,
even though they are ignored by all existing tools. Other main features of GAPPadder include utilizing the information
in sequence reads with different insert sizes and performing two-stage local assembly of gap sequences. The results
show that our method can close more gaps than several existing tools. The software tool, GAPPadder, is available for
download at https://github.com/Reedwarbler/GAPPadder.
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Introduction
With the fast developing high-throughput sequencing
technologies, de novo genome assembly from sequence
reads has become a major application of sequencing tech-
nologies. So far many genome assembly software tools
have been developed, including e.g. [1–4]. As sequence
data from many species is becoming increasingly more
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available, draft genomes of many species have been assem-
bled. Furthermore, more recent sequencing technologies
such as long reads sequencing are expected to lead to even
more assembled genomes with better quality than before.

Despite all these exciting developments, it is still chal-
lenging to obtain complete genomes with the current
technologies and assembly tools, especially at regions that
are highly repetitive or have low coverage. At present,
most assembled genomes contain gaps. For relatively
complex genomes, only draft genomes which usually con-
tain a large number of gaps are available. A more complete
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genome is highly desirable since it leads to better anno-
tation, less genotyping error and easier identification of
causal variation associated with traits [5] than a genome
with many gaps. For example, 45 new avian species have
been sequenced and assembled recently in a comparative
study of avian genomes [6]. Draft genomes of 25 out of
these 45 species have average N50 around 48 kb, which
indicates the draft genomes are fragmented with many
gaps. About 3000 genes are likely missing or only partially
annotated due to gaps. As a result, only 70 to 80% of the
entire catalog of avian genes can be predicted, which may
cause bias in downstream analysis.

With the development of the third generation sequenc-
ing technology, long reads from different platforms, like
Pacific Biosciences, Illumina TruSeq, Oxford Nanopore,
have been developed. With the help of these new tech-
nologies, the quality of the assembled draft genomes is
greatly improved [7, 8]. In general, long reads are used in
two ways to help to improve the draft genome assembly:
1) Long reads are used to scaffold the contigs and fill the
gaps on the draft genomes assembled from high coverage
short reads. 2) Long reads are directly used to assemble
the draft genomes. Due to the high error rates of long
reads, read depth is required to be high to guarantee the
quality of genomes assembled directly from long reads,
and thus sequencing cost can be high. In comparison, for
scaffolding contigs and closing gaps with long reads, the
coverage is usually not required to be very high. However,
there are still gaps on the draft genomes even assem-
bled with long reads, especially for draft genomes initially
assembled high coverage short reads and then improved
with long reads. Thus, it is still needed to close the gaps
on draft genomes assembled with long reads. At present,
short sequence reads are still the most available sequence
reads. Thus, it is important to develop methods that can
close gaps on draft genomes with short sequence reads
that are readily available.

Several tools have been developed for closing gaps on
draft genomes with short reads. GapCloser is a stand-
alone tool in the SOAPdenovo [9] package. It performs
several iterations of base extension steps using the reads
aligned to specific regions. GapFiller [10] implements
a method that finds read pairs with one end aligned
within a contig and its mate partially aligned to the draft
genome and partially located in a region identified as a
gap. These partially aligned reads are used to close the
gap through sequence overlapping. Sealer [11] generates
pseudo long reads from paired-end sequence reads by fill-
ing the unknown sequences between read pairs using the
redundancy in sequence coverage, and then the pseudo
long reads are used to fill the gaps. While these approaches
have been used to close gaps in assembled genomes, these
tools still cannot close many gaps (especially those origi-
nated in more complex genomic regions, e.g. repeats).

In this paper, we develop a new approach called GAP-
Padder for closing gaps on draft genomes. Similar to tools
such as GapCloser and GapFiller, GAPPadder also per-
forms local assembly from reads that originate from gap
regions. The following are the main features of GAP-
Padder and also differences between GAPPadder and the
existing methods.

• GAPPadder uses more information about the gaps
contained in sequence reads than existing methods.
GAPPadder collects more reads relevant for gap
closing, especially repeat-associated reads which are
ignored by all the existing tools. Moreover,
GAPPadder collects higher quality reads by utilizing
more information with different insert sizes of
paired-end (PM) and mate-pair (MP) reads.

• GAPPadder uses a different local assembly method
for gap closing compared with existing methods.
Existing methods often rely on local extension of
contigs. GAPPadder, instead, performs a two-stage
local assembly: it first assembles contigs in the gap
and then generates higher quality local assembly of
gap sequences by merging contigs.

We compare GAPPadder with existing approaches using
real sequence data from staphylococcus aureus, human
chromosome 14 from GAGE [12], and whole genome
sequencing data (with PE and MP reads) of one human
individual NA12878 from Illumina. These genomes are
assembled from short reads only. We show GAPPad-
der can close more gaps than GapCloser, GapFiller and
Sealer with these short sequence reads. Besides these
draft genomes assembled with only from short reads, we
also compare GAPPadder with GapCloser on two draft
genomes assembled with long reads: the bed bug draft
genome assembled with hybrid short and long reads and
the Asian sea bass draft genome directly assembled from
long reads. We show many gaps can be fully closed and
extended by GAPPadder and GapCloser, and GAPPad-
der closes much more than GapCloser on the hybrid
assembled bed bug genome.

Gaps in draft genomes
De novo assembly of reads produces contigs. Contigs are
then further linked with paired-end (PE) or mate-pair
(MP) reads to form scaffolds. Scaffolds contain multi-
ple gaps, whose lengths are estimated from the insert
sizes of PE or MP reads. In general, extension of con-
tigs stops at sites with repetitive regions, heterozygous
alleles, sequencing errors or low read coverage [13, 14].
Gaps can be mainly classified to three types. The most
common type is the repeat-associated gap. Repeat is a
piece of DNA which may have multiple copies in the
genome. Note that these copies may differ slightly from
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each other. There are different types of repeats, includ-
ing LINE, SINE, LTR elements, DNA transposon, satel-
lites, etc. Repeat-associated gaps can be categorized to
be satellite-associated, dispersed low divergent repeats-
associated, and tandem repeats-associated. We show the
results of masking the gap regions on chromosome 14 of
human using RepeatMasker [15] in Fig. 1. To get the gap
regions of the draft genome of chromosome 14, which is
assembled by ALLPATHS-LG and released in GAGE, we
align the flanking regions to the reference genome, and
thus get the benchmarked gap sequences (i.e. sequences
from the reference genome that are missing in the draft
genome). One can see that over 90% of the gaps are
masked as repeat-associated gaps. Therefore, to develop
gap closing methods, it can be very useful to integrate the
information come from repeats.

Results
We compare GAPPadder with GapCloser, GapFiller and
Sealer on datasets of three draft genomes of different
sizes and with known reference sequences: staphylococ-
cus aureus, human chromosome 14 and human whole
genome. Data of staphylococcus aureus and human chro-
mosome 14 are from GAGE [12]. We choose the draft
genome assembled by ALLPATH-LG. For staphylococ-
cus aureus, two groups of high coverage data of different
insert sizes are used. While for the human chromosome
14, three groups of data of different insert sizes are used.
The data with long jump library is of very low cover-
age. The human whole genome (NA12878) high-coverage
PE and MP sequence reads are from Illumina. The draft
genome of NA12878 is released in [16], which is assem-
bled by ALLPATH-LG. Detailed information of the four
datasets are given in the Additional file 1.

As there are high quality reference genomes for staphy-
lococcus aureus and human, we can benchmark each

closed gap sequences against the “true” sequences from
the reference genome. To get the “true” gap sequences, for
each gap we first collect the left and right flanking regions
(by default 300 bp each) from the assembled draft genome.
If two gaps are close to each other (distance smaller than
300 bp), then the whole middle region between the two
gaps are used as the flanking region. Then, we align the
flanking regions to the reference genome using BWA. For
one gap, if both the left and right flanking regions are
unique (with mapping quality 60) and fully (allow 15 bp
soft-clip at the breakpoints) mapped, and the mapping
orientation are same, then the sequence between the two
aligned flanking regions is viewed as “true” gap sequence.
In this way, 23, 3934, and 220,318 “true” gap sequences are
collected for staphylococcus aureus, human chromosome
14 and human whole genome respectively.

To validate whether the gap sequences are correct or
not, for each gap we first align the two flanking regions to
the new scaffold to extract the “closed” sequence using the
same way as described above. Then, we align the “closed”
gap sequence to its related “true” gap sequence, and if the
gap sequence can be well aligned (by default allow 15 bp
soft-clip on both ends) to the “true” gap sequence, then
we view the gap is correctly closed. Note, if the gap is not
fully closed, but only extended, we require the extended
sequences must be well aligned (also allow 15 bp soft-clip)
to the “true” gap sequence.

Comparison with existing tools
In Table 1, we show the results of GAPPadder and the
other three tools on staphylococcus aureus, human chro-
mosome 14 and human whole genome. Note that Sealer
only runs well on short insert size data. For data with
very long insert size, it can be extremely slow. So when
running Sealer on the human whole genome data, we
do not use the long insert size data. Detailed commands

Fig. 1 Percentage of the masked gap sequences of each type of repeats. 3934 gaps are extracted from the draft genome of human chromosome 14
that is released in GAGE. By aligning the flanking sequences to the human reference, we extract the gap sequences. We use RepeatMasker to get
the types of repeats (e.g. LINE, SINE, LTR elements, etc) of these gap sequences. One gap may be masked to multiple repeat types. The left part
shows the percentage of masked gaps for each repeat type. The right part shows the percentage of masked bases for each repeat type
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Table 1 Comparison of the four tools on three datasets: S.
aureus, human chromosome 14 and whole human genome for
NA12878, whose draft genomes have 23, 3934, and 220,318 gaps
respectively

Species Gap Num. Methods Gaps fully closed

S. aureus 23 GAPPadder 9

GapCloser 2

GapFiller 1

Sealer 2

H. chrom 14 3934 GAPPadder 1670

GapCloser 1184

GapFiller 732

Sealer 559

NA12878 220,318 GAPPadder 130,371

GapCloser Out of memory

GapFiller Not finished (After 725 hrs)

Sealer 110,876

Overall, GAPPadder closes more gaps than the other three tools on the these
datasets

and parameters of running each tool are provided in the
Additional file 1. The results show that GAPPadder out-
performs the other three tools on the three datasets. For
S. aureus and H. chromosome 14 datasets, GAPPadder
closes more gaps than the other three tools. For the human
whole genome datasets, GapCloser runs out of memory
(on a server with 256 G memory) and GapFiller did not
finish after running for more than 725 h. In compari-
son, GAPPadder and Sealer respectively close 130,371 and
110,876 gaps out of the 220,318 gaps.

To show the effect of the repeat-associated reads,
we run a revised version of GAPPadder that does not
use these repeat-associated reads for gap filling. This
“streamlined” version of GAPPadder closes 1103 gaps,
much less than the original version of GAPPadder, which
closes 1670 gaps. This indicates that repeat-associated
reads are indeed useful for gap closing.

In Fig. 2, we compare the four tools on different ranges
of gap lengths of the closed gaps. The left part shows
the distribution of gap length of all the 3934 gaps on the
draft genome of human chromosome 14. Over 80% of the
gaps are shorter than 1k, and over 95% of the gaps are
smaller than 2k. The right part shows the number of fully
closed gaps of the four tools on different ranges of gap
length. GAPPadder significantly outperforms the other
three tools on gaps shorter than 1 kb, while GAPCloser
performs slightly better on gaps longer than 1 kb.

Comparison on data with different insert sizes
For assembling draft genomes, usually data of different
insert sizes are provided. Paired-end reads of long insert

size or mate-paired reads can be helpful for closing
(especially long) gaps on the draft genomes. Because of
the different strategies used, the performance of different
tools differs significantly on datasets of different insert
sizes. To evaluate the performance of the four tools on dif-
ferent insert size datasets, we compare the four tools on
the human chromosome 14 datasets with only short insert
size data, only long insert size data, and combined data
with short and long insert size. The results are shown In
Table 2. On the data with short insert sizes, GapCloser
performs the best. But with only long inset size data, GAP-
Padder significantly outperforms the other three tools. For
comparison on the combined dataset with reads of both
short and long insert sizes, GAPPadder performs the best.

Time and memory usage
All four tools are benchmarked on a 64-core server with
AMD 6380 CPU @2.499 GHz and 256 GB RAM. To
compare the time and memory usage of these four tools,
we benchmark the four tools on the human chromosome
14 datasets. When running Sealer, we set the maximum
allowed memory to 40 G, and other parameters are set as
suggested by its manual. For GapCloser, we use the default
parameters. For GapFiller, the parameter for the number
of iterations to run is set to be 5. See the Additional file 1
for more detailed information of running the tools. In
terms of running time, GapCloser, GapFiller, Sealer and
GAPPadder take 30 m 32 s, 424 m 47 s, 160 m 23 s,
and 85 m 12 s respectively. For memory usage, GapCloser
takes 7.8 G at the peak, Sealer takes 40 G (as set in the
parameter), while GapFiller and GAPPadder take less than
2 G memory. Therefore, GapCloser is the most efficient
one among the four tools, but it requires more memory.
GAPPadder is slightly slower than GapCloser but uses
much less memory.

Closing gaps on draft genomes assembled partially or fully
with long reads
Although long reads help to improve the draft genome
assembly, large number of gaps may still remain in the
draft genome, especially for the draft genome originally
assembled from short reads and then improved from
long reads. To evaluate the performance of GAPPadder
on draft genomes that are partially and fully assem-
bled with long reads, we run GAPPadder on two draft
genomes: 1) The bed bug cimex lectularius draft genome
(released in [17]) which is assembled with hybrid data
of both short and long reads, 2) Asian sea bass draft
genome (released in [18]) that is purely assembled from
high coverage PacBio long reads. The bed bug genome
is initially assembled with 73× coverage Illumina short
reads using ALLPATHS-LG [1] assembler. And then Illu-
mina Moleculo kit is used to sequence long reads with
average length 3500 bp, which is used to improve the
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Fig. 2 Comparison on different gap length: The left part shows the distribution of gap length of all the 3934 gaps on the draft genome of human
chromosome 14. Over 80% of the gaps are smaller than 1 kb, and over 95% of the gaps are smaller than 2 kb. The right part shows the number of
fully closed gaps of the four tools on different ranges of gap length

initial assembled draft genome. However, even for the
improved draft genome, there are still many gaps. In the
final released assembled genome, there are 118,821 gaps,
out of which 97,251 gaps are larger than 100 bp. We run
GAPPadder and GapCloser to close the gaps. As some
gaps are really small (just several bases), and to evalu-
ate the power of different tools we only focus on these
97,251 gaps that are larger than 100 bp. Three sets of Illu-
mina short reads with insert sizes of 185, 367, and 3000 bp
and coverage of 34×, 12×, and 7× respectively are used
for gap closing. GAPPadder reports 19,476 gaps are fully
closed and 52,879 gaps are partially extended, while Gap-
Closer reports 3299 and 2417 are fully closed and partially
extended respectively. To validate the fully closed and par-
tially extended gaps, for each closed gap sequence, we
extract the left and right flank regions of length 150 bp
each, and concatenate them with the gap sequence. Then
we align the reads back to the concatenated sequences and
check whether there are reads clipped at the joint regions.
If enough (by default 10) reads are fully mapped at the
joint regions and over 95% of the bases (for extended ones,

Table 2 Comparison of the four tools on different insert size data

Methods Insert size

180 2283 to 2803 Combined

GAPPadder 862 1481 1670

GapCloser 1142 216 1184

GapFiller 484 173 732

Sealer 468 308 559

Three groups of data of insert sizes (180, about 2500 and about 35 kb) of human
chromosome 14, and their combination are used for comparison. Results are given
for reads with 180 bp insert size only, and reads with 2500 bp insert size only and
combined reads (with 180 bp, 2500 bp and 35 kb insert sizes)

excluding the not-filled regions) of each sequence at least
have 10 reads covered, then we call this gap is validated.
Otherwise it is not. For GAPPadder, 14,925 fully closed
gaps and 37,802 partially extended gaps are validated in
this way. While for GapCloser, 2737 fully closed and 20
partially extended gaps are validated. In Table 3 we show
the comparison.

For the Asian sea bass draft genome, it is primarily
assembled from 90x PacBio data and then scaffolded using
transcriptome data. From the release draft genome, 110
gaps are extracted and all of them are larger than 100 bp.
We run GAPPadder and GapCloser to close the gaps.
Two sets of Illumina short paired end reads with insert
sizes of 500 bp and 750 bp, read length 100 bp, and total
coverage 80x are used for closing the gaps on the draft
genome. For GAPPadder, 14 and 47 gaps are reported to
be fully closed and partially extended respectively. We use
the same validation approach as used in validating the gap
sequences of the bed bug genome, and 5 fully closed and
13 partially extended gaps are validated in this way. For
GapCloser, 46 and 41 are reported to be fully closed and

Table 3 Evaluation of GAPPadder and GapCloser on closing
gaps for bed bug draft genome

Category GAPPadder GapCloser

Fully closed Reported 19,476 3299

Validated 14,925 2737

Extended Reported 52,879 2417

Validated 37,802 20

The draft genome is initially assembled with high coverage short reads, and then
improved with long reads. GAPPadder fully closes 14,925 out of reported 19,476
gaps and extends 37,802 out of reported 52,879 gaps. As a comparison, GapCloser
fully closes 2737 (3299 are reported) gaps and extends 20 (2417 are reported) gaps
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partially extended respectively, and 6 and 1 out of the fully
closed and partially extended gaps are validated by the the
same way.

Discussion and conclusions
In this paper, we propose a sensitive approach for closing
gaps on draft genomes with paired-end reads and mate-
paired reads. Empirical results show that when both short
and long insert size data are provided, our tool GAPPad-
der outperforms GapCloser, GapFiller and Sealer. This is
likely due to the fact that GAPPadder uses more reads
(especially the repeat-associated reads) to close the gaps
which are ignored by all other tools. Besides that, GAP-
Padder takes advantage of long insert size data and per-
forms a two-stage local assembly approach to construct
more complete gap sequences. In Fig. 3, we show the
comparison of the four tools on closing one example gap,
which is about 770 bp long on chromosome 14. Gap-
Closer only extends a little on the left part. GapFiller
and Sealer even have no extension at all, and thus are
not shown in the UCSC Genome Browser. In compari-
son, GAPPadder fully closes the gap. One possible reason
is the gap is composed by part of a SINE copy and part
of a LINE copy as shown in the UCSC genome browser.
The repeat-associated reads used by GAPPadder provide
enough coverage for assembling the gap region.

However, when only using reads with short insert size
for closing the gaps on human chromosome 14, GAPPad-
der does not perform as well as GapCloser. One reason is
that GAPPadder relies on the contigs constructed in the
first step to collect both unmapped reads. If the insert
size is small, then the collected reads mainly come from
the two ends of the gap, and thus the middle part will

be difficult to construct in the following steps. In com-
parison, GapCloser uses an iterative strategy which can
gradually extend the contigs. This indicates that tools
are designed with different strategies, and users should
choose a tool based on the kind of data.

For draft genomes directly assembled from high cover-
age long reads, often the draft genomes contain far less
gaps than those assembled from short reads. One reason
is for less complex genomes, chromosome level contigs
are directly assembled which do not need to do scaffold
and gap closing. Second, very little scaffolding tools are
developed for these near completed draft genomes, thus
even gaps exists, they are not reported in the released draft
genomes. Nonetheless, we observe that there can still be
gaps within draft genomes that are directly assembled
from long reads. Our results indicate that our GAPPad-
der tool can still be useful in the age of long reads genome
assembly.

One possible future research on gap filling is incorpo-
rating long reads to close the gaps on the draft genomes.
Direct assembly of long reads usually requires the cov-
erage should be high enough to get a high quality draft
genome, which usually leads to high sequencing cost.
Although low coverage of long reads cannot provides a
high quality draft genome, it may help to close the gaps on
the draft genome generated from short reads, especially
for the long duplicate-associated or repeat-associated
gaps.

Methods
High level approach
In this paper, we propose GAPPadder for closing gaps on
draft genomes, which greatly improves the sensitivity. The

Fig. 3 One example gap closed by GAPPadder but failed by other three tools: one gap on the chromosome 14 draft genome is fully closed by
GAPPadder, but other three tools fail to fully close it. The gap is about 770 bp long, and from the UCSC genome browser we can see it is composed
by part of a SINE copy and part of a LINE copy. GapCloser only extends by a short length on the left part. GapFiller and Sealer fail to fill this gap
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key idea is that GAPPadder utilizes more information (i.e.
relevant reads originated from the gaps) contained in the
sequence reads for gap filling. For example, GAPPadder
collects the repeat-associated reads, which are ignored by
all existing approaches. Our main observation is that reads
originated from repeat-associated gaps may be mapped to
other copies of the same repeat contained in the genome.
Therefore, the two ends of these read pairs may be discor-
dantly mapped (i.e. mapping positions of the two ends are
much farther away from each other than expected on the
same chromosome or even located at different chromo-
somes). GAPPadder also uses multi-mapped reads near
these reads because they may also be useful for the assem-
bly of gap sequences, especially when the collected reads
are of low coverage. GAPPadder utilizes the long insert
size reads or mate-pair (MP) reads to collect high qual-
ity reads. Another important step in GAPPadder is that
it performs two-stage local assembly for each gap: it first
assembles contigs from relevant reads in the gap; then it
merges these contigs to construct long gap sequences. The
main observation is that assembled gap sequences usu-
ally are in the form of relatively short segments (contigs)
due to positions with errors or variations. These contigs
overlap but are usually not assembled by standard assem-
bly methods into longer sequences due to mismatches
between contigs. The merging step implemented in GAP-
Padder allows the merging of these contigs to form long
(sometimes complete) gap sequences.

Relevant reads originated from gap regions
Similar to several existing methods, GAPPadder starts by
finding relevant reads that originate within each gap. In
this paper, we are mainly concerned with paired-end (PE)
or mate-paired (MP) reads. When aligning the reads back
to the draft genome using tools e.g. BWA [19], four types
of read pairs can be considered to originate from the gap
regions. All these read pairs are located near the gap under
consideration. This is shown in Fig. 4.

(i) One end mapped and its mate unmapped. For a read
pair, suppose the left (respectively right) read is aligned
(by default with mapping quality greater than 30), and the
alignment position is within m + 3v distance from the left
(respectively right) breakpoint of the gap. Then this read
is called the anchored read. Here m and v are the mean
and standard derivation of insert size respectively. Further
suppose the mate of the anchored read is unmapped. Then
the unmapped read comes from the gap region with high
probability.

(ii) Discordant reads caused by repeats or duplicate seg-
ments. If one read of a pair comes from the gap region,
then when aligning the read back to the draft genome,
this read will be unmapped. However, if the gap region
comes from a repeat region and there are other copies of
the repeat that are already included in the draft genome,

then this read may be aligned to another repeat copy. As a
result, both ends of the pair will be mapped, but become
discordant (with insert size outside the range [ m−3v, m+
3v]) or are mapped to different chromosomes. This kind
of reads may originate within the gap and may help the
assembly of gap sequences. Besides the discordant reads,
multi-mapped reads (by default with mapping quality 0)
near the discordant reads are also useful for assembly.
This is because if the gap is repeat-associated, these multi-
mapped reads from the copy of the same repeat can be
useful, especially when collected reads have low coverage.

(iii) Reads clipped at the breakpoints of the gaps.
For the reads overlapping the breakpoints, parts of the
reads will be aligned to the draft genome, and the
other parts will be clipped. Clipped reads are useful to
extend the assembled regions from collected reads to
both sides of the flanking regions of gaps. This allows
the assembled gap sequences to be positioned in the
draft genome.

(iv) Both reads of a pair are unmapped reads. When the
gap is long enough, then both ends of a pair likely originate
within the gap region. As a result, when aligning reads
back to the draft genome, both reads will be unmapped.
Such unmapped reads may play an important role if the
insert size is short and the gap is long. In this situation, it
is difficult to find anchored reads. As a result, the middle
part of the gap will not be filled using reads with anchor.
We note that unmapped reads may be just due to reads
errors and thus irrelevant for gap filling. The challenge
is that we do not know which unmapped reads indeed
originate from some gap, and if so, which gap they origi-
nate. We will explain how to address this problem in the
following sections.

Most existing tools use only the type-iii reads, while
GAPPadder uses all four types of reads.

Gap closing procedure
As shown in Fig. 4, there are five steps of GAPPadder. We
process each gap in the draft genome independently. First,
we collect the first three types of reads that may origi-
nate from a gap. Second, we perform local assembly of the
collected reads of each gap. This generates (usually short)
contigs that are segments of the gap sequences. Then,
we align the unmapped reads to the constructed contigs
and collect the aligned (also their mate) reads. We merge
the contigs to form more complete assembly using a cus-
tomized designed algorithm. Here, the high quality reads
are treated as short contigs and is used for contig merging.
Finally, we fill the gaps by aligning the merged contigs to
the flanking regions of the gaps.

Collection of gap-associated reads

GAPPadder allows PE or MP reads of different insert
sizes. For each group of reads of one specific insert size,
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Fig. 4 Pipeline of GAPPadder for closing gaps: a Align reads back to the draft genome and collect the first three types of relevant reads originated
from the gaps. b Perform local assembly with the collected reads, and merge contigs overlapping with each other to generate more complete gap
sequences. c Align the unmapped reads to the constructed contigs of each gap, and collect the aligned (also their mate) reads. d Merge the contigs
to form more complete assembly. e Gap sequences are obtained by aligning the merged contigs to the flanking regions of the gaps

we collect reads separately and then all these reads are
used together for gap closing. To collect reads for one spe-
cific insert size, we first align the reads back to the draft
genome using BWA.

We search for type-i reads that are mapped within m +
3v + l (where l is the read length) distance from the break-
points, and their mate reads are unmapped. The mapped
reads are used as anchor, and the unmapped mate reads
are used for gap closing. Here we consider all possible
anchor reads, even when their mapping quality scores
are low.

For type-ii reads, we search for reads in the region [ b1 −
m − 3v − l, b2 + m + 3v + l], where b1 and b2 are the
breakpoint positions of the gap. If a read A falls in this
region but its mate read B is aligned outside the region,
and also the mapping quality of read B is 0, then read B
is considered to be type-ii. Also, suppose read B is aligned
at position p, then we also use the reads whose mapping
quality is 0 and aligned within the region [ p − d/2, p +
d/2], where d is the gap length. This is because a read with
mapping quality 0 is with high probability to be a multi-
mapped read.

For type-iii reads, the assembly quality at the end of con-
tigs is usually low. Thus, when collecting reads clipped at
breakpoints, we set some slack value (by default 20 bp)
to allow some distance between the clip position and the
breakpoints of the gaps. Note that one read may satisfy the

conditions of more than one gaps. And if this happens, we
let the read to be used for all the related gaps.

Out of these collected reads, we define those reads
whose mates (anchor reads) are uniquely mapped as high
quality reads. Here, if the mapping quality of a read is
equal to 60, then the read is considered to be uniquely
mapped. In other words, we believe that with high proba-
bility these reads are from the specific gap region. We also
collect the unmapped reads which will be used in the third
step.

Local assembly of collected reads
This is the first stage of our two-stage local assembly
approach. Once the reads are collected, we perform local
assembly with the reads of each gap. KMC2 [20] is used
to convert the reads to k-mers, then Velvet [4] is used to
assemble the kmers to contigs. This step is similar to the
repeat assembly approach developed in [21].

Collection of type-iv reads with the constructed contigs

From the previous steps, we construct contigs for each
gap from the collected reads. If the insert size is shorter
than the gap length, then both reads of a read pair may be
unmapped. Such unmapped reads can be useful to con-
struct longer contigs. This is still important even there are
both paired-end and mate-pair reads of different insert
sizes, and the insert sizes are longer than the gap sizes.
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Mainly because the coverage of mate-pair reads is usually
low. As usually the mate-pair reads are initially used for
scaffolding, but not for gap filling, and thus the coverage
is usually not high, because of which the regions will still
be constructed to pieces. So it is quite necessary to collect
the both unmapped reads.

The challenge here is that we do not know which read
pair comes from which gap, since they are unmapped.
To solve this problem, we first collect all the unmapped
reads. Then we align all the unmapped reads to the con-
structed contigs of each gap using BWA. By collecting
the mapped reads, we collect the originally unmapped
reads (now aligned to contigs of each gap) and their mate
reads for each gap. Note that after the first-round assem-
bly, we exclude those gaps that have been fully closed (see
“Finishing gap sequence assembly” section for details)
from consideration. Then we only collect the unmapped
reads for those not fully constructed.

Merging contigs
This is the second stage of the two-stage local assembly
approach. The previous steps often generate more than
one contigs for each gap. In order to obtain a complete gap
sequence, GAPPadder performs a contig merging step.
Similar to the general genome assembly problem, contig
merging can be performed based on prefix-suffix overlap
between two contigs. We use the contig merging proce-
dure in [21], which was originally developed for merging
contigs for the repeat construction problem. Refer to [21]
for more details on this procedure. As mentioned in “High
level approach” section, for some regions of gaps, even
though we have collected reads that fall into these regions,
there may not be enough reads covering these regions. As
a result, when we perform local assembly for these gaps,
only short contigs (with little overlap with other contigs)
are obtained for these regions, and usually they do not
have overlap. A simple solution is that we can view these
reads as contigs and include them in the contigs merging
step. To improve the merging efficiency and accuracy, we
only use the high quality (the mate reads are uniquely
mapped) reads that cannot be aligned to the constructed
contigs.

Finishing gap sequence assembly
After contig merging, for each gap, there can be several
constructed sequences. Most of these sequences are
pieces of the repeats or wrongly assembled. So we need to
identify the right one. We first check whether the whole
gap is constructed. To identify the fully constructed ones,
for each gap we get the two flanking sequences of the
gap (by default 300 bp for each). Then we align the two
flanking sequences to the constructed contigs of the gap.
If the left flanking sequence overlap with the left (right)
side of the contig and the right (left) flanking sequence

overlap with the right (left) side of the contig, and the
two overlaps are of the same orientation (both are reverse
complementary or both not), then we choose the con-
tig as the gap sequence. If more than one contigs are
found, we choose the longest one. In our experiments, we
notice that for most of the filled gaps, there is usually only
one satisfying these conditions. If complete gap sequences
cannot be found, we choose the one that covers the gap
the most.
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