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Abstract

Background: Many diseases are associated with complex patterns of symptoms and phenotypic manifestations.
Parsimonious explanations aim at reconciling the multiplicity of phenotypic traits with the perturbation of one or
few biological functions. For this, it is necessary to characterize human phenotypes at the molecular and functional
levels, by exploiting gene annotations and known relations among genes, diseases and phenotypes. This
characterization makes it possible to implement tools for retrieving functions shared among phenotypes, co-
occurring in the same patient and facilitating the formulation of hypotheses about the molecular causes of the
disease.

Results: We introduce PhenPath, a new resource consisting of two parts: PhenPathDB and PhenPathTOOL.
The former is a database collecting the human genes associated with the phenotypes described in Human
Phenotype Ontology (HPO) and OMIM Clinical Synopses. Phenotypes are then associated with biological functions
and pathways by means of NET-GE, a network-based method for functional enrichment of sets of genes. The
present version considers only phenotypes related to diseases. PhenPathDB collects information for 18 OMIM
Clinical synopses and 7137 HPO phenotypes, related to 4292 diseases and 3446 genes. Enrichment of Gene
Ontology annotations endows some 87.7, 86.9 and 73.6% of HPO phenotypes with Biological Process, Molecular
Function and Cellular Component terms, respectively. Furthermore, 58.8 and 77.8% of HPO phenotypes are also
enriched for KEGG and Reactome pathways, respectively. Based on PhenPathDB, PhenPathTOOL analyzes user-
defined sets of phenotypes retrieving diseases, genes and functional terms which they share. This information can
provide clues for interpreting the co-occurrence of phenotypes in a patient.

Conclusions: The resource allows finding molecular features useful to investigate diseases characterized by
multiple phenotypes, and by this, it can help researchers and physicians in identifying molecular mechanisms and
biological functions underlying the concomitant manifestation of phenotypes. The resource is freely available at
http://phenpath.biocomp.unibo.it.
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Background
Co-occurrence of different phenotypes often associated
with symptom complexes hampers the understanding of
the molecular mechanisms which characterize diseases
and their insurgence [1]. Furthermore, the analysis of
epidemiological data reveals that different phenotypes
associated with specific diseases frequently co-occur in
the same individuals during their lifespan [2, 3]. In both
situations, highlighting functional molecular mechanisms
underlying disease insurgence and progression offers a
way to understand possible associations between pheno-
types and diseases. In the context of personalized medi-
cine, this approach can be in principle adopted to analyze
phenotypes that are peculiar of every single patient. The
challenge is to reconcile the ensemble of phenotypes with
a small number of possibly altered biological functions.
Along this line, Brodie et al. (2014), [4], reported a large-
scale analysis of Genome Wide Studies (GWAS) results
demonstrating that phenotypes can be significantly associ-
ated to specific pathways, where SNPs cluster, depending
on the specific disease.
Several resources are presently available to exploit data

for associating phenotypes to diseases. The Phenotype-
Genotype Integrator (PheGenI) [5] merges data from
genome-wide association study (GWAS) stored at the Na-
tional Human Genome Research Institute (NHGRI) with
several databases housed at the National Center for
Biotechnology Information (NCBI), including Gene,
dbGaP, OMIM, eQTL and dbSNP. This phenotype-
oriented resource aims at facilitating prioritization of
variants from GWAS studies, for generation of bio-
logical hypotheses and it is quite useful for a search
based on chromosomal location, gene, SNP, or pheno-
type. Search results include annotated tables of SNPs,
genes and association results, a dynamic genomic se-
quence viewer, and gene expression data.
For the molecular diagnosis of rare genetic diseases,

the recently developed Phenopolis [6] is an open plat-
form for harmonization and analysis of sequencing and
phenotype data. The platform offers, for each phenotype,
a prioritized list of genes, based on known association
and gene enrichment analysis.
Other resources provide associations between diseases

and phenotypes, including the Human Phenotype Ontol-
ogy (HPO) [7] and the OMIM Clinical synopses [8].
Exploiting these associations, methods have been devel-
oped to cluster different diseases through shared pheno-
types. In particular, the Phenotypic Disease Network [9]
focuses on phenotypic links among co-occurring diseases
to address the comorbidity problem. The Phenomizer
tool [10], provided by the Human Phenotype Ontol-
ogy consortium, analyzes lists of phenotypes/symp-
toms with the aim of assisting the clinical workflow
and providing diagnoses.

While many resources focus on the relationship among
phenotypes, diseases and genes, little is known about the
relevance of molecular functions and functional processes
underlying the occurrence of phenotypes.
The goal of our research is to supplement disease-

phenotype associations with information at the molecular
level. To this aim, here we describe a resource (PhenPath)
able to retrieve diseases, genes and functional annotations
associated with a given set of phenotypes.
Our resource builds on supplementing known disease-

phenotype links with the molecular information on the
association between genes and diseases. This last know-
ledge is stored in different databases, including Humsa-
var [11], ClinVar [12] and OMIM [8], previously
integrated by DisGeNet [13] and by eDGAR [14], which
exploits also functional annotations.
Phenotype-disease and disease-gene relationships can be

represented with a graph and, after collapsing the disease
layer, direct associations between genes and phenotypes
emerge. Furthermore, efficient enrichment procedures
help in associating groups of genes to specific biological
processes and/or metabolic pathways, endowing the group
with statistically validated functional annotations. Among
other procedures, our NET-GE [15] exploits proximity
relationships among genes as derived from gene-gene
interaction networks [16], and here it is adopted to func-
tionally annotate phenotype-related genes. Considering
the relationship among diseases, genes and functions, and
the association among diseases and phenotypes, PhenPath
allows the association of phenotypes to biological pro-
cesses and pathways, reconciling their manifestation with
molecular events.

Results
We implemented a new resource, PhenPath, to help re-
searchers and physicians in studying complex diseases,
characterized by one or multiple phenotypes.
PhenPath consists of two parts: a database collecting

relationships among genes, diseases, phenotypes and
biological functions (PhenPathDB), and a tool allowing
to retrieve genes, diseases and biological functions
shared by a group of phenotypes, provided by the user
(PhenPathTOOL).

PhenPathDB
PhenPathDB is generated considering the three main
steps described in the following: i) a phenotype-disease
association procedure; ii) a disease-gene association pro-
cedure; and iii) a phenotype functional annotation de-
rived by collapsing the gene layer, after an enrichment
procedure of the functional annotation of the different
disease-associated genes. Functional annotations con-
sider Gene Ontology [17] terms of the three main roots
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(Molecular Function, Biological Process and Cellular
Component), KEGG [18] and Reactome [19] pathways.

Phenotype-disease association
PhenPathDB builds upon the known associations among
phenotypes, diseases and genes. PhenPathDB includes in-
formation about the following phenotypic terms (Table 1):
i) 18 phenotypic general categories from the OMIM Clin-
ical Synopsis [8], which classifies 4165 OMIM diseases,
grouped according to the affected human body districts; ii)
7173 phenotypic terms from HPO [7], annotating 4292
OMIM diseases (59% of the 12,111 phenotypic terms of
HPO, which are disease-associated). HPO includes five
main sub-ontologies (Phenotypic Abnormalities, Clinical
Modifier, Clinical Course, Mode of Inheritance, and Fre-
quency). Specific terms, called leaf terms, are 3837 and they
annotate at the deepest level 4023 diseases. The most popu-
lated sub-ontology is Phenotypic Abnormalities, which in-
cludes 78% of the HPO disease-related phenotypes with 24
main categorizations referring to body districts and physio-
logical functions. They expand into 5661 terms associated
with 4273 diseases, of which 3802 are leaf terms annotating
3721 diseases (Table 1).
Most of the OMIM diseases are associated with more

than one HPO leaf term (Fig. 1). Only 15% of diseases
are associated with one phenotype, and about half of the
diseases are associated with 5 or more phenotypes. The
extreme case is the Rubinstein-Taybi syndrome that is
annotated with 48 HPO leaf terms.

Disease-gene association
Each phenotype-disease link described in the previous sec-
tion is supplemented with a set of genes, by exploiting the
gene-disease relationships reported in eDGAR [14]. Fig-
ures 2 and 3 show the number of diseases (blue bars) and
genes (red bars) associated to the 18 terms of the OMIM
Clinical Synopsis and to the 24 main categories of the HPO
Phenotypic Abnormalities sub-ontology, respectively. With
eDGAR, Phenotypic OMIM Clinical Synopsis terms and
HPO terms are associated with 3230 and 3446 genes,
respectively.

Functional annotation of phenotypes
According to our procedure, any phenotype links
one or more disease/s, which are associated with

specific genes. Any set of genes can be functionally
characterized by adopting an enrichment procedure.
Here, we adopt NET-GE, a tool for the functional enrich-
ment analysis of genes (two or more) [15]. NET-GE con-
siders the relationships among annotated genes as
described in the STRING interactome, from which it de-
rives a function-specific gene module to be used as a basis
for the overrepresentation analysis. This procedure takes
into consideration Gene Ontology terms, KEGG and
Reactome pathways.
Following enrichment, most phenotypes included in

Table 1, are annotated with Gene Ontology (GO)
terms, as shown in Table 2. In particular, 87.7% and
86.9% of HPO terms are enriched with GO terms of
Biological Process (BP) and Molecular Function (MF),
respectively.

PhenPathDB interface
PhenPathDB organizes associations among phenotypes,
diseases, genes and functional annotations in two major
entering tables: OMIM Clinical Synopsis and HPO Pheno-
typic Abnormality (http://phenpath.biocomp.unibo.it). Each
Table contains links to our results grouped into:

i). general analysis, which, for each phenotype, lists
diseases, associated genes and the functional
characterization derived from the enrichment
procedure;

ii). intersection analysis, which allows to derive features
shared between two phenotypes, highlighting the
common diseases, genes and functional annotations.

More specifically, general analysis reports diseases
and genes associated with the phenotype, the anno-
tation obtained with NET-GE, along with the
Bonferroni-corrected p-value of the enrichment pro-
cedure, and the Information Content (IC) evaluating
the specificity of the term (see Methods section for
further details). The page lists also the genes ac-
counting for the enrichment of each functional term
and the associated diseases, to describe the associ-
ation of specific functional terms with the phenotype
under consideration. Diseases and genes are linked
to the corresponding OMIM and Human Gene No-
menclature Committee (HGNC) [20] entries.

Table 1 Phenotypic terms included in PhenPathDB

Ontology Phenotypic terms (#) Diseases associated to
Phenotypic terms (#)

Phenotypic leaf terms (#) Diseases associated to
Phenotypic leaf terms (#)

OMIM Clinical Synopsisa 18 4165 – –

HPO 7173 4292 3837 4023

HPO sub-ontology Phenotypic Abnormalitiesb 5661 4273 3802 3721
aOMIM Clinical Synopsis is not organized in a graph and, as a consequence, it does not contain distinction among root, intermediate and leaf terms. bHPO
Phenotypic Abnormalities are the subset of HPO, organized according to body districts and physiological functions into 24 different main terms
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The intersection analysis is based on the pre-
computed shared features of pairs of phenotypes out
of the same ontology (18 categories of OMIM Clinical
Synopsis or 24 main categories of HPO Phenotypic
Abnormalities sub-ontology). Furthermore, shared GO
terms, KEGG and Reactome pathways, enriched for
both groups of associated genes, are listed. For each
functional term, the IC value is reported as well as
the Bonferroni-corrected p-values of the two enrich-
ment procedures. The phenotype page provides also
the list of genes associated with a particular func-
tional term.
It is possible to access the database either by browsing

the PhenPathDB page or by searching for specific pheno-
types in the Search page. For HPO, the 24 main categories
of the Phenotypic Abnormalities are present in the brows-
ing page, and all terms can be retrieved with a search.

PhenPathTOOL
PhenPathTOOL is a web application that, given a set of
phenotypes, retrieves the shared diseases, genes and

functional terms. PhenPathTOOL is user-friendly,
accepting as input HPO IDs as well as names of pheno-
types. The intersection is computed in real-time. Phen-
PathTOOL allows investigating the relationship among
groups of phenotypes at different levels. Firstly, it re-
trieves whether there is an intersection among the lists
of diseases associated with the input phenotypes. In this
way, it highlights when the phenotype co-occurrence is
already known and points towards specific diseases.
Occasionally, when input phenotypes do not share
common diseases, PhenPathTOOL can retrieve shared
genes, possibly related to their concomitant manifest-
ation. Furthermore, even when phenotypes do not
share genes, they may share the enriched biological
functions (GO terms, KEGG and Reactome pathways),
accounting for a common mechanism. The interface
reports in different tables the lists of shared GO terms,
KEGG and REACTOME pathways, obtained as de-
scribed above. Each table lists the IC of the term, as
well as the Bonferroni-corrected p-value for each asso-
ciation (see Methods for further details).

Fig. 1 OMIM diseases as a function of associated HPO phenotypes. Data include 3837 HPO phenotypes (leaves of the HPO ontology) associated with
4023 OMIM diseases (Table 1, second row). Only 623 diseases (15%) are associated with a single phenotype, while about half of the diseases (47%) are
associated with 5 or more phenotypes. Rubinstein-Taybi syndrome has the maximum number of associated HPO phenotypes (48, considering only
leaves of the HPO graph)

Fig. 2 Number of diseases and genes associated with OMIM Clinical Synopsis terms. Blue bars (diseases); red bars (genes)
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Discussion
Case Study: Tourette syndrome
The first example describes the use of PhenPathTOOL
for retrieving a characterized disease starting from a list
of phenotypes. It also illustrate the possibility to enrich
the annotation of involved biological functions. Tourette
syndrome is a neurobehavioral disorder that causes motor
and vocal tics associated with behavioral abnormalities,
like attention-deficit–hyperactivity disorder and obsessive-
compulsive disorder [21]. Possible symptoms include in-
voluntary or semi-voluntary movements or sounds, repeti-
tive movements, blinking, nose twitching, throat clearing
to echolalia or coprolalia.
We searched with PhenPathTOOL the typical pheno-

typic traits of the Tourette syndrome, using a plain list
of phenotype names (“motor tic, vocal tic, behavioral, at-
tention, hyperactivity, obsessive-compulsive, involuntary

movements, involuntary sounds, repetitive movements,
blink, nose twitch, throat clear, echolalia, coprolalia”).
The interface presents a selectable list of HPO terms
whose names contain the input terms (Fig. 4).
As shown in Fig. 5, PhenPathTOOL correctly recognizes

that the concomitance of phenotypes points to the Tour-
ette syndrome, and to two genes (SLITRK1, HDC) that
are associated with the disease [21]. Interestingly enough,
the intersection of functional terms shared by different
phenotypes is able to retrieve relevant shared annotations.
30 terms are shared by at least 4 phenotypes. Among
them, besides the general annotations like behavior, cogni-
tion or learning or memory, there are interesting clues on
more specific pathways such as catecholamine metabolic
process. Interestingly, symptomatic therapies for the Tour-
ette syndrome involve the control of neurotransmission
from dopamine and adrenaline, which are members of the
catecholamine family [22]. Although the pathogenesis of
the disorder remains obscure, the catecholamine meta-
bolic process pathway has already been studied in relation
to the Tourette syndrome [23].

Case study: obesity, diabetes and ovarian cyst
Here PhenPathTOOL compares three phenotypes that,
although not being related to a common disease, are
often co-occurring: obesity, diabetes and ovarian cysts.
Epidemiological studies report that women affected by
polycystic ovarian syndrome, for which ovarian cysts is
the main phenotypes, are often showing also obesity and
diabetes phenotypes [24]. In particular, increasing

Fig. 3 Number of diseases and genes associated with HPO Phenotypic Abnormalities sub-ontology. The 24 roots refer to anatomic districts and
physiological functions. Blue bars (diseases); red bars (genes)

Table 2 Functional annotation of HPO terms

Functional
Annotation

Phenotypes (#) HPO terms (%) Non redundant
functional terms (#)

with GO BP 6256 87.7% 6838 GO BP

with GO MF 6202 86.9% 2211 GO MF

with GO CC 5254 73.6% 946 GO CC

with KEGG 4198 58.8% 326 KEGG

with REACTOME 5550 77.8% 1369 REACTOME

Statistics refer to 7137 HPO terms comprised in PhenPath and associated with
4292 diseases and 3446 genes. Terms included in PhenPath comprise 59% of
the 12,111 terms listed in HPO. BP Biological Process, MF Molecular Function,
CC Cellular Component, # number of
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evidence points to an increase of type 2 diabetes in
women affected by polycystic ovarian syndrome [25].
We analyzed with PhenPathTOOLS the three co-

occurring phenotypes: Obesity (HP:0001513), Diabetes
Mellitus type II (HP:0005978) and Ovarian Cyst (HP:
0000138). Routinely, the three terms refer to specific
diseases: however, in HPO they indicate phenotypes
associated to different disorders.
As expected, no disease is common to all the input

phenotypes. Diabetes and obesity share 3 diseases: Pra-
der-Willi Syndrome, Morbid obesity and spermatogenic
failure, and Microcephalic osteodysplastic primordial
dwarfism, type II. No disease links ovarian cysts to either
obesity or diabetes.
The analysis at the gene level retrieves only one gene

shared among the three phenotypes: PPARG, the Peroxi-
some proliferator-activated receptor gamma, a nuclear
receptor involved in lipid uptake and adipogenesis. More
genes are shared between pairs of phenotypes: NPP1,
AKT2 between diabetes and obesity, HNF1A, INSR and
PPP1R3A between ovarian cysts and diabetes, and PTEN
between ovarian cysts and obesity.
A better characterization of the common ground of

the three phenotypes comes from the analysis of shared

functional annotations. 7 GO terms for molecular function
are shared, being hormone receptor binding (GO:0051427)
the most specific one (IC = 6.84). Moreover, 58 GO terms
for biological process are shared, 16 of which with IC values
greater than 5. These include generation of precursor me-
tabolites and energy (GO:0006091), energy derivation by
oxidation of organic compounds (GO:0015980), cellular re-
sponse to peptide hormone stimulus (GO:0071375), develop-
mental process involved in reproduction (GO:0003006),
response to peptide hormone (GO:0043434), cellular re-
sponse to hormone stimulus (GO:0032870), response to hor-
mone (GO:0009725), response to insulin (GO:0032868),
regulation of growth (GO:0040008). Each term is associated
with the three phenotypes by means of many genes, in-
cluding PPARG. On the overall, the annotation points to-
wards phenomena associated with the response to
hormones, in particular insulin. Specifically, the response
to insulin is associated with each phenotype with cor-
rected p-values of 1E-9, 0.04 and 0.005, respectively for
Diabetes, Obesity and Ovarian Cyst.
The novelty with PhenPathTOOL is that the co-

occurrence of the three phenotypes is ascribed to defects of
the response to insulin. Interestingly, recent literature con-
firms that insulin resistance is a common background for

Fig. 4 Selection of phenotypes in PhenPathTOOL. After searching with a list of different names, the web interface shows all the names that do
not correspond to any HPO identifier and then a table with all the HPO terms matching the input. The user may then select the most
appropriate phenotypes to be analyzed
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both obesity and diabetes mellitus type 2 [26] and that insu-
lin is a key factor also in the uptake of glucose by ovarian
tissues during the menstrual cycle of some rodent, primate
and ruminant species [27]. In particular, the link between
metabolic disorders and cystic ovarian disease has been
studied in animal models [28], specifically for the insulin
resistance as a pathogenic factor. Our analysis is also sup-
ported by the finding that the activity of PPARG, the only
gene shared among the three phenotypes under investiga-
tion, is sufficient for whole-body insulin sensitization [29].

Case study: Rett syndrome
PhenPathTOOL can be adopted to endow a disease
(described with a set of phenotypes) with novel links to
genes and functional terms, retrieved by intersecting the
sets of genes and functional terms associated with the
single phenotypes in PhenPathDB. As a case study, we
here apply PhenPathTOOL to the detection of new asso-
ciations between genes and Rett syndrome (RTT). RTT

is a neurodevelopmental disorder corresponding to two
OMIM entries (#312750 and #613454) linked to genes
MECP2 (encoding methyl CpG binding protein 2) and
FOXG1 (encoding the forkhead box protein G1), re-
spectively [30, 31]. RTT primarily affects females and it
is characterized by loss of language and communication
skills, microcephaly, learning impairment, coordination,
and other brain functions. Affected girls may lose the
use of their hands and begin making repeated hand-
wringing, washing, or clapping motions. Atypical forms
of RTT, not reported in OMIM, have been described in
patients not carrying mutations on FOXG1 nor MECP2
and manifesting additional phenotypes such as breath-
ing abnormalities, spitting or drooling, unusual eye
movements, cold hands and feet, irritability, sleep distur-
bances, seizures and scoliosis [32, 33]. Recently, literature
reported new genes associated with RTT, including cyclin-
dependent kinase-like 5 (CDKL5), myocyte-specific en-
hancer factor 2C (MEF2C), and transcription factor 4

Fig. 5 PhenPathTOOL results. The figure shows the webpage of PhenPathTOOL after the analysis of 6 different HPO phenotypes. First, a list of the
shared diseases and genes is reported. Then, a general table collects data on diseases and genes associated with each phenotype, allowing direct
intersection. The last section reports the links to the analysis of GO terms, KEGG and Reactome pathways
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(TCF4) [34–36]. These associations are not yet reported
in major databases and, consequently, they are not
included in PhenPathDB. We tested the ability of Phen-
PathTOOL to recover these associations starting from the
phenotype description. We entered 9 HPO terms, charac-
terizing the classical and atypical RTT, namely breathing
dysregulation (HP:0005957), abnormality of coordination
(HP:0011443), drooling (HP:0002307), irritability (HP:
0000737), severe expressive language delay (HP:0006863),
specific learning disability (HP:0001328), microcephaly
(HP:0000252), scoliosis (HP:0002650), and sleep disturb-
ance (HP:0002360).
As a first step, PhenPathTOOL intersects the gene sets

associated with the phenotypes. Although no gene is
common to the nine phenotypes, 5 genes (MECP2, CDKL5,
UBE3A, SLC2A1, SLC16A2) are shared among 5 pheno-
types. MECP2 and CDKL5 have been previously reported
[32, 36]. Interestingly, our analysis highlights the association
with CDKL5, which is not present in PhenPathDB.
PhentPathTOOL then retrieves the intersection of GO

terms, KEGG and Reactome pathways enriched for the
different phenotypes. Focusing on GO BP, 440 terms are
shared among two or more phenotypes. In particular,
when restricting to terms with medium/high specificity
(IC > 4.5), 12 enriched terms are common to 5 or more
phenotypes. Among them, the seven terms listed in
Table 4 describe biological processes that involve the
two genes known to be related with RTT (MECP2 and
FOXG1), as well as TCF4, that has been only recently
associated with RTT (Table 3).
These findings illustrate the efficacy of PhenPath-

TOOL in linking a set of phenotypes to genes and func-
tional annotations, which can be adopted for planning
further experimental analysis.

The table reports some of the most interesting biological
processes associated with the phenotypes given as input to
PhenPathTOOL. For each term, the IC value is shown
with the specific phenotype associations. Noticeably,
TCF4 has been only recently associated with RTT [36].

Study case: associating genes to uncharacterized diseases
We propose PhenPath as a resource for formulating
hypotheses on the molecular mechanisms underlying the
manifestation of concomitant phenotypes, in particular
in case of non-well characterized diseases. Here we esti-
mate the performance of PhenPathTOOL in retrieving
relevant associations between groups of co-occurring
phenotypes and possible causative genes, collecting from
Orphanet [37] a blind set consisting of 87 diseases, not
included in OMIM nor, consequently, used to build
PhenPathDB. Orphanet associates these diseases with
both HPO phenotypic terms and sets of possibly causa-
tive genes (see Methods section 5.3 for further details on
the dataset).
We evaluate the efficiency of PhenPathTOOL in retriev-

ing genes starting from the phenotypic characterization of
diseases. For each disease in the blind set, we entered in
PhenPathTOOL the Orphanet-associated HPO terms and
we retrieved the corresponding lists of shared genes. We
then compared the genes retrieved with PhenPathTOOL
with the genes proposed by Orphanet.
For 61 diseases out of 87 (70%), PhenPathTOOL re-

trieves at least one of the genes associated by Orphanet.
Overall, out of the 100 genes associated by Orphanet, 58
are recovered with PhenPathTOOL (58%). In particular
for 2 diseases, Pituitary stalk interruption syndrome and
Hypothyroidism due to deficient transcription factors in-
volved in pituitary development or function, PhenPath

Table 3 A selection of GO BP terms shared by the phenotypes in input after enrichment procedure

GO BP term IC value # of associated
phenotypes

Associated phenotypes Related genes
associated with RTT

cellular component morphogenesis 5.4 6 microcephaly, sleep disturbance, scoliosis, breathing
dysregulation, abnormality of coordination, specific
learning disability

TCF4

Behavior 5.23 6 microcephaly, specific learning disability, sleep
disturbance, scoliosis, abnormality of coordination,
drooling

MECP2

cell projection organization 4.95 6 microcephaly, specific learning disability, scoliosis,
breathing dysregulation, abnormality of coordination,
sleep disturbance

MECP2

neurological system process 4.65 6 microcephaly, specific learning disability, scoliosis,
abnormality of coordination, sleep disturbance, drooling

FOXG1, MECP2

system development 4.75 5 microcephaly, sleep disturbance, scoliosis, abnormality
of coordination, severe expressive language delay

TCF4, FOXG1, MECP2

anatomical structure formation
involved in morphogenesis

4.69 5 microcephaly, specific learning disability, scoliosis,
breathing dysregulation, abnormality of coordination

TCF4, FOXG1

single-organism behavior 5.67 5 microcephaly, sleep disturbance, scoliosis, abnormality
of coordination, drooling

TCF4, MECP2
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retrieves 5 out of 7 and 5 out 5 Orphanet-associated
genes, respectively.
A summary of all the results obtained for the exter-

nal dataset is provided as supplementary material (see
Additional file 1).

Conclusions
PhenPath offers a new approach for investigating the
molecular mechanisms leading to the correlated mani-
festation of different phenotypes. PhenPath may be used
to explore the possible connections among different
phenotypes co-occurring in a patient, offering new
clues on the biological mechanisms that may explain
its clinical conditions.
Four case studies show the potential use of PhenPath

for retrieving diseases starting from a set of phenotypes,
if existing, and/or for better characterize the functions
and pathways possibly involved in the manifestation of
different symptoms. We propose our resource for direct-
ing scientific efforts, helping the diagnosis and retrieving
new possible associations among biological processes
and diseases. We believe that biotechnologists, physi-
cians and medical researchers may find PhenPath a use-
ful resource of information, especially when studying
complex and rare diseases.

Methods
Associations among phenotypes, diseases and genes
PhenPathDB stands on the merging of disease-
phenotype and disease-gene relationships. In PhenPath,
a phenotype is defined as an actual physical characteris-
tic, and we follow the phenotype characterization pro-
vided by HPO and OMIM Clinical Synopsis. We define
a disease as a medical condition associated with specific
phenotypes and we classify diseases according to
OMIM identifiers.
In detail, two lists of phenotype terms have been con-

sidered: the OMIM Clinical Synopsis (March 2017 re-
lease) and the HPO Phenotypic Abnormalities categories
(May 2017 release). OMIM Clinical Synopsys groups
OMIM diseases within 22 phenotypic categories, 18 refer-
ring to systems of the human body (e.g.: respiratory sys-
tem, musculature, etc.) and 4 referring to further levels of
characterization (inheritance, laboratory abnormalities,
molecular basis, and miscellaneous). In PhenPath, we
retained the former and discharged the others, ending up
with the phenotypic characterization for 3230 diseases.
The HPO consists of 12,111 different phenotypes or-

ganized into a direct acyclic graph (DAG) including
3837 leaf phenotypes. A leaf in a graph is a node without
sub-nodes (children), and, by consequence, a leaf pheno-
typic term provides the most detailed level of annota-
tion. When a phenotype is associated with a disease by
HPO, the annotation is extended to all the parent

phenotypes in the HPO DAG. On the overall, 4292
OMIM diseases are associated with 7137 HPO pheno-
types, which represent the 59% of all the HPO pheno-
types. In particular, 4023 diseases are associated with
3837 leaf phenotypes. Of particular interest are the phe-
notypes originating from 24 main categories, referring to
human body districts and physiological functions (mus-
culature, respiratory system, head or neck, genitourinary
system, cardiovascular system, immune system, nervous
system, voice, blood and blood-forming tissues, metabol-
ism/homeostasis, breast, growth, constitutional symp-
toms, digestive system, neoplasm, thoracic cavity,
prenatal development or birth, eye, ear, skeletal system,
limbs, connective tissue, endocrine system, integument).
These categories are grouped into the Phenotypic Ab-
normalities sub-ontology. It comprises 5661 phenotypes,
among which 3802 are leaves.
Gene-disease associations are extracted from our

curated database, eDGAR [14] (August 2017 release),
which collects information from OMIM, Humsavar
and ClinVar.

Enrichment analysis
For each group of genes associated to the same phenotype,
the functional characterization is performed with NET-GE
[15], an algorithm for standard and network-based gene
enrichment analysis that includes the annotations derived
from GO, KEGG and Reactome pathways. Briefly, it relies
on the STRING Human Interactome [16], to build
function-specific modules of interacting genes, starting
from genes/proteins annotated with a given term. Then,
given a list of genes/proteins, the over-represented
modules are retrieved and scored with a p-value com-
puted with an exact Fisher test and corrected with the
Bonferroni procedure. A significance threshold of 0.05
has been considered.
The Information Content (IC) is computed for each

GO term, KEGG and REACTOME pathways, adopting
the following equation:

ICterm ¼ − log2
Nterm

Nroot

� �
ð1Þ

where Nterm is the number of human genes endowed
with the particular GO, KEGG or REACTOME term
and Nroot is the number of human genes annotated in
the ontology. IC lower bound is zero; high IC values in-
dicate that a small number of genes are annotated with a
particular term in the human genome and therefore the
annotation is highly informative.
For every phenotype in PhenPath, we perform the en-

richment procedure via NET-GE algorithm and we report
the results in the PhenPathDB webpages. Using PhenPath-
TOOL, the users may compare different phenotypes
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retrieving the enriched biological pathways shared over
the phenotypes in input. For each term describing a path-
way, we report the p-value of the significant associations
to every phenotype in input.

Blind dataset for the performance evaluation
For the evaluation of the performance of PhenPath-
TOOL we collected a dataset of phenotype-disease-gene
associations from Orphanet, a resource for rare diseases
with high-quality information [37]. In Orphanet (release
Dec 2018), 3765 diseases are associated both with HPO
phenotype terms and genes. We filtered out all diseases
mapped to OMIM and therefore used for the implemen-
tation of PhenPathDB, retaining 550 Orphanet diseases.
We then collected diseases associated with 2 or more
HPO phenotypes, ending up with 87 diseases, which form
a blind set for testing PhenPathTOOL. For each disease,
we entered in PhenPathTOOL the associated HPO pheno-
typic terms and we retrieved the list of genes they share.
We compare these proposed genes with the genes re-
ported by Orphanet for the disease. The evaluation dataset
is provided as supplementary material (see Additional file
1).

Additional file

Additional file 1: External dataset used for PhenPath evaluation. We
estimate the performance of PhenPathTOOL in retrieving relevant associations
between groups of co-occurring phenotypes and possible causative genes,
collecting from Orphanet [37] a blind set consisting of 87 diseases, not
included in OMIM nor, consequently, used to build PhenPathDB
(see Methods section 5.3 for further details on the dataset). (TSV 23 kb)
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