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Abstract

Background: Semantic similarity between Gene Ontology (GO) terms is a fundamental measure for many
bioinformatics applications, such as determining functional similarity between genes or proteins. Most previous
research exploited information content to estimate the semantic similarity between GO terms; recently some research
exploited word embeddings to learn vector representations for GO terms from a large-scale corpus. In this paper, we
proposed a novel method, named GO2Vec, that exploits graph embeddings to learn vector representations for GO
terms from GO graph. GO2Vec combines the information from both GO graph and GO annotations, and its learned
vectors can be applied to a variety of bioinformatics applications, such as calculating functional similarity between
proteins and predicting protein-protein interactions.

Results: We conducted two kinds of experiments to evaluate the quality of GO2Vec: (1) functional similarity between
proteins on the Collaborative Evaluation of GO-based Semantic Similarity Measures (CESSM) dataset and (2) prediction
of protein-protein interactions on the Yeast and Human datasets from the STRING database. Experimental results
demonstrate the effectiveness of GO2Vec over the information content-based measures and the word
embedding-based measures.

Conclusion: Our experimental results demonstrate the effectiveness of using graph embeddings to learn vector
representations from undirected GO and GOA graphs. Our results also demonstrate that GO annotations provide
useful information for computing the similarity between GO terms and between proteins.

Keywords: Graph embeddings, Vector representations, Gene ontology, CESSM evaluation, Protein-protein
interaction prediction

Background
Gene Ontology (GO) provides a set of structured and
controlled vocabularies that describe gene products and
molecular properties [1]. GO includes three categories of
ontologies: Biological Process (BP), Cellular Component
(CC), and Molecular Function (MF); each category of the
ontologies is organized as a directed acyclic graph (DAG)
and is referred to as a GO graph, where a node denotes
a GO term while an edge denotes a kind of relationships
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between two GO terms. GO terms are defined in a hier-
archy with a root node at the top, and child GO terms are
related to parent GO terms via three main kinds of rela-
tionships: “is_a”, “part_of ”, and “regulates.” GO describes
complex biological phenomenon and accordingly intones
a complex hierarchy. A parent node may have more than
one child and a child node may have more than one
parent and different relations to its different parents.
Figure 1 shows a part of GO graph of the BP cate-
gory for the term “GO:0036388 (pre-replicative complex
assembly)”, where “GO:0036388” is its term ID and “pre-
replicative complex assembly” is its descriptive axiom.
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Fig. 1 GO graph for term “GO:0036388 (pre-replicative complex assembly)” (adapted from https://www.ebi.ac.uk/QuickGO/term/GO:0036388)

The term “GO:0036388” can be traced to the root term
“GO:0008150 (biological process).”

GO terms have been used to annotate many biomed-
ical databases (e.g., model organism database (MOD)
[2], UniProt [3], and SwissProt [4]) and interpret mean-
ings of biomedical entities and experiments, such as
genetic interactions, functional interactions, protein-
protein interactions, biological pathways, and disease sim-
ilarities. The importance of GO terms leads their semantic
similarity to be crucial for many bioinformatics research
and applications. Therefore, computing the semantic sim-
ilarity of GO terms has attracted tremendous attention.

Most previous methods of estimating the semantic sim-
ilarity of GO terms are based on the information content

(IC). Such pioneered methods [5–7] and their variants
[8–24] compute the semantic similarity between two GO
terms according to their distances to the closest com-
mon ancestor term associated with the structure of GO
DAG or associated statistics of their common ancestor
terms. These methods have succeeded in the development
of computing the GO term similarity over the past two
decades.

Recently, some researchers employed word embed-
dings, which have been developed in the area of nat-
ural language processing, to learn vectors representing
GO terms and proteins, and use the learned vectors to
compute the semantic similarity between GO terms and
the functional similarity between proteins [25–27]. These

https://www.ebi.ac.uk/QuickGO/term/GO:0036388


Zhong et al. BMC Genomics 2019, 20(Suppl 9):918 Page 3 of 10

methods mainly use the word2vec model [28] to learn
vectors for each word from the corpus derived from the
descriptive axioms of GO terms and proteins (e.g., “pre-
replicative complex assembly”); thereafter, the vectors of
words are combined into vectors of GO terms and pro-
teins according to the words in the descriptive axioms of
GO terms and proteins.

In this paper, we proposed a method to compute the
semantic similarity of GO terms by transforming a GO
graph into vector representations by using a graph embed-
dings technique. Specifically, we first transformed a GO
graph into vector representations where each node in the
GO graph is represented by a vector of low-rank fea-
tures. After that transformation, the semantic similarity
of GO terms and the functional similarity of proteins
are computed by the cosine distance of their correspond-
ing vectors. Graph embeddings are capable of capturing
the structural information connecting the nodes in the
entire GO graph. On the one hand, when compared with
the structure-based information content methods, which
mainly consider the nearest common ancestors of two
nodes, graph embeddings consider the information from
every path between two nodes. Graph embeddings there-
fore can fully portray the relationship of two nodes in the
entire graph. On the other hand, when compared with
the corpus-based methods, including the traditional infor-
mation content methods and the word embedding meth-
ods, graph embeddings can employ the expert knowledge
stored in the graphical structure. In our experiments, we
use the node2vec model [29] as the representative of graph
embedding techniques. The node2vec model adopts a
strategy of random walk over an undirected graph to sam-
ple neighborhood nodes for a given node, and preserves
both neighborhood properties and structural features. As
far as we know, the node2vec model has not been applied
to computer the protein similarity by using GO graph.

There are several ways to evaluate the quality of the
semantic similarity between GO terms and of the func-
tional similarity between proteins. One way is to compare
them with human similarity ratings [7, 15, 30] to see
the correlation between computational results and human
annotation results. An alternative way is to evaluate the
quality of downstream applications using the semantic
similarity between GO terms and the functional similar-
ity between proteins. In this paper, we used two kinds
of downstream tasks to evaluate GO2Vec. One task is
the similarity of proteins on the Collaborative Evalua-
tion of GO-based Semantic Similarity Measures (CESSM)
[31], which provides an interface for researchers to eval-
uate their similarity measures of proteins with differ-
ent ones on a standard dataset (comprising 13,430 pairs
of proteins from 55 types of organisms). The other is
the prediction of protein-protein interactions (PPI) on
two kinds of datasets, Yeast and Human PPI networks

[32]. Experimental results demonstrate the effectiveness
of GO2Vec over the information content-based methods
(i.e., Resnik [7], Lin [6], Jang&Conrath [5], simGIC [33],
and simUI [34]) and the word embedding-based methods
(i.e., Onto2Vec [25] and w2vGO [27]).

Results
We conducted two kinds of experiments to evaluate the
quality of the learned vectors of GO2Vec: (1) evaluation
of protein similarities on the CESSM dataset and (2) pre-
diction of protein-protein interactions (PPI) on Yeast and
Human networks. The results of GO2Vec are compared
with information content-based methods (i.e., Resnik [7],
Lin [6], Jang&Conrath [5], simGIC [33], and simUI [34])
and corpus-based vector representation methods (i.e.,
Onto2Vec [25] and w2vGO [27]). The technical details of
GO2Vec and the compared methods are described in next
section.

Gene ontology and GO annotations
The Gene Ontology [1] includes three independent cat-
egories of ontologies: BP, CC, and MF. The BP ontology
includes GO terms that describe a series of events in bio-
logical processes. The CC ontology includes GO terms
that describe molecular events in the components of a
cell. The MF ontology includes GO terms that describe
the chemical reactions (e.g., catalytic activity and recep-
tor binding). These GO terms have been used to annotate
biomedical entities (e.g., genes and proteins) and inter-
pret biomedical experiments (e.g., genetic interactions
and biological pathways). Table 1 summarize the statistics
of the three GO graphs.

In each kind of experiments, we obtained the GO anno-
tations by mapping the proteins to the UniProt database
[3]. Generally, a protein is annotated by several GO
terms. For example, the protein ‘P06182’ is annotated by
the GO terms ‘GO:0004408’, ‘GO:0005743’, ‘GO:0005758’,
‘GO:0018063’, ‘GO:0046872’.

Protein similarity on CESSM
In this kind of experiment, we aimed to evaluate the qual-
ity of the learned vectors by computing the functional
similarity between proteins on the CESSM dataset [31].
We compare the results with the representative informa-

Table 1 Statistics of GO graphs. ‘#Terms’ denotes the number of
GO terms while ‘#Edges’ denotes the number of edges

Ontology #Terms #Edges

BP 30,705 71,530

CC 4,380 7,523

MF 12,127 13,658
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tion content based methods, namely Resnik [7], Lin [6],
Jang&Conrath [5], simGIC [33], and simUI [34], and the
corpus-based vector presentation method w2vGO [27].

CESSM dataset
CESSM [31] provides an interface with 13,430 pairs of
proteins for researchers to compare their functional sim-
ilarity measures of proteins. The 13,430 pairs of proteins
include 1,039 unique proteins, which are collected from
55 types of organisms (e.g., HUMAN and YEAST). We get
the organism information by mapping the proteins to the
UniProt database. These proteins are diverse enough to
evaluate the robustness of the measures for the semantic
similarity between proteins. CESSM provides three kinds
of combinations for the Resnik, Lin, and Jang&Conrath
methods: average [8], maximum [11], and best-match
average [14]. The best-match average method achieves
the best performance in all the three methods. In this
paper, we report their performance under the best-match
average method.

Experiments
We followed CESSM’s setting to use each category of GO
ontologies (i.e., BP, CC, and MF) for the GO and GOA
graph transformations as well as the semantic similarity
computation of GO terms and proteins. For the GO graph
transformation of each GO ontology, we do not use the
GO annotations (see Fig. 2). For the GOA graph transfor-
mation, we used the GO graph with the GO annotations
to form a graph (see Fig. 3).

For the node2vec model, we applied its code in our
experiments by trying different settings for the parameters
and report the best performance. The setting that achieves
the best results is as follows: 100 dimensions, 20 walks
per node, 100-length per walk and 20 walks per node,
undirected binary edges.

We implemented several versions of GO2Vec to com-
puter the functional similarity between proteins on both

the GO and GOA graphs in both ways described in
“Functional similarity between proteins” section. The ver-
sion that uses the modified Hausdorff distance (see
Eq. (9)) on the GO graph transformation is denoted by
‘GO2Vec_mhd_go’; the version that uses the cosine dis-
tance (see Eq. (7)) on the GOA graph transformation is
denoted by ‘GO2Vec_cos_goa’; the version that uses the
modified Hausdorff distance on the GOA graph transfor-
mation is denoted by ‘GO2Vec_mhd_goa’.

The performance of protein similarity on CESSM is
evaluated under two metrics: ECC similarity [35] and
Pfam similarity [36]. The ECC similarity is computed by
the Enzyme Comparison Class (ECC) metric [35]. The
Pfam similarity is computed through the Jaccard measure,
indicating the similarity between two proteins by the ratio
between the number of Pfam families [37] they share and
the total number of Pfam families they have.

Table 2 reports the overall performance of our mod-
els and the compared models on the CESSM dataset;
the best result in each similarity metric is highlighted
in boldface. Except on the MF ontology under the
Pfam metric, GO2Vec achieves the best performance
on all the three ontologies in the two metrics. Specif-
ically, GO2Vec_mhd_goa achieves four best results and
GO2Vec_mhd_go achieves one best result. This indi-
cates that graph embeddings can better capture informa-
tion that is useful for computing the semantic similar-
ity of GO terms and proteins compared to information
content-based methods and corpus-based word embed-
dings method.

Let us look at the comparison between using the GOA
graph and using the GO graph. The models that use a
GOA graph achieves better performance than the ones
that use a GO graph in most ontologies in most evalua-
tion metrics. This indicates that GO annotations provide
useful information for computing the semantic similarity
between GO terms and the functional similarity between
proteins.

Fig. 2 GO2Vec on GO graph: using GO terms and term-term relations. node2vec is applied on the GO graph to transform the notes to vectors. ti

denotes a GO term and vi denotes its k-dimensional vector, where vij is the j-th element of vi
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Fig. 3 GO2Vec on GOA graph: using GO terms, term-term relations, and term-protein annotations. The denotations of ti and vi are the same as the
ones in Fig. 2. pm denotes a protein and wm denotes its k-dimensional vector, where wmn is the n-th element

PPI prediction on yeast and human datasets
In this experiment, we aimed to evaluate the learned vec-
tors by predicting the protein-protein interactions in two
species whose datasets are collected from the STRING
database [32]: Yeast and Human. We compare our method
with the representative information content-based meth-
ods, namely Resnik [7], Lin [6], Jang&Conrath [5], and

simGIC [33], and the corpus-based word embeddings
method Onto2Vec [25].

PPI datasets
We got from the STRING database [32] two datasets for
protein-protein interactions (v11.0 version): Yeast (Sac-
charomyces cerevisiae) and Human (Homo sapiens). The

Table 2 Performance of our models and the compared models on the CESSM dataset

Metric Model BP CC MF

ECC Resnik 0.4258 0.3444 0.4842

Lin 0.4217 0.3391 0.5162

Jang&Conrath 0.4114 0.2520 0.5189

simGIC 0.3888 0.3503 0.5875

simUI 0.3818 0.3527 0.5783

w2vGO 0.4204 0.3516 0.4905

GO2Vec_mhd_go 0.4476 0.3650 0.6715

GO2Vec_cos_goa 0.4251 0.3507 0.6472

GO2Vec_mhd_goa 0.4508 0.3618 0.6792

Pfam Resnik 0.4507 0.4676 0.5221

Lin 0.3811 0.4562 0.5149

Jang&Conrath 0.2741 0.3321 0.4503

simGIC 0.4383 0.4682 0.5825

simUI 0.4253 0.4873 0.5504

w2vGO 0.4569 0.4735 0.5436

GO2Vec_mhd_go 0.5041 0.4902 0.4537

GO2Vec_cos_goa 0.4916 0.4727 0.4315

GO2Vec_mhd_goa 0.5118 0.4975 0.4453

The best result in each metric is highlighted in boldface
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Yeast dataset contains 3287 proteins and 1,845,966 inter-
actions while the Human dataset contains 9677 proteins
and 11,759,455 interactions. We mapped the proteins to
the UniProt database and filter out those proteins that
could not be found in the UniProt database and dis-
card those interactions involving filtered proteins. After
filtering, there remains 2851 yeast proteins and 6966
human proteins. We sampled 25,000 yeast interactions
and 1,000,000 human interactions from the remaining
interactions as positive instances for experiments. From
the remaining proteins, we sampled the same number
of pairs of proteins, between which there is no interac-
tion, as negative instances for experiments. In total, we
had 50,000 pairs of yeast proteins and 2,000,000 pairs of
human proteins for PPI prediction experiments.

We followed the setting of Onto2Vec to merge all the
three categories of ontologies and GO annotations into a
large graph. Like the CESSM experiment, we also imple-
ment several versions of GO2Vec for the PPI predic-
tion, and their denotations are the same as those used
in CESSM experiments. See “Experiments” section for
details on the setup.

For the node2vec model, we used the same setting as the
one used in the first kind of experiment.

The performance of PPI prediction is evaluated under
the metric of area under the ROC curve (AUC), where
ROC stands for the receiver operating characteristic,
which is widely used to evaluate the performance of clas-
sification and prediction tasks. ROC is defined by the
relation between the true-positive rate (TPR) and the
false-positive rate (FPR). TPR is defined as TPR = TP

TP+FN
and FPR is defined as FPR = FP

FP+TN , where TP denotes
the number of true positives, FP the number of false
positives, TN the number of true negatives, and FN the
number of false negatives.

Table 3 reports the overall performance of our mod-
els and the compared models on the two PPI datasets;
the best result in each dataset is highlighted in boldface.
(The results of the compared models are reported directly

Table 3 AUC of the ROC curve for PPI prediction on Yeast and
Human datasets

Model Yeast Human

Resnik 0.7942 0.7891

Lin 0.7354 0.7222

Jang&Conrath 0.7108 0.7027

simGIC 0.7634 0.7594

Onto2Vec 0.7660 0.7593

GO2Vec_mhd_go 0.8026 0.7953

GO2Vec_cos_goa 0.7824 0.7676

GO2Vec_mhd_goa 0.8154 0.8046

The best result in each metric is highlighted in boldface

from the paper of Onto2Vec [25]. Onto2Vec implemented
several variants and we here reported their average per-
formance.) GO2Vec achieves the best performance on the
two PPI datasets. This indicates again that graph embed-
dings can capture structural information from graph that
is useful for computing the semantic similarity between
GO terms and the functional similarity between proteins.

Compare the performance of using the GO graph and
using the GOA graph. GO2Vec_mhd_goa performs bet-
ter than GO2Vec_mhd_go in both datasets. This indi-
cates again that GO annotations successfully provide use-
ful information for computing the semantic similarity
between GO terms and the functional similarity between
proteins.

Discussion
There are two potential limitations in our method.
First, GO2Vec transforms directed graphs into undirected
graphs, which might result in a loss of structural informa-
tion. Second, GO2Vec treats the edges of term-term rela-
tions and term-protein annotations equal in a GOA graph,
while the term-term relations and the term-protein anno-
tations might not be equal in reality. We will investigate
the two issues in our future work.

Conclusion
In this paper, we employed the technique of graph embed-
dings to transform the GO and GOA graphs into vector
representations so as to compute the semantic similarity
between GO terms and the functional similarity between
proteins in an Euclidean space. To evaluate the quality
of our method, we conducted two kinds of experiments,
namely protein similarity on the CESSM dataset and
protein-protein interaction prediction, and compared our
method with the traditional information content-based
methods and the recent corpus-based word embedding
methods. Experimental results demonstrate the effective-
ness of using graph embeddings to learn vector repre-
sentations from GO and GOA graphs. Experiments also
demonstrate that GO annotations provide useful informa-
tion for computing the similarity between GO terms and
between proteins.

Methods
Recent years have witnessed an advancement of unsu-
pervised feature learning from sequences of words (e.g.,
word2vec [28, 38] and GloVe [39]) and graphs (e.g., Deep-
Walk [40], LINE [41], and node2vec [29]) in the fields
of data mining and natural language processing. These
works propose to learn latent vector representations of
words in a corpus or nodes in a graph, and have achieved
considerable success in many tasks, such as language
modelling, text classification, syntactic parsing, and social
network analysis. In this paper, we used the techniques
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of graph embeddings to transform the nodes in a GO
graph and a GO annotation graph into vector represen-
tations in order to evaluate the similarity between GO
terms and proteins. There are three pioneered models
of graph embeddings, namely DeepWalk [40], LINE [41],
and node2vec [29]. Since node2vec achieves better perfor-
mance in our experiments, we used the node2vec model
in this paper.

node2vec
Let (T , E) represent a graph where T denotes the set of
nodes and E ⊆ (T × T) denotes the set of edges. The goal
is to learn a mapping function f : T → Rk that trans-
forms the nodes to vector representations in the space Rk ,
where the parameter k specifies the dimensions of the vec-
tor representations. f can be represented by a matrix of
parameters with the size |T | × k. For each node t ∈ T ,
N(t) ⊂ T denotes the set of neighbourhood nodes of node
t, generated through a sampling strategy.

The node2vec model aims to optimize Eq. (1), which
maximizes the log-probability of observing a network
neighborhood N(t) for a node t conditioned on its vector
representation, given by f.

max
f

∑

t∈T
log P(N(t)|f (t)) (1)

To make the optimization problem resolvable, the
node2vec model makes two assumptions:

Conditional independence: given the vector represen-
tation of the source node t, the likelihood of observing
a neighborhood node t′ is independent of observing any
other neighborhood node. This is expressed by Eq. (2).

P(N(t)|f (t)) =
∏

t′∈N(t)
P(t′|f (t)) (2)

Symmetry in feature space: the source node t and the
neighborhood node t′ have a symmetric effect on each
other in the feature space. This makes the conditional like-
lihood of each pair of source-neighborhood nodes as a dot
product of their features, defined by Eq. (3).

P(t′|f (t)) = exp(f (t′) · f (t))∑
t′′∈T exp(f (t′′) · f (t))

(3)

With the above two assumptions, (1) is simplified to (4):

max
f

∑

t∈T

⎛

⎝
∑

t′∈N(t)
f (t′) · f (t) −

∑

t′′∈T
exp(f (t′′) · f (t))

⎞

⎠

(4)

The problem of sampling neighborhoods of a source
node is viewed as a problem of performing a local search.
To achieve this, the node2vec model adopts a flexible

sampling strategy that allows the model to smoothly inter-
polate between two extreme sampling strategies for gener-
ating neighborhood sets N(t): breadth-first sampling and
depth-first sampling.

Given a source node t, the node2vec model simulates a
random walk of fixed length l. Let ci denote the i-th node
in the walk, starting with c0 = t. Node ci is generated by
the following distribution:

P(ci = x|ci−1 = t) =
{

πtx
Z if(t, x) ∈ E

0 otherwise (5)

where πtx is the transition probability between nodes t and
x, and Z is the normalizing constant.

GO graph and GOA graph to vector representations
Figures 2 and 3 illustrate the GO2Vec transformation of an
undirected GO or GOA graph into vector representations.
A GO graph includes only the term-term relations of GO
terms, while a GOA graph includes both the term-term
relations of GO terms and the term-protein annotations
between GO terms and proteins. Since a protein is anno-
tated by several GO terms, merging term-term relations
and term-protein annotations into a graph enables the
graph embedding models to capture the structural infor-
mation from both term-term relations and term-protein
annotations. During the transformation, GO2Vec first
transforms a directed graph into an undirected graph
by simply setting directed edges as undirected edges,
and then applies node2vec on the undirected graph to
transform the nodes into their vector representations.
Transforming a directed graph to an undirected graph
might result in a loss of some information. However, since
node2vec adopts a strategy of random walks to sample
neighborhood nodes for a given source node, and such
strategy approximates diffusion on the graph and per-
forms better on undirected graphs than directed graphs,
we use undirected graphs in our experiments. We also
observe that using undirected graphs achieves better per-
formance than using directed graphs.

Semantic similarity between GO terms
After using node2vec for transformation, each GO term
is represented by a k-dimensional vector. We can then
compute the semantic similarity of GO terms by comput-
ing the distance of their corresponding vectors. That is, vi
and vj denote the vector representations of terms ti and
tj, respectively, the semantic similarity sim(ti, tj) between
terms ti and tj is given by the distance dist(vi, vj) between
their vectors vi and vj in the Euclidean space. The distance
dist can be computed by the cosine distance:

sim(ti, tj) = cos(vi, vj) = vi· vj

||vi||||vj|| (6)
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Functional similarity between proteins
There are two ways to compute the semantic similarity of
proteins. One way is directly through the learned vectors
of proteins, similar to the one for the semantic similarity
between GO terms. The other way is through the learned
vectors of GO terms.

From learned vectors of proteins
Let wm and wn denote the learned vectors of protein
pm and pn. The functional similarity fun(pm, pn) between
two proteins is defined by the cosine distance cos(wm, wn)

of their corresponding vectors wm and wn, as shown by
Eq. (7).

fun(pm, pn) = cos(wm, wn) = wm· wn
||wm||||wn|| (7)

From learned vectors of GO terms
Since a protein is annotated by several GO terms under
each category of GO graphs, we can view protein p as a
set of GO terms that annotate p. Let Tm denote the set
of GO terms that annotate protein pm, and Tn denote the
set of GO terms that annotate protein pn. To compute the
functional similarity between proteins pm and pn, we need
only to compute the semantic similarity of their sets of GO
terms (i.e., Tm and Tn). Since a set of GO terms can be rep-
resented by its corresponding set of vectors, the semantic
similarity of two proteins can be computed by the distance
of the two sets of vectors. Let Vm denote the set of vectors
that correspond to Tm, and Vn correspond to Tn. Then,
the functional similarity between two proteins is given by
the semantic similarity between two sets of vectors, that
is, the distance between the corresponding sets of vectors:

fun(pm, pn) = fun(Tm, Tn) = dist(Vm, Vn) (8)

There are several measures that can be used to compute
the semantic similarity between two sets of vectors [17,
42]. In our experiments, we find that the modified Haus-
dorff distance [43] achieves much better performance
than the linear combination of vectors. Therefore, in this
paper we adopt the modified Hausdorff distance to com-
pute the distance of two sets of vectors for the functional
similarity betwwen two proteins.

Given two points in a vector space (e.g., the Euclidean
space), dist measures the distance of the two vectors in
the space. The smaller the dist score is, the closer the two
vectors are. Since GO terms are transformed into vectors,
the dist(vi, vj) score can be used to estimate the spatial
relation of two GO terms ti and tj. dist(vi, vj) is defined
by the opposite of the distance function: the larger the
dist(vi, vj) is, the closer the terms ti and tj are. There-
fore, we get a variant of the modified Hausdorff distance
[43] for computing the functional similarity between pro-
teins pm and pn from two sets of vector representations of
GO terms. Specifically, the modified Hausdorff distance

of two proteins is defined by fun(Vm, Vn) =

min
{

1
|Vm|

∑
vm∈Vm

max
vn∈Vn

dist(vm, vn),

1
|Vn|

∑
vn∈Vn

max
vm∈Vm

dist(vm, vn)

} (9)

where |Vm| denotes the number of vectors in Vm. In
Eq. (9), dist(vm, vn) denotes the distance of two vec-
tors, and in this paper, we use the cosine distance:
dist(vm, vn) = cos(vm, vn).

The first way can be only used in the GOA graph trans-
formation while the second way can be used in both the
GO and GOA graph transformations.

Information content-based methods
Resnik’s semantic similarity is based on the information
content (IC) of a given term in an ontology. The IC of a
term t is defined by the negative log-likelihood in Eq. (10).

IC(t) = − log p(t) (10)

where p(t) is the probability of encountering an instance
of the term t. According to this information, Resnik simi-
larity is defined as

simResnik(t1, t2) = − log p(tm) (11)

where tm is the most informative common ancestor of t1
and t2 in the ontology.

Lin similarity [6] is defined as

simLin(t1, t2) = 2 ∗ log p(tm)

log p(t1) + log p(t2)
(12)

Jang&Conrath similarity [5] is instead defined as

simJ&C(t1, t2) = 2∗log p(tm)−log p(t1)−log p(t2) (13)

simGIC similarity [33] and simUI similarity [34] com-
pute the functional similarity between proteins. Let T1
and T2 be the set of GO terms that annotate proteins p1
and p2, respectively. simGIC similarity is defined by the
Jaccard index as Eq. (14) while simUI is by the universal
index as Eq. (15).

funGIC(p1, p2) =
∑

t∈T1∩T2 IC(t)
∑

t∈T1∪T2 IC(t)
(14)

funUI(p1, p2) =
∑

t∈T1∩T2 IC(t)
max{∑t∈T1 IC(t),

∑
t∈T2 IC(t)} (15)

The three kinds of combinations for Resnik, Lin, and
Jang&Conrath similarities include average (AVG), maxi-
mum (MAX), and best-match average (BMA), and they
are defined by Eqs. (16), (17), and (18), respectively.

funAVG(p1, p2) = 1
|T1||T2|

∑

t1∈T1,t2∈T2

IC({t1, t2}) (16)

funMAX(p1, p2) = max{IC({t1, t2})|t1 ∈ T1, t2 ∈ T2} (17)
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funBMA(p1, p2) = 1
2

⎛

⎝ 1
|T1|

∑

t1∈T1

IC({t1, t2})

+ 1
|T2|

∑

t2∈T2

IC({t1, t2})
⎞

⎠

(18)

Corpus-based word vector methods
Onto2Vec [25] uses the word2vec model [28] with the
skip-gram algorithm to learn from the descriptive axioms
of GO terms and proteins. Given a sequence of train-
ing words w1, w2, ..., wK , the skip-gram model aims to
maximize the average log-likelihood of Function (19),

Loss = 1
K

K∑

k=1

∑

−S≤i≤S,i�=0
log p(wt+i|wt) (19)

where S is the size of the training text and K is the size
of the vocabulary. After getting the word vectors from the
word2vec model, Onto2Vec linearly combines the word
vectors for proteins according to the words appearing in
the descriptive axioms of proteins

v(p) =
∑

wi∈W
v(wi) (20)

where v(p) is the vector of protein p, v(wi) is the vec-
tor of word wi, and W represents the set of words in the
descriptive axiom of protein p.

w2vGO [27] also uses the word2vec model to learn word
vectors from the descriptive axioms of GO terms. After
that, it uses the word vectors to obtain the vectors of GO
terms according to the modified Hausdorff distance [43]
as described in Eq. (9), and then use the vectors of GO
terms to obtain the vectors of proteins according again to
the modified Hausdorff distance.
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