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Abstract

Background: Influenza A virus (IAV) poses threats to human health and life. Many individual studies have been
carried out in mice to uncover the viral factors responsible for the virulence of IAV infections. Nonetheless, a single
study may not provide enough confident about virulence factors, hence combining several studies for a meta-
analysis is desired to provide better views. For this, we documented more than 500 records of IAV infections in
mice, whose viral proteins could be retrieved and the mouse lethal dose 50 or alternatively, weight loss and/or
survival data, was/were available for virulence classification.

Results: IAV virulence models were learned from various datasets containing aligned IAV proteins and the
corresponding two virulence classes (avirulent and virulent) or three virulence classes (low, intermediate and high
virulence). Three proven rule-based learning approaches, i.e., OneR, JRip and PART, and additionally random forest
were used for modelling. PART models achieved the best performance, with moderate average model accuracies
ranged from 65.0 to 84.4% and from 54.0 to 66.6% for the two-class and three-class problems, respectively. PART
models were comparable to or even better than random forest models and should be preferred based on the
Occam’s razor principle. Interestingly, the average accuracy of the models was improved when host information
was taken into account. For model interpretation, we observed that although many sites in HA were highly
correlated with virulence, PART models based on sites in PB2 could compete against and were often better than
PART models based on sites in HA. Moreover, PART had a high preference to include sites in PB2 when models
were learned from datasets containing the concatenated alignments of all IAV proteins. Several sites with a known
contribution to virulence were found as the top protein sites, and site pairs that may synergistically influence
virulence were also uncovered.

Conclusion: Modelling IAV virulence is a challenging problem. Rule-based models generated using viral proteins
are useful for its advantage in interpretation, but only achieve moderate performance. Development of more
advanced approaches that learn models from features extracted from both viral and host proteins shall be
considered for future works.
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forest
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Background
Influenza A virus (IAV) is a member of the family
Orthomyxoviridae that circulates in humans, mammals
and birds. The genome of the virus consists of 8 single-
stranded, negative-sense viral RNA segments encoding
at least 12 proteins that make up its proteome [1]. Seg-
ment 1 encodes for the basic RNA polymerase 2 (PB2);
segment 2 encodes for the basic RNA polymerase 1
(PB1) and non-essential PB1-F2 protein; segment 3 en-
codes for the acidic RNA polymerase (PA) and non-
essential PA-X protein; segment 4 encodes for the
hemagglutinin (HA) membrane glycoprotein; segment 5
encodes for the nucleocapsid protein (NP); segment 6
encodes for the neuraminidase (NA) membrane glyco-
protein; segment 7 encodes for the matrix protein 1
(M1) and matrix protein 2 (M2; also referred to as ion
channel protein); and segment 8 encodes for the non-
structural protein 1 (NS1) and nonstructural protein 2
(NS2; also referred to as nuclear export protein).
The HA and NA determine the subtype of IAV. To

date, 18 HA (H1-H18) and 11 NA (N1-N11) have been
identified. The H1N1, H2N2, and H3N2 subtypes have
been responsible for five pandemics of severe human
respiratory diseases in the last 100 years, i.e., the 1918
Spanish Influenza (H1N1), 1957 Asian Influenza
(H2N2), 1968 Hong Kong (H3N2), 1977 Russian Influ-
enza (H1N1), and 2009 Swine-Origin Influenza (H1N1).
The H1N1 and H3N2 subtypes also cause recurrent, sea-
sonal epidemics. In the last few years, the seasonal hu-
man IAVs were mainly dominated by the 1968’s H3N2
and 2009’s H1N1 strains. In addition to epidemic and
pandemic strains, several IAV subtypes have also in-
fected humans, including the H5N1, H5N6, H6N1,
H7N2, H7N3, H7N7, H7N9, H9N2, and H10N8 avian
influenza viruses [2, 3]. Among them, the H5N1 and
H7N9 subtypes have raised a major public health con-
cern due to their ability to cause outbreaks with high fa-
tality rate (about 60% (www.who.int) and 39% [4],
respectively). Overall, IAV poses a threat to human
health and life, and therefore further understanding
about the virus is needed for a better surveillance and
counteractive measures against it.
Many aspects of IAV and the disease it causes have

been investigated in mice since the animals are not only
cost-effective and easy to handle, but also available in
various inbred, transgenic, and knockout strains. More-
over, the genomes of various inbred mice have been re-
cently available. Mice have also allowed us to uncover
host and viral molecular determinants of IAV virulence.
Early outcome of IAV study in mice was the revelation
of the protective role of interferon-induced gene Mx1
against the virus [5]. Recently, the gene has been shown
to inhibit the assembly of functional viral ribonucleopro-
tein complex of IAV [6]. In the last 50 years, the

importance of many more host genes in influenza patho-
genesis has been discovered through experiments in
mice, including RIG-I, IFITM3, TNF and IL-1R genes
(reviewed in [7, 8]). Nonetheless, one limitation of the
existing approaches in investigating host molecular de-
terminants involved in IAV virulence is that it has not
yet taken into account the contribution of allelic vari-
ation to differential host responses.
In contrast, the influence of variations in viral genes to

IAV virulence have been investigated in a number of
ways. These included the generation of mouse-adapted
IAVs through serial lung-to-lung passaging and recom-
binant IAVs harboring specific mutations using plasmid-
based reverse genetic techniques combined with muta-
genesis approaches. The application of these techniques
has provided various insights about viral mutations in-
volved in IAV virulence. For example, the increased
virulence of IAV during its adaptation in mice has been
associated with mutations in the region 190-helix, 220-
loop and 130-loop, which surround the receptor-binding
site in the HA protein (reviewed in [9]). Mutations in
PB2 have also been considered to play a significant role
in the increased IAV virulence in mice, which include
mutations E627K and D701N that are considered as
general markers for IAV virulence in mice [7]. Interest-
ingly, a single mutation N66S in the accessory protein
PB1-F2 could also contribute to increased virulence [10].
Mutations in multiple sites of a specific viral protein and
mutations in multiple genes have also been shown to
have a synergistic effect on IAV virulence in mice. For
example, synergistic effect of dual mutations S224P and
N383D in PA led to increased polymerase activity and
has been considered as a hallmark for natural adaptation
of H1N1 and H5N1 viruses to mammals [11]. Another
example is the synergistic action of two mutations
D222G and K163E in HA and one mutation F35 L in PA
of pandemic 2009 influenza H1N1 virus that causes le-
thality in the infected mice [12]. Furthermore, virulence
may not only be encoded at protein level, but also at nu-
cleotide and post-translational level. In a very recent
study, synonymous codons were interestingly able to
give rise different virulence levels [13]. On the other
hand, the HA N-linked glycosylation is known to affect
viral virulence by impacting the host immune response
(reviewed in [14]).
The confidence of contribution of viral protein sites to

the virulence of influenza infections could be better in-
vestigated through a meta-analysis approach, which is a
systematic amalgamation of results from individual stud-
ies. Such approach, to our knowledge, has only been car-
ried out using a Bayesian graphical model to investigate
the viral protein sites important for virulence of influ-
enza H5N1 in mammals [15]. Nevertheless, a meta-
analysis approach using Naive Bayes approach at viral
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nucleotide level has recently been carried out to demon-
strate the contribution of synonymous nucleotide muta-
tions to IAV virulence [13]. In this paper we present a
meta-analysis of viral protein sites that determine the
virulence of infections with any subtype of IAV; how-
ever, instead of any mammal, we focus on the infections
in mice. Our meta-analysis approach utilized rule-based
machine learnings and random forest to predict IAV
virulence from datasets we created. The creation of the
datasets involved: (i) documentation of the virulence of
infections involving particular IAV and mouse strains,
(ii) classification of virulence levels, and (iii) collection
and alignments of the corresponding IAV protein se-
quences. For learning IAV virulence models, each col-
umn of the alignments was considered as a feature
vector and the virulence levels as a target vector. When
host information was considered, the amino acids in the
columns were tagged with a symbol representing the
corresponding mouse strain. The models were developed
using either all records in the datasets or records for a
specific mouse strain or influenza subtype, and using the
concatenated alignments of all IAV proteins or individ-
ual alignment of PB2, PB1, PA, HA, NP, NA, M1, NS1,
PB1-F2, PA-X, M2, or NS2 proteins. Top protein sites
and synergy between protein sites were then examined
for some biological interpretations.

Results
Datasets for modelling IAV virulence
The steps in creating benchmark datasets for modeling
IAV virulence is summarized in Fig. 1. Initially, a dataset
containing 637 records of IAV infections in mice – of
which the full or incomplete genomes of the IAVs could
be retrieved from public sequence databases and the viru-
lence class of the infection could be identified - was cre-
ated according to information available in 84 journal
publications (Additional file 5: Table S1). Of those re-
cords, 502 records have their MLD50 provided in the lit-
erature. Following RULE 6 (see Methods), multiple
records involving specific IAV and mouse strain were re-
duced into a single record (Additional file 6: Table S2).
This produced a new dataset containing 555 records and
named as the Mouse-IAV Virulence (MIVir) dataset.
Using the same rule, the MIVir dataset was further re-
duced to a dataset containing 489 records of IAV viru-
lence across different mouse strains and named as the
IAV Virulence (IVir) dataset (Additional file 7: Table S3).
The MIVir and IVir datasets were then inner joined

with another dataset containing the 12 IAV proteins
whose amino acids in their aligned position (named as
the IAV Proteins (IP) dataset), producing the MIVir ×I
IP and IVir ×I IP datasets, respectively. The keys for
joining the dataset were the IAV strains listed in the
MIVir or IVir dataset. Once again, note that some virus

strains were represented by multiple records in the IP
dataset and some proteins were generated from extrapo-
lated genomes. The breakdowns of the two joined data-
sets are shown in Fig. 1, and a more detailed breakdown
of the MIVir ×I IP is shown in Table 1. As shown in the
figure and table, the final datasets were mainly domi-
nated by experiments involving BALB/C and C57BL/6
mice and H1N1, H3N2 and H5N1 viruses. Much fewer
129S1/SvImJ, 129S1/SvPasCrlVr, A/J, C3H, CAST/EiJ,
CBA/J, CD-1, DBA/2, FVB/NJ, ICR, NOD/ShiLtJ, NZO/
HILtJ, PWK/PhJ, SJL/JOrlCrl, and WSB/EiJ mice and
H1N2, H3N8, H5N2, H5N5, H5N6, H5N8, H6N1,
H7N1, H7N2, H7N3, H7N7, H7N9 and H9N2 viruses
were in the datasets. Subsets of the MIVir ×I IP dataset
used in this study included the dataset containing all re-
cords (named as the MIV dataset) and datasets contain-
ing records of infections in BALB/C and C57BL/6 mice
(the BALB/C and C57BL/6 datasets, respectively); while
subsets of the IVir ×I IP dataset used in this study in-
cluded the dataset containing all records (the IV dataset)
and datasets containing infections with H1N1, H3N2
and H5N1 viruses (the H1N1, H3N2 and H5N1 datasets,
respectively). For virulence modelling, we further consid-
ered the subsets of the MIV, IV, BALB/C, C57BL/6,
H1N1, H3N2 and H5N1 datasets, whether they con-
tained the concatenated IAV protein alignments or indi-
vidual alignment of PB2, PB1, PA, HA, NP, NA, M1,
NS1, PB1-F2, PA-X, M2 or NS2 proteins.

Visualization of IV dataset
For an initial view of the IAV sequences being used for
virulence prediction, the 3D multidimensional scaling plot
that visualizes the level of similarity between the
concatenated alignments of all IAV proteins in the IV
dataset is presented in Fig. 2. While the clusters of domin-
ant IAV subtypes can be easily observed in the plot, separ-
ation between virulence classes is lack and this illustrates
the challenge in the prediction.
In addition, the correlation between each site and the

target virulence class in the IV dataset was also mea-
sured using the Benjamini-Hochberg (BH) adjusted p-
value of the chi-square test of independence. The line
plots showing the –log (BH adjusted p-value) over the
alignment sites of each IAV protein for the two-class
and three-class datasets are given in Fig. 3. Overall, HA
had many more sites that had a significant correlation
with the target virulence (BH adjusted p-value < 0.05),
i.e., 72 and 283 sites for the two-class and three-class
datasets, respectively. On the other hand, M2 had the
least numbers of significant sites, i.e., 1 and 4 for the
two-class and three-class datasets, respectively. The
numbers of significant sites for other proteins and for
the two-class and three-class datasets, respectively, are
as follows: 26 and 44 for PB2, 6 and 30 for PB1, 14 and
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33 for PA, 19 and 40 for NP, 19 and 167 for NA, 4 and
10 for M1, 18 and 32 for NS1, 3 and 30 for PB1-F2, 6
and 26 for PA-X, and 3 and 5 for NS2. Interestingly,
while PB2, PA, NP, M1, NS1 and NS2 had their number
of significant sites for the three-class dataset about twice
the number of significant sites for the two-class dataset,
the PB1, HA, NA, PB1-F2 and PA-X had a much higher
fold increase in the number of significant sites.

Performance of rule-based models for IAV virulence
Here we focus on the application of OneR, JRip and
PART algorithms for developing rule-based models for

IAV virulence from various datasets we created. Exam-
ples of the virulence models generated using the ma-
chine learning algorithms for the two-class and three-
class MIV, IV, BALB/C, C57BL/6, H1N1, H3N2 and
H5N1 datasets containing the concatenated protein
alignments are provided in Tables S9-S15 (Additional
files 13, 14, 15, 16, 17, 18 and 19), respectively. For each
of the two-class and three-class datasets, containing ei-
ther the concatenated protein alignments or individual
protein alignment, 100 virulence models were generated
for performance evaluation in this section and model
characterization in the next section. Specifically, a three-

Fig. 1 Creation of benchmark datasets for IAV virulence prediction. The dataset containing initial virulence information can be found in Table S1 (Additional
file 5), while the Mouse-IAV Virulence (MVir) and IAV Virulence (IVir) datasets can be found in Table S2 and S3 (Additional files 6 and 7), respectively
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way ANOVA (with interactions) model was built for each
two-class and three-class dataset collection to evaluate the
difference in accuracy between models. It revealed that
the accuracy of the virulence models in both collections
were influenced by the dataset, protein alignment, ma-
chine learning algorithm, as well as interactions among
them. Following this, the Tukey’s HSD post hoc tests for
multiple comparisons between pairs of models were car-
ried out and some results are discussed here.
Table 2 highlights the performance of OneR, JRip and

PART on the two-class and three-class datasets contain-
ing the concatenated IAV protein alignments. Overall, in
terms of their average accuracy, precision and recall,
PART models always outperformed OneR and JRip,

while JRip were almost always better than OneR (the
only case OneR consistently outperformed JRip was on
the three-class H3N2 classification). However, statistical
significant differences were mainly observed between
PART and OneR/JRip models, and less frequently ob-
served between OneR and JRip models mentioned
(please inspect (Additional file 3: Figure S3) for MIV and
IV and (Additional file 4: Figure S4) for BALB/C,
C57BL/6, H1N1, H3N2 and H5N1). Nonetheless, PART
had many more rules compared to JRip and OneR. For
example, PART had on average 10.67 and 46.97 rules
per model for the two-class and three-class IV dataset,
respectively; while JRip had on average 3.89 and 4.55
rules, respectively, and OneR always had 1 rule.
Table 2 also shows that incorporating host information

improved the accuracy of the three-class virulence classi-
fication but not for the two-class virulence classification
– the average accuracies of PART models on the three-
class MIV and IV datasets were 60.2 and 56.3% (Tukey’s
HSD adjusted p-value for the difference was < 0.05), re-
spectively, but they were about the same for the two-
class virulence classification, i.e., 71.8% for MIV dataset
and 72.4% for IV dataset (Tukey’s HSD adjusted p-value
for the difference was close to 1). Furthermore, when
consindering the host strains, the rule-based models
were more accurate for the C57BL/6 datasets than the
BALB/C datasets (statistically significant (Tukey’s HSD
adjusted p-value < 0.05) for the three-class problem but
not two-class problem); and when considering the IAV
subtypes, the rule-based models were more accurate for
the H3N2 datasets than the H1N1 and H5N1 datasets
(statistically significant for all cases). However, it ought
to be noted that the standard deviations for the C57BL/6
and H3N2 datasets were higher than the rest, and that
aggregating all mouse and/or virus strains gave the smal-
lest standard deviation while keeping accuracy
competitive.

Table 1 Cross-tabulation between mouse strains and IAV
subtypes in the MIVir ×I IP (MIV) dataset. The number at the top
in each cell corresponds to the number of records of relevant
infections, and its breakdown into high, intermediate and low
virulence cases for the three-class classification problems are
shown in order in parenthesis. The number of virulent cases for
the two-class classification problems is the sum of the number
of high and intermediate virulence cases, while the number of
avirulent cases equals to the number of low virulence cases

Mouse
strain

IAV subtype

H1N1 H3N2 H5N1 Others Total

BALB/C 123
(35/40/48)

14
(4/2/8)

162
(69/40/53)

136
(39/49/48)

435
(147/131/157)

C57BL/6 61
(14/34/13)

17
(1/2/14)

6
(6/0/0)

26
(10/5/11)

110
(31/41/38)

CD-1 0
(0/0/0)

34
(5/16/13)

0
(0/0/0)

0
(0/0/0)

34
(5/16/13)

DBA/2 21
(14/5/2)

15
(2/5/8)

0
(0/0/0)

6
(2/2/2)

42
(18/12/12)

Others 19
(9/3/7)

7
(5/0/2)

1
(0/0/1)

1
(0/1/0)

28
(14/4/10)

Total 224
(72/82/70)

87
(17/25/45)

169
(75/40/54)

169
(51/57/61)

649
(215/204/230)

Fig. 2 Three-dimensional multidimensional scaling plot of the concatenated alignments of all IAV proteins. Each data point, which represents a
record of concatenated aligned proteins of a particular IAV strain, is colored based on the subtype and three-class virulence label
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The distributions of the accuracies of the 100 OneR/
JRip/PART models learned from the two-class and
three-class MIV and IV datasets containing either the
concatenated protein alignments or an individual protein
alignment are shown in Fig. 4 and those learned from
the BALB/C, C57BL/6, H1N1, H3N2 and H5N1 datasets
are shown in (Additional file 1: Figure S1). The results
of the Tukey’s HSD post hoc test for multiple compari-
sons between pairs of models that appear in each plot in
Fig. 4 and Additional file 1: Figure S1 are given in

Figures S3 and S4 (Additional files 3 and 4), respectively.
Once again, PART usually outperformed OneR and JRip,
but it was not unusual that OneR outperformed JRip. Of
interest, PART models that were built on the datasets
containing the concatenated protein alignments almost
always achieved the highest average accuracy, except for
the three-class H3N2. The average accuracy was usually
significantly higher than the accuracy of other compet-
ing models. In many cases, PART model that is based on
PB2 or HA alignment could compete against PART
model that is based on the concatenated protein align-
ments (no significant difference between their average
accuracy; see Figure S3 and S4 (Additional files 3 and
4)).
Finally, we noted that RF models did not outperform

PART models. In about 50% of the cases, PART even
gave significantly better accuracies than RF (see (Add-
itional file 2: Figure S2)). Nonetheless, the site import-
ance ranking output by RF could provide valuable
insights and hence, RF models were further explored.

Top sites and synergy between sites for IAV virulence
As the performance of the models generated by a spe-
cific learning algorithm varied from one independent
learning to another, the models themselves tended to
vary a lot. This demonstrated the influence of selected
training data. Hence, rather than inspecting the model
one by one, it is more interesting to investigate individ-
ual sites that were frequently included in learned models
or considered to have more impacts in the models. For
this, the OneR’s single site model and RF’s site import-
ance ranking naturally suit the purpose. For JRip and
PART, we calculated the average contribution of each
site to the accuracy of learned models. Table 3 summa-
rizes the sites selected by OneR (ordered by their fre-
quency; sites that were selected once are not shown),
top 20 sites by JRip and PART (ordered by their average
contribution to the accuracy of learned models), and top
20 influential sites by RF (ordered by the average mean
decrease in accuracy) following 100 independent learn-
ings from the two-class and three-class IV datasets con-
taining the concatenated protein alignments.
Overall, for the top sites in Table 3, OneR and JRip

preferred sites in HA and NA, PART had a high prefer-
ence towards sites in PB2, and RF pointed out more sites
in PB2 and HA were important. In terms of their
consistency in selecting sites for the two-class and three-
class virulence models, RF was the most consistent (15

(See figure on previous page.)
Fig. 3 Line plots showing the correlations between sites in the IAV protein alignments and IAV virulence class in the two-class (on the left;
subplots A-L) and three-class (on the right; subplots M-X) IV datasets. The correlations are measured using the negative log of the Benjamini-
Hochberg (BH) adjusted p-values of the chi-square tests for independence between sites and IAV virulence. The red dashed horizontal line in
each plot indicates the critical adjusted p-value based on the significance level of 0.05

Table 2 Average accuracy, precision and recall (standard
deviations in parantheses) of the 100 OneR (1R), JRip (JR) on
PART (PT) models learned independently from the two-class
and three-class MIV, IV, BALB/C, C57BL/6, H1N1, H3N2 and H5N1
datasets containing the concatenated alignments of all IAV
proteins

Accuracy (%) Precision (%) Recall (%)

1R JR PT 1R JR PT 1R JR PT

Two-class datasets

MIV 58.6
(3.6)

58.8
(5.9)

71.8
(3.8)

59.1
(3.8)

59.9
(6.8)

72.2
(3.8)

58.6
(3.6)

58.8
(5.9)

71.8
(3.8)

IV 55.2
(4.0)

60.4
(6.1)

72.4
(4.0)

55.8
(4.4)

61.2
(6.5)

72.8
(4.1)

55.2
(4.0)

60.4
(6.1)

72.4
(4.0)

BALB/C 54.6
(3.8)

57.5
(5.5)

70.6
(4.8)

55.1
(4.3)

58.3
(6.4)

71.0
(4.9)

54.6
(3.8)

57.5
(5.5)

70.6
(4.8)

C57BL/6 70.7
(7.9)

73.4
(7.4)

74.3
(7.1)

72.6
(8.6)

75.0
(7.5)

75.4
(7.1)

70.7
(7.9)

73.4
(7.4)

74.3
(7.1)

H1N1 58.7
(6.0)

59.2
(6.3)

65.0
(7.5)

61.8
(8.0)

61.9
(8.1)

65.8
(7.6)

58.7
(6.0)

59.2
(6.3)

65.0
(7.5)

H3N2 72.1
(9.2)

80.7
(11.5)

84.4
(8.4)

79.4
(8.8)

84.1
(9.7)

86.5
(7.4)

72.1
(9.2)

80.7
(11.5)

84.4
(8.4)

H5N1 57.3
(6.4)

64.9
(8.1)

72.4
(6.9)

62.1
(10.6)

67.2
(8.8)

73.3
(7.3)

57.3
(6.4)

64.9
(8.1)

72.4
(6.9)

Three-class datasets

MIV 45.7
(2.6)

44.5
(3.4)

60.2
(3.0)

46.6
(3.1)

52.8
(5.3)

60.3
(2.9)

45.7
(2.6)

44.5
(3.4)

60.2
(3.0)

IV 42.1
(3.2)

42.5
(3.3)

56.3
(3.5)

43.4
(4.4)

47.9
(6.5)

56.6
(3.5)

42.1
(3.2)

42.5
(3.3)

56.3
(3.5)

BALB/C 39.8
(3.5)

42.1
(4.2)

55.4
(3.5)

40.7
(4.8)

49.1
(6.9)

55.5
(3.5)

39.8
(3.5)

42.1
(4.2)

55.4
(3.5)

C57BL/6 60.4
(5.8)

61.9
(7.2)

66.6
(7.5)

65.6
(7.6)

66.3
(7.1)

68.6
(7.8)

60.4
(5.8)

61.9
(7.2)

66.6
(7.5)

H1N1 43.3
(5.0)

44.0
(7.1)

54.6
(6.6)

48.4
(8.2)

50.3
(9.7)

55.5
(7.0)

43.3
(5.0)

44.0
(7.1)

54.6
(6.6)

H3N2 47.9
(8.9)

43.0
(9.5)

60.9
(11.7)

61.4
(17.1)

59.3
(14.6)

64.4
(13.6)

47.9
(8.9)

43.0
(9.5)

60.9
(11.7)

H5N1 38.0
(5.8)

42.1
(6.9)

54.0
(7.5)

39.7
(8.6)

47.6
(10.6)

55.1
(7.8)

38.0
(5.8)

42.1
(6.9)

54.0
(7.5)
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(A) Two-class MIV datasets

(B) Three-class MIV datasets 

(C) Two-class IV datasets 

(D) Three-class IV datasets 

All proteins PB2 PB1 PA HA NP NA M1 NS1 PB1-F2 PA-X M2 NS2 

All proteins PB2 PB1 PA HA NP NA M1 NS1 PB1-F2 PA-X M2 NS2 

All proteins PB2 PB1 PA HA NP NA M1 NS1 PB1-F2 PA-X M2 NS2 

All proteins PB2 PB1 PA HA NP NA M1 NS1 PB1-F2 PA-X M2 NS2 

Fig. 4 (See legend on next page.)
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(See figure on previous page.)
Fig. 4 Accuracy distribution of 100 models learned independently from the two-class and three-class MIV (A and B, respectively) and IV (C and D,
respectively) datasets using OneR (1R), JRip (JR) and PART (PT). The datasets contain either the concatenated alignments of all IAV proteins or
individual alignment of PB2, PB1, PA, HA, NP, NA, M1, NS1, PB1-F2, PA-X, M2 or NS2 proteins. The red dashed horizontal line indicates the
accuracy of zero rule learner, while the blue horizontal lines indicate significant difference (Tukey’s HSD adjusted p-value < 0.05) between two
virulence models generated from the same protein alignment. Information about significant differences between all possible pairs of virulence
models in each plot can be found in Figure S3 (Additional file 3)

Table 3 Top sites for modelling IAV virulence based on the 100 models generated from the (A) two-class and (B) three-class IV
datasets containing the concatenated aligments of all IAV proteins. For OneR (1R), the numbers in parentheses are the frequency of
the corresponding site being selected in the models; for JRip (JR) and PART (PT), they are the average contribution of the
corresponding site to accuracy (in percent); and for random forest (RF), they are the average mean decrease in accuracy attributed
to the corresponding site. Each number was calculated following 100 independent learnings from the two-class or three-class IV
dataset. For 1R, only sites with frequency > 1 are shown, while for JR, PT and RF, only top 20 sites are shown

(A) Two-class IV dataset

1R HA-142 (28) HA-188 (12) HA-160 (7) NA-46 (6) HA-189 (4)

PA-X-213 (4) HA-219 (3) HA-285 (3) HA-397 (3) NA-79 (3)

NS1–171 (3) NS1–95 (3) HA-196 (2) NA-86 (2) NS1–226 (2)

JR PB2–627 (4.07) PB2–701 (3.03) PA-97 (1.40) HA-297 (1.26) HA-452 (0.96)

HA-218 (0.91) NA-46 (0.89) M1–227 (0.89) NA-17 (0.71) NA-164a (0.58)

NS1–95 (0.55) NS1–226 (0.53) M1–15 (0.52) NS1–171 (0.51) PB2–508 (0.48)

NA-151 (0.43) PA-X-207 (0.43) NA-29 (0.42) NA-371 (0.40) HA-278 (0.39)

PT NS1–42 (20.29) PA-97 (20.20) PB2–714 (18.28) PB2–110 (16.72) PB2–153 (13.26)

PB2–701 (11.53) NA-276 (10.35) NP-101 (10.19) PA-556 (9.94) PB2–318 (9.26)

NP-492 (9.16) NP-133 (8.92) PB2–80 (8.71) M1–215 (8.20) NS1–123 (7.58)

HA-485 (7.56) PA-341 (6.67) PB2–635 (6.23) PB2–158 (6.08) PB2–627 (5.83)

RF PA-97 (6.75) PB2–701 (6.54) PA-X-97 (6.25) NS1–42 (5.87) HA-218 (5.53)

PB2–355 (5.11) NP-34 (4.83) PB2–627 (4.76) PB2–714 (4.55) HA-186 (4.12)

HA-227 (3.88) NP-101 (3.78) PB2–699 (3.68) HA-485 (3.66) PB2–318 (3.62)

HA-142 (3.52) M1–30 (3.49) PB2–675 (3.46) PB2–153 (3.43) NA-46 (3.35)

(B) Three-class IV dataset

1R HA-188 (34) NA-370 (16) NA-16 (10) HA-142 (9) HA-53 (6)

HA-94 (4) NA-164a (4) HA-8 (3) HA-173 (2) HA-285 (2)

JR PB2–627 (4.98) PB2–701 (1.73) NA-151 (1.45) NA-164a (1.37) HA-218 (1.20)

HA-297 (1.02) HA-225 (0.94) HA-452 (0.93) PB1-F2–28 (0.88) HA-327b (0.85)

M2–28 (0.84) HA-266 (0.74) NS1–42 (0.71) PA-97 (0.68) NA-61 (0.68)

PA-X-213 (0.59) HA-482 (0.58) M2–93 (0.54) HA-160 (0.52) PB1-F2–49 (0.51)

PT PB2–158 (12.81) PB2–110 (11.97) NS1–42 (10.79) PB2–153 (10.56) NA-276 (10.31)

PB2–80 (9.21) NS2–67 (8.46) PB2–265 (8.23) PB2–66 (7.92) PB2–627 (7.62)

NA-441 (7.28) NS1–28 (6.97) M2–24 (6.87) PB2–497 (6.54) HA-294 (6.51)

PB1–578 (6.20) PA-97 (6.19) NP-101 (6.18) PB2–76 (6.07) M1–215 (6.06)

RF PB2–627 (6. 69) NS1–42 (6.49) HA-225 (6.41) PB2–701 (6.34) PA-97 (5.90)

HA-218 (5.42) PB2–355 (5.41) PA-X-97 (5.26) M1–215 (4.84) PB2–699 (4.52)

NP-133 (4.51) NP-101 (4.48) PB2–153 (4.41) M1–30 (4.35) NP-34 (4.31)

HA-227 (4.22) HA-156 (4.17) PB2–714 (4.12) HA-188 (4.12) NA-49 (4.10)
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shared sites), followed by PART (10 shared sites), JRip (8
shared sites) and finally OneR (only 4 sites). Further-
more, no site was shared by all four learners for either
the two-class or three-class virulence models; but there
were few sites shared by three learners: PB2–627, PB2–
701, PA-97 and NA-46 for the two-class models, and
PB2–627, PA-97 and NS1–42 for the three-class models.
In addition to analyzing individual sites, it is also inter-

esting to investigate the synergy between sites that deter-
mine IAV virulence. The rule-based models given by
JRip and PART serve this purpose, but here we limit to
PART models that usually gave the highest average ac-
curacy. For this, in similar way to the identification of
top individual sites, we extracted the average contribu-
tion of each pair of sites appearing in each rule in PART
models to the overall accuracy. The synergistic networks
arising from top 50 site pairs in PART models learned
from the two-class and three-class IV datasets contain-
ing concatenated protein alignments are shown in
Fig. 5A and B, respectively. As shown, the sites in both
cases were interestingly fully connected and mainly in-
volved sites in PB2. Top 4 sites that had high degree
(number of connections) for the two-class virulence
models included PB2–714 (degree = 14), PA-97 (13),
NS1–42 (10) and PB2–701 (7), and interestingly, the
pairing between top two sites PB2–714 and PA-97 had
the highest contribution to accuracy. On the other hand,
sites that had high degree for the three-class virulence
models included PB2–110 (15), PB2–158 (13), NS1–42
(10) and PB2–153 (9), and the pairing between PB2–153
and NS1–42 had the highest contribution to accuracy.

Discussion
In this influenza study, we systematically and extensively
searched literature, collected infection records involving
specific mouse and IAV strains, noted their virulence,
classified the virulence level, and obtained related IAV
proteins in order to develop predictive virulence models
of IAV infections. Furthermore, we proposed a number
of procedures to tackle various missing data. For viru-
lence, the MLD50 value is the ultimate information we
looked for; but in its absence, weight loss and/or survival
data of infected mice were utilized to infer the lower or
upper bound of MLD50 and subsequently, to label the
virulence class. For IAV genomes, when the genomes
were incomplete or contained partial sequences, ex-
trapolation was performed using the closest genome
relative identified with BLAST. These pre-processing
works were done manually and ambiguity occasionally
occurred. Hence, caution must be taken when dealing
with the datasets and improvement in the pre-
processing approach may be considered for future
works. Alternatively, efforts in improving the current
practice of storing IAV virulence information by

research community such that it eases its reusability
ought to be encouraged, e.g., by creating an online data-
base that accepts submissions of IAV virulence related
data and is able to generate high quality tables or figures
of the input data (which then can be added into related
manuscript).
Despite the limitations of the datasets due to the ways

in handling missing MLD50, partial sequences and in-
complete genomes, and also a recent critic of using
LD50 as a virulence measure [16], the models learned
from the datasets could provide insights about IAV viru-
lence across mouse and virus strains. Rule-based models
were chosen since their output can be easily interpreted
and are congruent with the current practice in investi-
gating IAV virulence experimentally. Three rule-based
learning approaches were employed: OneR, JRip and
PART. OneR approach outputs a single site model that
gives the highest accuracy [17]; JRip and PART considers
multiple sites and they construct a set of decision rules
using different strategy. While JRip mainly uses
separate-and-conquer algorithms [18], PART combines
separate-and-conquer strategy and partial decision trees
[19]. For a comparison in the performance, we also ex-
plored the RF approach [20] in modelling IAV virulence.
For the models and their performance, we first noted

that OneR mainly selected sites in HA and NA for its
single site models, and the OneR models could give sig-
nificantly better average accuracies than the zero rule
model (in which the accuracy is calculated by assigning
all records to the class label that has the most observa-
tions). Among the sites, some have known functions
while some others are not yet characterized. For ex-
ample, site 188 in HA is known to be located at the helix
190 that surrounds the receptor-binding site and thus it
affects host specificity [21], while site 142 in HA has not
yet been well studied even though it was frequently se-
lected as the top OneR classifier. On the other hand,
JRip and PART generated multiple site models and while
JRip usually did not outperform OneR, PART almost al-
ways outperformed OneR and JRip. Of interest, PART
also outperformed RF in about 50% of the tested cases.
Moreover, a higher accuracy generally could be achieved
by PART when considering either the concatenated pro-
tein alignments or individual protein alignments. These
results demonstrate a synergistic between sites within a
single protein and sites in different proteins (in other
words, the polygenic nature of IAV virulence in mice).
This is consistent with the observations from various ex-
perimental studies, such as the ones that demonstrate
intra-protein synergy in PB2 [22–27], PA [11], and NS1
[28, 29], and inter-protein synergy that involves combi-
nations of PB2, PB1, PA, HA or NA [12, 30–36].
Further inspection on PART models across different

IAV strains using IV dataset revealed that although HA
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(A) Two-class IV dataset 

(B) Three-class IV dataset 

Fig. 5 (See legend on next page.)
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had many more sites correlated with virulence, PB2
seemed to play more important role in determining IAV
virulence. This was in agreement with the RF’s site im-
portance ranking. In terms of their accuracy, PART
models based on PB2 alone were usually as good as or
even better than PART models based on HA; except
when modelling the virulence of two-class H1N1, PART
models based on HA were more superior (see (Add-
itional file 2: Figure S2)). Moreover, PART models based
on the concatenated IAV protein alignments had a high
preference towards sites in PB2, and many sites in PB2
were also considered as the most important features for
RF models (Table 3). Figure 5 that shows synergistic
graphs for the two-class and three-class virulence
models further clearly demonstrate this. Investigations
on MIV dataset and datasets for specific IAV or mouse
strain also revealed the dominance of PB2 in most of the
cases (data not shown). When sites in PB2 did not dom-
inate, the sites in HA dominated, such as in the case for
the two-class H1N1 dataset.
The critical role of PB2 in determining virulence in

mice have been indeed highlighted for various strains,
including H3N2 [34, 37], H5N1 [22–24, 38, 39], H5N8
[26, 40], H7N9 [41–45], H9N2 [25, 27, 45, 46] and
H10N8 [45]. Among the top 20 sites in PB2 for PART
models, sites 627 and 701 have been repeatedly shown
to affect IAV virulence in mammals including mice. Site
627 is considered critical for efficient replication, while
site 701 influences polymerase activity via its interaction
with the nuclear import factor importin α that mediates
the transport of proteins into nucleus [47]. Other top
sites in PB2 are also known to contribute to virulence.
For examples, site 714 (top 20 for the two-class IV data-
set) influences replication efficiency and IAV virulence
in mice in combination with site 701 [23, 48, 49]; site 66
(top 20 for the three-class IV dataset) sets a prerequisite
for acquiring virulence [50]; and site 158 (top 20 for the
two-class and three-class IV dataset; specifically, top one
for the three-class) strongly influences the virulence of
both pandemic H1N1 and H5 influenza viruses in mice
[51]. Experimental evidence for the contribution of other
top sites in PB2 to virulence, e.g., sites 80, 110 and 153,
are still none to our knowledge. On the other hand,
some other sites not in the top list have been shown to
play a role in dictating virulence, e.g., sites 147, 339 and
588 that can synergize to give rise a higher level of viru-
lence [24].

Next, the synergistic graph for the two-class virulence
models interestingly presented a clustering of two sub-
graphs for sites in PART virulence models, with sites
PB2–714, PA-97 and NS1–42 act as a bottleneck (a node
with high betweenness centrality, i.e., having many
shortest paths going through it) connecting the two sub-
graphs. For the three-class models, the synergistic graph
containing top site pairs concentrated and expanded in
the subnetwork that included sites PB2–80, PB2–110,
PB2–153, PB2–297, NA-300, NS1–42, and M1–215.
This may indicate a greater role of these sites in sensitiz-
ing the virulence level of IAV infections. For example,
site 42 within the RNA-binding domain of NS1 influ-
ences the capability of the protein in binding double-
stranded RNA and it determines the degree of pathogen-
icity in mice [52]. This site also influences the activation
of IRF3 and regulation of host interferon response,
which subsequently influences the efficiency of viral rep-
lication [53]. Another site that has been experimentally
explored is site 215 in M1, which also contributes to the
degree of IAV virulence [54].
Overall, PART, with its approach that combines

separate-and-conquer strategy and partial decision tree,
has been a suitable method to generate sequence-based
virulence models that are not only considerably good in
performance, but also provides interpretable informa-
tion. But here, rather than relying on a single model de-
veloped from a single training dataset, the information
was extracted from 100 models learned independently
from different training datasets. While bias due to imbal-
anced classes were resolved by under-sampling to obtain
balanced classes, the iterations might help reducing bias
due to over-sampling of a particular mouse or IAV
strain. Furthermore, we also noted from the confusion
matrix that PART models tended to misclassify the
avirulent (or less virulent) strains as virulent (or more
virulent) ones rather than misclassify the virulent (more
virulent) strains as avirulent (or less virulent) ones. In
practice, this is preferred since classifying the virulent
strains as avirulent ones is a worse decision that can cost
lives. Moreover, we also investigated the effect of in-
creasing the training size for learning PART models
(data not shown). Using the two-class and three-class IV
datasets containing the concatenated protein alignments,
the mean accuracy of PART models based on the train-
ing size of 80% or 90% of the total records was about 2–
3% higher than the mean accuracy of PART models

(See figure on previous page.)
Fig. 5 Synergistic graphs between IAV protein sites in determining virulence based on 100 PART models learned from the (A) two-class and (B)
three-class IV datasets containing the concatenated alignments of all IAV proteins. Each node in the graphs represents an IAV protein site – the
type of the protein is encoded by color and the site number is written above the node. Two sites are connected by an edge if they appear in
the top 50 site pairs contributing to the accuracy of the corresponding PART models. The thickness of an edge indicates the level of contribution
of the corresponding site pair to the accuracy
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based on the training size of 60%, but it came at the cost
of higher standard deviation (about 1.3–3.3% higher)
and average number of rules (3–6 rules more for two-
class and 12–20 rules more for three-class; in other
words, more complex models). Increasing the training
size up to 99% of the total records led not only to much
higher variance, but also a drop in the mean accuracy.
Thus, with additional consideration that there were high
overlaps between top sites from PART models trained
on 80% or 90% datasets and top sites trained on 60%
datasets, and we observed that the top sites for models
trained on 80 and 90% datasets were still dominated by
sites in PB2, presenting results from models trained on
60% of datasets is justifiable.
In terms of their accuracy, PART models achieved

moderate performance for various datasets being
learned. The average accuracy over 100 models ranged
between 65.0 and 84.4% (15.0–34.4% above baseline) for
the two-class datasets that utilized all IAV proteins, and
between 54.0 and 66.6% (20.7–33.3% above baseline) for
the three-class datasets (see Table 2). Learning from
subsets of specific mouse or IAV strains revealed that
some strains were easier while others were harder to
learn. Of interest, while the average accuracies were rela-
tively the same for the two-class datasets regardless the
host information was included or not, a significant im-
provement (3.9% in increase of accuracy) was observed
when incorporating host information for the three-class
dataset. Thus, using learning approaches that further in-
corporate host information shall be encouraged, espe-
cially since several laboratory experiments have
demonstrated the importance of host genetic back-
grounds in determining IAV virulence [55–61], even at a
substrain level [62]. In particular, with the availability of
genomes and proteomes of various mouse strains, so-
phisticated methods that are based on host-pathogen
protein-protein interactions might be of interest. If suc-
cessful, an implementation of such methods may be
translated to human cases and other diseases to improve
our understanding about disease mechanisms, establish
a foundation for future personalized medicine, and pro-
vide a better surveillance. Nevertheless, the development
of the approaches will be more fruitful if there is a sig-
nificant increase in the number of influenza experiments
carried out with mouse and IAV strains that are still
limited in their number of studies.

Conclusions
In summary, we have developed benchmark datasets and
explored rule-based and RF approaches for modelling
IAV virulence. To our knowledge, the datasets are cur-
rently the biggest aggregation of IAV infections in mice,
and the number of the infection records can still grow.
The creation of these benchmark datasets will be

beneficial for further understanding the molecular prin-
ciples underlying influenza mechanisms since mice have
been a major animal model for influenza. In this study,
we utilized the datasets to assess the predictability of
IAV virulence for specific and across mouse and IAV
strains, and to identify top proteins sites and synergy be-
tween protein sites that contribute to IAV virulence.
Overall, our study confirmed the polygenic nature of
IAV virulence, with several sites in PB2 playing more
dominant roles. Not only sites that are well known as
IAV virulence markers, e.g. 627, 701 and 714, but also
some other sites in PB2 not yet known influencing viru-
lence were identified. Nonetheless, modelling virulence
is a very challenging problem due to the nature of com-
plex interactions that underlie the phenotype, which in-
volve not only viral factors, but also host factors. Hence,
future works shall incorporate more host information,
especially the host proteomic data that are now widely
available for various mouse strains. Applying different
machine learning approaches and protein features, and
posing virulence modelling as a regression problem that
predicts MLD50 shall also be considered.

Methods
Collection of IAV infections in mice with virulence
information
Journal publications containing virulence information of
IAV infections in non-transgenic and non-knock-out in-
bred mice – which were searched using Google or
PubMed search engines (with keywords that included in-
fluenza, infection, mouse, virulence, virus and LD50),
found in the citations of retrieved articles, or recom-
mended automatically by ScienceDirect – were collected.
Each unique infection involving specific IAV strain and
specific mouse strain and with known value of MLD50
was recorded. Infections without MLD50 values but
whose weight loss and/or survival data of infected mice
per infection dose could be estimated from the relevant
figures, were also recorded and used to estimate the
lower or upper bound of MLD50; few of them were used
to estimate the exact MLD50 using the Reed and
Muench method [63]. Various MLD50 units, which in-
cluded the plaque forming unit (PFU), focus forming
unit (FFU), egg infectious dose (EID50), tissue culture
infectious dose (TCID50), and cell culture infectious
dose (CCID50), were assumed to measure the same
quantity.

Virulence classification
In addition to the assumption on the equality of various
MLD50 units, the MLD50 thresholds of 103.0 and 106.0

were used for virulence classification. The thresholds are
used by WHO when classifying influenza virulence in
mice in EID50 unit [64]. In this regard, for the two-class
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problems, the levels of virulence were categorized into
avirulent class if the MLD50 was > 106.0 and virulent
class otherwise. When the class of an infection could not
be determined from the lower or upper bound of
MLD50, then the following rules were used:

Rule 1
An infection is avirulent if:

(i) the infection dose between 104.0 and 106.0 leads to
< 15% average weight loss;

(ii) the infection dose ≥105.0 does not kill any mouse; or
(iii) the infection dose between 103.0 and 104.0 leads to

≤10% average weight loss.

Rule 2
An infection is virulent if:

(i) the infection dose ≤105.0 leads to ≥15% average
weight loss;

(ii) the infection dose ≤103.0 leads to ≥10% average
weight loss; or

(iii) the infection dose ≤103.5 kills ≥10% mice.

For the three-class classification problems, the levels
of virulence were categorized into low virulence if the
MLD50 was > 106.0, intermediate virulence if the
MLD50 was ≤106.0 and > 103.0, and high virulent other-
wise. When the class of an infection could not be deter-
mined from the lower or upper bound of MLD50, then
the following rules were used:

Rule 3
An infection is low virulence if it is considered avirulent
(as given in the two class labelling).

Rule 4
An infection is intermediate virulence if:

(i) the infection dose < 104.0 leads to ≥10% average
weight loss;

(ii) the infection dose between 104.0 and 105.0 leads to
≥15% average weight loss; or

(iii) the infection dose between 105.0 and 106.0 leads to
≥20% average weight loss.

Rule 5
An infection is high virulence if:

(i) the infection dose ≤106.0 kills ≥80% mice or leads to
≥25% average weight loss; or

(ii) the infection dose ≤101.0 kills ≥20% mice.

The above procedure created the initial dataset for
IAV infections in mice with virulence information for
this study (Additional file 5: Table S1). Following this,
multiple records of infections involving specific IAV and
mouse strains were reduced into a single record (Add-
itional file 6: Table S2) by the following procedure
(termed as RULE 6):

(i) Specify the majority class of the three-class viru-
lence assignment for those records; when no major-
ity, consider the class that is more or the most
virulent.

(ii) Select the record with:
– the highest lower bound of MLD50 value when

only the lower bound of MLD50 values is
presented;

– the lowest exact or upper bound of MLD50
value when they are available; but when the
highest lower bound of MLD50 value is lower
than this value, then calculate the average of
those two values and assign the virulence class as
described previously.

This procedure selected a record that had the more or
most virulent information among the records, except
when only the lower bound of MLD50 values was avail-
able; or alternatively, with the majority class if it could
be determined. Note that when applying this procedure,
the recombinants of naturally occurring or wild-type
IAV strains were considered representing the wild-type
version. In a similar fashion, we applied this procedure
to reduce multiple records of infections of a specific IAV
strain in different mouse strains into a single record
(Additional file 7: Table S3).

Collection of related genomes and main proteins
The availability of the sequences of IAV strains in the
public databases, when they are not suggested in the lit-
erature, were checked online using Google, GenBank
and GISAID search engines, or search offline in the gen-
omeset.dat and influenza_na.dat files that were retrieved
from NCBI Influenza Virus Resource [65]. The se-
quences of the viruses, if available, were collected from
GenBank [66] or GISAID [67]. When the genome of a
particular virus were incomplete, the HA and/or NA of
the virus were/was BLASTed against GenBank database
of all influenza viruses and the top virus hit whose
complete genome was available was used to extrapolate
the incomplete genome (Additional file 11: Table S7).
Considering the closeness between their collection year
and name, the genomes of A/Turkey/15/2006(H5N1)
and A/chicken/Shandong/L1/2007(H9N2) were used to
represent the genomes of A/Turkey/13/2006(H5N1) and
A/chicken/Shandong/lx1023/2007(H9N2), respectively,
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which were not available during this study. Furthermore,
we extrapolated partial IAV sequences by using the clos-
est complete IAV sequence identified by BLAST (Add-
itional file 12: Table S8). Following the collection of IAV
genomes and their extrapolation, the 12 IAV proteins
were obtained by identifying their coding sequence re-
gions using Influenza Virus Sequence Annotation Tool
available at the NCBI Influenza Virus Resource [65] and
then translating them into proteins according to stand-
ard genetic code. Some proteins, mainly for recombinant
and/or mutant viruses, were generated from existing
proteins according to the list of amino acid differences
at various sites reported in the literature. Note that some
IAVs were represented by different versions of genomes
or sets of proteins, but the reassortant or mutant viruses
were mainly reconstructed from one of the versions. The
metadata for IAV nucleotide sequences used in this
study, reconstructed recombinant and/or mutant IAVs
generated from those sequences, and the acknowledge-
ment of the source of the GISAID sequences are pro-
vided in Table S4-S6 (Additional files 8, 9 and 10),
respectively. They were also made available in DR-NTU
(Data) under the title “Virulence Information for Influ-
enza Virus Infections (VI2VI) in Mice” [68], and further
update will be available in the link: https://doi.org/10.
21979/N9/ILQBAB.

Machine learning approaches for IAV virulence prediction
Three rule-based machine learning approaches, i.e.,
OneR, JRip and PART that are available in RWeka ver-
sion 0.4.39 [69], and random forest (RF) that is available
in randomForest package version 4.6.14 for R software
(R version 3.5.1 [70] was used for all statistical and com-
putational works in this study) were explored to develop
predictive models for IAV virulence. Various input data-
sets were considered (see the first section of results), but
in general, the input datasets consisted of IAV proteins
that have been aligned with muscle package version
3.8.425 [71] and their target virulence class. The datasets
included either the concatenated alignments of all IAV
proteins or individual alignment of PB2, PB1, PA, HA,
NP, NA, M1, NS1, PB1-F2, PA-X, M2 or NS2 proteins.
Each column in the alignment that contained more than
one symbol was considered as a single feature vector –
H3 and N2 numberings were used to label the position
in the alignments of HA and NA, respectively. Input
datasets that incorporated the host strain information,
where each amino acid in the alignments was tagged
with a symbol indicating associated host strain, were also
considered. For each input dataset, each learning algo-
rithm and each of the two-class and three-class datasets,
rule-based and RF models were learned independently
100 times. In each iteration, the dataset was balanced by
reducing the size of the bigger (biggest) class to the size

of the smaller (smallest) class through sampling without
replacement. Unless stated otherwise, 60% of the records
(rows of the alignment) from each virulent class were
used as training data for learning a model, while the rest
were used as test data. Performance metrics that in-
cluded accuracy, (macro-average) precision and (macro-
average) recall were calculated to evaluate the models.

Visualization, statistical analyses and site rankings
The concatenated alignments of all IAV proteins were
visualized in 3D Cartesian coordinates. For this, a matrix
of pairwise distances from the concatenated protein
alignments was computed using Fitch similarity matrix
and then the Kruskal’s non-metric multidimensional
scaling available in MASS package version 7.3.50 [72]
for R software was applied to place each record of the
concatenated protein sequences in a 3D space.
The correlations between sites in the alignment and

the target virulence class were measured using the
Benjamini-Hochberg adjusted p-values of the chi-square
test of independence. The –log (adjusted p-value) of the
test over the sites of each IAV protein was visualized
with a line plot.
For each of the two-class and three-class datasets, a

three-way ANOVA model (with interactions) was built
to identify factors that influence the accuracy of the
virulence models. The factors included the dataset (with
7 levels: MIV, IV, BALB/C, C57BL/6, H1N1, H3N2 and
H5N1), protein alignment (with 13 levels: all proteins,
PB2, PB1, PA, HA, NP, NA, M1, NS1, PB1-F2, PA-X,
M2 and NS2) and machine learning algorithm (with 3
levels: OneR, JRip and PART). The Tukey’s HSD post
hoc test was then carried out to identify pairs of groups
(virulence models) that were significantly different. The
Wilcoxon signed-rank sum test was also used to test the
null hypothesis that the median of the accuracy of PART
model learned from any dataset containing the
concatenated protein alignments is greater than that of
the corresponding RF model. The p-values of the tests
were adjusted using the Bonferroni method.
Following 100 independent learnings from the two-

class and three-class IV datasets, the protein sites from
models learned using each algorithm were ranked. For
OneR, the sites were ranked according to their frequency
of being selected for the models; for JRip and PART, the
sites were ranked according to their average contribution
to the accuracy of learned models; and for RF, the sites
were ranked according to their contribution to the aver-
age mean decrease in accuracy. For PART models, we
also ranked the site pairs according to their average con-
tribution to the accuracy of learned models and visual-
ized the synergistic graph arises from the top 50 site
pairs using igraph package version 1.2.2 [73] for R
software.
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