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Abstract

Background: Tandem mass spectrometry allows biologists to identify and quantify protein samples in the form of
digested peptide sequences. When performing peptide identification, spectral library search is more sensitive than
traditional database search but is limited to peptides that have been previously identified. An accurate tandem
mass spectrum prediction tool is thus crucial in expanding the peptide space and increasing the coverage of
spectral library search.

Results: We propose MS2CNN, a non-linear regression model based on deep convolutional neural networks, a deep
learning algorithm. The features for our model are amino acid composition, predicted secondary structure, and
physical-chemical features such as isoelectric point, aromaticity, helicity, hydrophobicity, and basicity. MS2CNN was
trained with five-fold cross validation on a three-way data split on the large-scale human HCD MS2 dataset of
Orbitrap LC-MS/MS downloaded from the National Institute of Standards and Technology. It was then evaluated on
a publicly available independent test dataset of human HeLa cell lysate from LC-MS experiments. On average, our
model shows better cosine similarity and Pearson correlation coefficient (0.690 and 0.632) than MS2PIP (0.647 and
0.601) and is comparable with pDeep (0.692 and 0.642). Notably, for the more complex MS2 spectra of 3+ peptides,
MS2PIP is significantly better than both MS2PIP and pDeep.

Conclusions: We showed that MS2CNN outperforms MS2PIP for 2+ and 3+ peptides and pDeep for 3+ peptides.
This implies that MS2CNN, the proposed convolutional neural network model, generates highly accurate MS2

spectra for LC-MS/MS experiments using Orbitrap machines, which can be of great help in protein and peptide
identifications. The results suggest that incorporating more data for deep learning model may improve
performance.

Keywords: Peptide, Mass spectrum, Tandem mass spectrometry, Spectral library search, Protein identification,
Machine learning, Deep learning, Deep convolutional neural networks
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Background
Tandem mass spectrometry (MS2) has emerged as an in-
dispensable technology in high-throughput proteomics
experiments [1]. Tandem mass spectra generated from
bottom-up proteomics consist of mass-to-charge ratios
and relative abundances of a set of fragment ions gener-
ated from digested peptides. The patterns of these frag-
ment ions are useful for the identification and
quantification of proteomes in the sample.
There are two common approaches for protein identi-

fication: database search and spectral library search. The
former searches each tandem mass spectrum (or MS2

spectrum) acquired from experiments against theoretical
spectrums generated from all possible digested peptides
(with trypsin in most of the cases) in the human prote-
ome using a scoring function. The latter searches a MS2

spectrum against a spectral library, a collection of high-
quality spectra of all identified peptides from previous
experiments [2]. Although database search is more com-
prehensive and covers all possible peptide space, the
sensitivity is lower because of the absence of intensity
for each fragment ion in theoretical spectra. In contrast,
spectral library search provides considerably higher sen-
sitivity since a spectral library consists of realistic frag-
ment ion intensities [3]. However, spectral library search
is limited to peptides that have been previously identi-
fied, which hinders the application of spectral library
search in areas where the discovery of novel peptides is
of importance, such as the identification of peptides with
mutations or peptides from isoforms of proteins. To take
this into account, it is necessary to develop methods for
computational prediction or simulation of MS2 spectra
from amino acid sequences to expand the size of a spec-
tral library.
There are several different strategies in predicting the

MS2 spectrum of a peptide. MassAnalyzer, a pioneer
work in computational prediction of a MS2 spectrum,
uses a kinetic model on the basis of the mobile proton
hypothesis to simulate peptide fragmentation [4, 5]. A
semi-empirical approach is to predict the MS2 spectrum
of a peptide from the spectra of similar peptides by peak
perturbation [6]. The approach is based on the observa-
tion that the peptides of similar sequences produce simi-
lar fragmentation patterns in most cases. The concept is
then generalized to a weighted K-nearest neighbor
(KNN) approach in which a machine learning model
first selects peptides that are likely to have high spectra
similarity to the target peptide, and then a consensus al-
gorithm combines their spectra to predict the MS2

spectrum of the target peptide [7]. Though the two ap-
proaches can yield good prediction accuracy for target
peptides with similar amino acid sequence neighbors,
they are not designed to predict the MS2 spectrum for
arbitrary peptides of interest. For better predictive

capability, other methods simplify the model by focusing
on the prediction of y-ion intensities only [8–10]. Al-
though they achieve some success, the applicability of
these methods is somewhat restricted.
PeptideART, a data-driven approach based on feed-

forward neural networks, is trained with more than 40,
000 peptide spectrum matches (PSMs) [11]. In bench-
mark tests on five different data sets for MS2 spectrum
prediction, PeptideART compares favorably to MassA-
nalyzer. MS2PIP [12], a later random forest approach, in-
corporates different predictive models for different
peptide lengths (8 to 28 amino acids) and different
charge states (charge 2+ and 3+). These models are
trained with more than 73,000 PSMs; the overall per-
formance is reported to be better than PeptideART. A
web server version of MS2PIP has been constructed with
a new computational model and a much larger training
data set of more than 170,000 PSMs [13]. More recently,
a deep neural network-based method called pDeep has
been developed [14]. The method is based on a bidirec-
tional long short-term memory (BiLSTM) model and is
trained with a data set of around 4,000,000 MS2 spectra.
Notably, for the same peptide sequence, it predicts MS2

spectra of three different fragmentation approaches:
HCD (higher-energy collisional dissociation), ETD (elec-
tron-transfer dissociation), and EThcD (electron-trans-
fer/higher-energy collision dissociation). According to
the reported benchmark experiment, pDeep yields con-
siderable improvements over MassAnalyzer and MS-
Simulator.
In this study, we propose MS2CNN, a deep convolu-

tional neural network (DCNN) method for MS2

spectrum prediction given experimental spectra large
enough to effectively train a sophisticated deep learning
model. We adopt the network structure of LeNet-5 [15],
a DCNN consisting of three major components: a con-
volutional layer, a pooling layer, and a fully connected
layer. A single DCNN is constructed to predict peptides
of a specific length and charge. The entire training set
was composed of high-quality human HCD MS2 spectra
from an Orbitrap LC-MS/MS experiment downloaded
from the National Institute of Standards and Technology
(NIST) consisting of 320,824 unique peptide sequences
and 1,127,971 spectra. Five-fold cross validation was per-
formed and the method was then benchmarked on a
publicly available independent test dataset of human
HeLa cell lysate from LC-MS/MS experiments with
MS2PIP and pDeep. MS2CNN achieved a cosine similar-
ity (COS) in the range of 0.57–0.79 and 0.59–0.74 for
peptides of charge 2+ and charge 3+, respectively. These
results suggest that MS2CNN significantly outperforms
MS2PIP, especially for shorter peptide sequences for
which abundant training data is available. It is also
shown that MS2CNN has an overall comparable
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performance to pDeep; however the former predicts
MS2 spectra for charge 3+ peptides, which are usually
considered more complicated than the spectra for 2+
peptides, at a higher accuracy.

Results
Five-fold cross validation for determining convolutional
layer
Because there are significantly more charge 2+ than
charge 3+ peptide sequences, the best layer number of
MS2CNN is determined by charge 2+, after which the
value is directly applied to charge 3+. Given the one-fold
run of the five-fold validation result, we chose the 4-
layer model as the default structure of MS2CNN because
it yielded the best performance and is the most efficient
of all the models (Additional file 1: Table S4). Although
the 5-layer model is comparable to the 4-layer model for
some peptide lengths, we did not consider it as its per-
formance fluctuates considerably for peptides of differ-
ent lengths and it also requires longer training times.
Figure 1 shows the five-fold cross validation perform-

ance evaluated with COS for different peptide lengths
and charge states (other detailed metrics are given in

Additional file 1: Table S5). The figure shows that the
predictive capability decreases as the peptide length gets
larger, possibly due to less training data for longer pep-
tides. We further investigated whether there is a benefit
to merging charge 2+ and 3+ training data to build up a
single model as MS2CNN_mix instead of having the two
MS2CNN 2+ and MS2CNN 3+ models for charge 2+
and charge 3+ peptides, respectively. We followed the
previous training procedure with an additional input
feature-engineered procedure based on the merged data
set of charge 2+ or 3+ peptides. The performance in
general falls between the performance of charge 2+ and
charge 3+ (Fig. 1, gray bar). This shows that although a
larger data set boosts performance (improves MS2CNN
3+ performance), different charge states also contain
specific patterns in terms of spectrum prediction
(impairing MS2CNN 2+ performance).

Upper bound analysis
Peptide fragmentation is a random process; for example,
even the same peptide in the same experiment can
sometimes result in different peak intensities in spectra.
When combining different ionization sources, ion

Fig. 1 Bar chart of MS2CNN COS on charge 2+ (blue), 3+ (orange), and mix (gray) models. Blue and orange dashed lines indicate the peptide
number of charge 2+ and 3+ data sets, respectively
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detection, experimental steps, and even different species,
the spectrum of the same peptide can be significantly
different. Therefore, we compare the similarity between
the training spectra and independent spectra for the
same peptide sequence (Table 1). Ideally, the similarity
in terms of COS or PCC should be 1 if the experimental
conditions and the random processes for generating the
two spectra are perfectly identical. In reality, the similar-
ity can be seen as the Bayes rate, the theoretical predic-
tion upper bound on prediction accuracy due to
unexplainable variance. To conclude, the average upper
bound COS for different peptide lengths ranges from
0.600 to 0.800 and decreases as peptide length increases.
The average upper bound of PCC for different peptide
lengths is even lower, ranging from 0.550 to 0.760. Pep-
tide length seems to have a smaller effect on PCC than
on COS, especially for peptides of charge 3 + .

Independent test set evaluation
We compared the proposed MS2CNN and MS2CNN_mix
models with MS2PIP and pDeep based on the independ-
ent test set in terms of COS and PCC (Figs. 2 and 3, de-
tailed values in Additional file 1: Table S6). In general,
MS2CNN and MS2CNN_mix outperform MS2PIP for
charge 2+ (Fig. 2) and charge 3+ (Fig. 3) peptides in both
metrics significantly with a p-value < 0.01 by a Wilcoxon
signed-rank test (Additional file 2: R Script). For charge
2+ peptides, MS2CNN outperforms pDeep marginally for
peptide lengths no greater than 11, whereas for peptide
lengths from 12 to 19, pDeep considerably outperforms
the other methods for both COS and PCC (Fig. 2). In con-
trast, for charge 3+ peptides, MS2CNN and MS2CNN_
mix yield higher COS and PCC than pDeep for all peptide
lengths significantly with a p-value < 0.01 by the Wilcoxon
signed-rank test (Fig. 3). This suggests that pDeep might

be more sensitive to the size of training data, as the num-
ber of spectra for charge 3+ peptides is significantly
smaller than that of the charge 2+ peptides. Note that
pDeep was trained with HCD mouse spectra. Although
they show a high MS/MS spectra similarity (a median
PCC of 0.94) across different species, a minority of pep-
tides which share low similarity across species can never-
theless deteriorate prediction performance.
Note that the performance of charge 3+ peptides at

lengths of 17, 18, and 19 are better than that of charge
2+ peptides for both COS and PCC. This may be due to
the richer training data set and higher theoretical predic-
tion upper bound in those ranges. The advantage of
MS2CNN_mix can be seen in the prediction results of
charge 3+ (Fig. 3), for which the size of the training data
set greatly increases. This benefit becomes insignificant
for charge 2+ peptides, as the original training data set is
much larger: the improvement is not affected by theoret-
ical prediction upper bound. Taking charge 3+ peptide
lengths of 11 and 12 as an example (Fig. 3 b), there is
more improvement in length 12 (MS2CNN_mix vs
MS2PIP) but a higher upper bound in length 11 than
length 12 (0.721 vs 0.682, Table 2 charge 3 + .PCC).

Discussion and conclusion
Peptide identification is an important issue in mass
spectrometry-based proteomics. There are two major ap-
proaches for peptide identification: database search and
spectral library search. Spectral library search boasts a
greater sensitivity than database search, but is limited to
peptides that have been previously identified. Overcoming
this limitation calls for an accurate MS2 spectrum prediction
tool that is capable of reproducing the chemical fragmenta-
tion pattern of a peptide sequence. Over the years, a large
number of high quality MS2 spectra have been generated
and made publicly available by experimentalists, making for
an excellent opportunity for researchers to effectively train
modern machine learning models such as deep convolu-
tional neural networks for MS2 spectra prediction.
We devise DCNN, a deep learning model for the pre-

diction of peak intensities of MS2 spectra. In addition to
DCNN, we incorporate different Python libraries for fea-
ture engineering to facilitate the training process. Ac-
cording to our independent test set of HCD spectra of
human samples from Orbitrap LC-MS experiments,
MS2CNN shows superior prediction performance com-
pared to MS2PIP for charge 2+ and 3+ peptides in terms
of COS. It also outperforms pDeep, another deep learn-
ing approach, for charge 3+ peptides. In the future, we
plan to improve the predictive power of our model by ei-
ther including more data for longer peptide sequences
or employing another popular approach in deep learning
such as transfer learning, in which a pretrained model is
reused for another task, for example, we use a model

Table 1 Average cosine similarity (COS) and Pearson correlation
coefficient (PCC) of spectra from the same peptide in training
and independent test sets with charge 2+ and charge 3+

Length Charge 2+ Charge 3+

COS PCC COS PCC

9 0.800 0.757 0.617 0.553

10 0.770 0.724 0.781 0.734

11 0.760 0.713 0.771 0.721

12 0.735 0.688 0.735 0.682

13 0.704 0.655 0.732 0.681

14 0.703 0.658 0.703 0.650

15 0.687 0.643 0.672 0.617

16 0.694 0.652 0.691 0.641

17 0.645 0.601 0.690 0.641

18 0.646 0.606 0.660 0.612

19 0.636 0.595 0.668 0.622
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trained on short peptides for a long peptide task. In the
light of our results, we believe MS2CNN can be of great
use in expanding the coverage of a spectral library and
improving the identification accuracy of spectral library
search in the analysis of proteomics samples.

Methods
Feature engineering
To apply a deep learning method to our dataset, each
peptide sequence must be converted into a feature vec-
tor with a label. Table 2 lists the features we use to

Fig. 2 a COS (cosine similarity) and b PCC (Pearson’s correlation coefficient) of MS2CNN 2+ (blue bar), MS2CNN_mix (blue bar with white dots),
MS2PIP (white bar with blue dashes), and pDeep (black bar) on the charge 2+ peptides from the independent test set
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characterize a peptide sequence. These features include
peptide composition (similar to amino acid composition),
mass-to-charge ratio (m/z), and peptide physical-chemical
properties such as isoelectric point, instability index, aroma-
ticity, secondary structure fraction, helicity, hydrophobicity,

and basicity. The m/z and physical-chemical features of not
only the peptide sequence but all the possible b and y frag-
ment ions are also included in the feature vector. Take for
example the peptide sequence AAAAAAAAGAFAGR
(length = 14): its m/z is 577.80, the amino acid composition

Fig. 3 a COS and b PCC of MS2CNN 3+ (blue bar), MS2CNN_mix (blue bar with white dots), MS2PIP (white bar with blue dashes), and pDeep
(black bar) on the charge 3+ peptides from the independent test set

Lin et al. BMC Genomics 2019, 20(Suppl 9):906 Page 6 of 10



is {A: 10, C: 0, D: 0, E: 0, F: 1, G: 2, H: 0, I: 0, K: 0, L: 0, M:
0, N: 0, P: 0, Q: 0, R: 1, S: 0, T: 0, V: 0, W: 0, Y: 0}, and the
physical-chemical properties {isoelectric point, instability
index, aromaticity, helicity, hydrophobicity, basicity, sec-
ondary structure fraction} are {9.80, 3.22, 0.07, − 0.21, 1.21,
208.46, (0.071, 0.14, 0.71)}. In addition, the m/z and
physical-chemical properties of all the 26 (=2*(14–1)) frag-
ment ions are included in the feature vector. The total
number of features for a peptide sequence is 290 (=1 +
20 + 9 + 26*1 + 26*9). We used Pyteomics v3.4.2 [16] to
compute the mass-to-charge ratio and Biopython v1.7 [17]
to calculate the amino acid composition, instability index,
isoelectric point, and secondary structure fraction.

MS2CNN model
We propose MS2CNN, a DCNN model that uses the
aforementioned features (Fig. 4). The MS2CNN model

takes a peptide feature vector as input and computes an
ensemble of nonlinear function nodes in which each
layer consists of a number of nodes. The predicted peak
intensity corresponds to an output node of the MS2CNN
model.
In the proposed model, a convolution layer is activated

by the relu activation function. A max-pooling layer is
added after a convolution layer: together they constitute
one convolution-pooling layer. The number of
convolution-pooling layers is repeated n times in
MS2CNN, where n ranges from 2 to 7. The best number
was determined by a cross validation experiment. We
unify the node number of the convolutional layers as 10;
the node number for the last convolutional layer de-
pends on the layer depth. Additional file 1: Table S1 lists
the detailed configurations for convolutional layers from
layers 2 to 7. The repeated convolution-pooling layers

Table 2 Features used to encode a peptide sequence and its fragment ion sequences
Feature Description Package: function name

m/z Pyteomics v3.4.2: calculate_mass

Original m/z of the original sequence

Fragment ion m/z of the fragment ion sequence

Isoelectric point isoelectric point of the sequence Biopython 1.7: isoelectric_point

Instability index instability index of the sequence Biopython 1.7: instability_index

Aromaticity aromaticity of the sequence Biopython 1.7: aromaticity

Secondary structure fraction α-helix, β-strand and coil fraction of the sequence Biopython 1.7: secondary_structure_fraction

Helicity helicity of the sequence In-house program

Hydrophobicity hydrophobicity of the sequence in-house program

Basicity basicity of the sequence in-house program

Fig. 4 MS2CNN model architecture
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are followed by another layer to flatten the output. Then
we add a fully connected layer with twice as many nodes
as the number of output nodes. We implemented the
MS2CNN architecture and executed the whole training
process using the Keras Python package version 2.0.4
[18]. Figure 4 illustrates the MS2CNN model structure.

Datasets
Training data set
We downloaded the training set – a human HCD library
based on an Orbitrap mass analyzer and LC-MS (Liquid
chromatography–mass spectrometry) – from the NIST
website. This set is based on CPTAC and ProteomeX-
change, two public repositories containing 1,127,971
spectra from 320,824 unique peptide sequences in .msp
format. The dataset consists of peptides with charge
states ranging from 1+ to 9+, among which only charge
states of 2+ and 3+ were selected as there was not
enough data for the other charges to effectively train a
machine learning model. This strategy is consistent with
previous studies.

De-duplicated spectrum
It is common for different spectra to belong to the same
peptide sequence, and for charge states to have different
peak intensities for their fragment ions. We performed a
two-step process to generate a de-duplicated spectrum
from a set of spectra for a given peptide. First, each peak
in a spectrum was normalized by the maximum peak in-
tensity of the spectrum. Then, the intensity of each b-
and y-ion was determined by the median intensity of the
ion across different spectra. This yielded a consensus
spectrum which filters out noise that could degrade
DCNN training. Additional file 1: Table S2 summarizes
the number of spectra after deduplication. For effective
training of a complex DCNN model, the number of pep-
tides should exceed 5000 after deduplication. Based on
this criterion, we focused on peptides of lengths 9 to 19
and eliminated the rest. This resulted in 166,371 charge
2+ peptides (70.4% of the 2+ peptides from NIST) and
98,364 charge 3+ peptides (69.6% of the 3+ peptides
from NIST).

Independent test set
We used the data-dependent acquisition data of Orbi-
trap LC-MS experiments from [19] as an independent
test set. This included 22,890 and 5998 spectra for
charge 2+ and 3+ peptides, respectively. The proportion
of common peptides in our training set and independent
test set exceeded 90%. Although these peptides were
viewed as easier prediction targets, the performance is
still bounded by the theoretical upper bound; for ex-
ample, the upper bound of COS for charge 2+ and
charge 3+ peptides ranges from 0.636 to 0.800 and from

0.617 to 0.781, respectively (detailed numbers shown in
Table 1). The numbers of commonly observed peptides
for different lengths are summarized in Additional file 1:
Table S3.

Evaluation
K-fold cross validation
To select the best parameters (i.e., layer numbers) for
the MS2CNN model and to prevent overfitting, we ap-
plied five-fold cross validation with a three-way data
split, namely, the entire data set was partitioned into
training, validation (10% of training data), and test sets.
Training epochs continued as long as the accuracy of
the validation set improved over the previous epoch by
0.001; otherwise, training was terminated. The final
model was selected based on validation performance,
and was used to predict the test set for performance
evaluation. Since our model was selected based on valid-
ation set performance, there was no data leakage prob-
lem, in which information in the test data is involved in
model selection. This problem can result in over-
estimation of the performance and unfair comparison
with other methods.

Metrics
Two metrics are used: Cosine similarity (COS) and Pear-
son correlation coefficient (PCC). COS is one of the most
widely used spectrum similarity measures for mass spec-
trometry. It measures the similarity between two non-
zero vectors by calculating the angle between them (Eq.
1, calculated by the Python scikit-learn package [20]).
COS ranges from − 1 to + 1 (angle from 180° to 0°).

cos X;Yð Þ ¼ XYT

Xj jj j Yj jj j⋯ ð1Þ

The PCC measures the linear correlation between two
variables X and Y (Eq. 2, calculated by the Python Scipy
package [21]). It ranges from 1 to − 1, where 1 denotes a
completely positive correlation, − 1 a completely nega-
tive correlation, and 0 a random correlation or two vari-
ables that have no association.

ρXY ¼ cov X;Yð Þ
σX σY

⋯ ð2Þ

Evaluation methods

MS2PIP Recently, MS2PIP released a new prediction
model using XGBoost [22]; the previous random-forest
model [13] was not available. Thus, we used the latest
MS2PIP model for benchmark comparison. The local
standalone version (Python code downloaded from [23])
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was used instead of the online server as the latter is sub-
ject to a maximum number of 5000 peptides per query.
We used the default settings of MS2PIP according to

the Github config file, other than changing frag_method
from HCD to HCDch2. In addition, the MGF function
was enabled to generate intensities without log2 trans-
formation. To ensure a fair comparison, we processed
the test data using the same peak normalization proced-
ure used to process our training data.

pDeep First, we converted a peptide to a 2D array using
the pDeep API. Then, we loaded the pDeep model (.h5
format), which we used to predict the intensities of the
peptide [14]. Although the pDeep documentation states
“If the precursor charge state is <= 2, 2+ ions should be
ignored”, to ensure a fair and complete charge 2+ pep-
tide comparison, we set the intensity of the testing 2+
peak to zero as if it were missing in pDeep prediction.
pDeep provided three trained models – BiLSTM,
ProteomeTools-ETD, and ProteomeTools-EThcD – of
which the BiLSTM model was used for comparison as it
performed the best in both COS and PCC metrics (Add-
itional file 1: Table S6).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6297-6.

Additional file 1: Excel file: Supplementary tables S1–S6 for additional
results.

Additional file 2: R Script: Wilcoxon signed-rank test for independent
test set evaluation.
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