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Abstract

Background: The rapid development of Next-Generation Sequencing technologies enables sequencing genomes
with low cost. The dramatically increasing amount of sequencing data raised crucial needs for efficient compression
algorithms. Reference-based compression algorithms have exhibited outstanding performance on compressing
single genomes. However, for the more challenging and more useful problem of compressing a large collection of n
genomes, straightforward application of these reference-based algorithms suffers a series of issues such as difficult
reference selection and remarkable performance variation.
Results: We propose an efficient clustering-based reference selection algorithm for reference-based compression
within separate clusters of the n genomes. This method clusters the genomes into subsets of highly similar genomes
using MinHash sketch distance, and uses the centroid sequence of each cluster as the reference genome for an
outstanding reference-based compression of the remaining genomes in each cluster. A final reference is then
selected from these reference genomes for the compression of the remaining reference genomes. Our method
significantly improved the performance of the-state-of-art compression algorithms on large-scale human and rice
genome databases containing thousands of genome sequences. The compression ratio gain can reach up to 20-30%
in most cases for the datasets from NCBI, the 1000 Human Genomes Project and the 3000 Rice Genomes Project. The
best improvement boosts the performance from 351.74 compression folds to 443.51 folds.
Conclusions: The compression ratio of reference-based compression on large scale genome datasets can be
improved via reference selection by applying appropriate data preprocessing and clustering methods. Our algorithm
provides an efficient way to compress large genome database.

Keywords: NGS data, Data compression, Reference-based compression, Unsupervised learning

Introduction
Next-generation sequencing (NGS) technologies have
produced enormous amount of reads data at an unprece-
dented speed [1]. The sharp reduction in sequencing costs
has also provoked a wide range of NGS applications in
large scale health, environment, and agriculture genomic

*Correspondence: bysu@aqnu.edu.cn; jinyan.li@uts.edu.au
2School of Computer and Information, Anqing Normal University, 246401,
Anqing, China
1Advanced Analytics Institute, Faculty of Engineering and IT, University of
Technology Sydney, Broadway, NSW 2007 Sydney, Australia

research. One example is the 1000 Genomes Project
[2]. The NGS data generated by this project in the first
six months exceeded the accumulated sequence data in
NCBI during the past 21 years [3]. This project finished
the sequencing of 1092 genomes in year 2015 with a
total file size of 3TB. Medical Genome Reference Bank
[4] is another whole genome sequencing database where
the genomic data of 4000 Australia patients are stored.
Research on other species such as the 3000 rice genomes
project [5], giant salamander genome sequencing [6], the
Arabidopsis thaliana project [7] also generated gigabytes
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or terabytes databases. Currently, the most ambi-
tious project is the 100,000 Genomes Project, which
plans to obtain 100,000 patients’ genome data for
precision medicine research on cancer (https://www.
genomicsengland.co.uk/the-100000-genomes-project).
The increasing size of NGS databases has aroused signifi-
cant interests and challenges in data analysis, storage and
transmission. High-performance compression of genome
databases is an effective way to address all of these issues.

Reference-based genome compression for compressing
a single genome sequence has been intensively stud-
ied and achieved much higher compression ratio than
reference free compression [8]. Existing reference-based
genome compression algorithms include GDC [9], GDC2
[10], iDoComp [11], ERGC [12], HiRGC [13], CoGI [14],
RlZAP [15], MSC [16], RCC [17], NRGC [18] , SCCG [19]
and FRESCO [20]. A straightforward application of these
reference-based compression algorithms to solve the chal-
lenging problem of compressing a database containing n
number of genome sequences is to conduct a one-by-one
sequential reference-based compression for every genome
in the database using one fixed reference genome.

A critical issue of this straightforward approach is the
performance variation—the performance of reference-
based algorithms highly depends on the similarity
between the target and reference sequence, which can
cause non-trivial performance variation in the compres-
sion of the same target sequence when a different ref-
erence is used. For instance, in a set of eight genome
sequences, the compression ratios for genome hg19 by
GDC2 [10] using seven different reference genomes var-
ied remarkably from 51.90 to 707.77 folds [13]. Therefore,
clustering similar genomes and specific reference identi-
fication within the clusters are of great significance in the
compression of large scale genome databases.

We propose ECC, an Efficient Clustering-based refer-
ence selection algorithm for the Compression of genome
databases. Instead of using a fixed reference sequence by
the literature methods, our idea is to cluster the genome
sequences of the database into subsets such that genomes
within one subset are more similar than the genomes in
the other subsets, and then select the centroid genome as
reference within each cluster for the compression. Then
select a final reference to compress remaining centroid
sequences.

We use the MinHash technique [21, 22] to measure
the distance between sequences to construct a distances
matrix of the genomes for the clustering. For a genomic
sequence L (e.g., a chromosome sequence), MinHash first
generates the set of constituent k-mers of L. Then the
k-mers are mapped to distinct hash values through a hash
function H (the set of hash values is denoted by H(L)).
Then a small q number of the minimal hash values are
sorted. This set of q smallest hash values is called a sketch

of H(L) [22], denoted by Sk(H(L)). So, MinHash can
map a long sequence (or a sequence set) to a reduced
representation of k-mers which is called a sketch. Given
two long sequences L1 and L2, MinHash uses some set
operations on the sketches of L1 and L2 to efficiently
estimate the distance between the original L1 and L2
under some error bounds. Recent studies have shown
that sketch distance and MinHash are very effective in
clustering similar genomic sequences with wide appli-
cations to genome assembly [23], metagenomics clus-
tering [24], and species identification of whole genome
sequences [22].

The main steps of our ECC method are as follows:

1 Construct a distance matrix of the n genome
sequencesusing the pairwise sketch distance method
Mash [22].

2 Utilize unsupervised learning to cluster the genomes
based on the distance matrix, determine one
reference sequence within each cluster and take the
remaining ones as target sequences.

3 Compress the target sequences within each cluster
by a reference-based compression algorithm, and a
final reference sequence is selected for the
compression of the remaining reference sequences.

The key differences between ECC and other compres-
sion schemes for sequence databases such as MSC [16]
and RCC [17] include: (i) Our estimation on pairwise
sequence distances is based on the sketch distance of the
reduced k-mer sets [21] instead of the Euclidean distance
between vectors of k-mer frequencies [17]; (ii) Our initial
setting of the centroid in the clustering is not randomly
as by RCC, but determined by the analysis on the whole
database;(iii) The reference selection within the clusters
is also decided by the clustering method instead of the
reconstruction of the original target genome set by RCC.

The first difference implies that our approach is faster
than the other methods and makes the clustering appli-
cable to large sequence sets (RCC or MSC is limited to
only short genome sequences due to its extremely high
computational complexity). The second point of differ-
ence prevents the convergence to a local minimum for
the K-medoids clustering method and makes the clus-
tering results stable. The third point implies that our
method compresses sequence set without the need to
record additional information in the result. GDC2 is so
far the best reference-based algorithm for the compres-
sion of the Human 1000 Genomes Database, the reference
was selected external to the database. However, when the
user is unfamiliar with the similarity between sequences
in given set, the selection of one fixed reference sequence
may result in very poor performance on dissimilar target
sequences and a long running time in the compression.
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While the reference selection by ECC is decided by the
clustering step, and all the reference are internal genomes
of the database which are required to be compressed.

More related work in detail are provided in the
next section to highlight the novelty of our method.
In the experiments, we compared the performance on
genome databases between the straightforward reference-
fixed compression approach and our clustering approach
ECC for the state-of-the-art reference-based compression
algorithms. Our approach achieved 22.05% compression
gain against the best case of the reference-fixed compres-
sion approach on a set of 60 human genomes collected
from NCBI, where the compression ratio increases from
351.74 folds to 443.51 folds. On the union set of the
Human 1000 Genomes Project and the 60-genome NCBI
dataset, the compression ratio increases from 2919.58
folds to 3033.84 folds. Similar performance improve-
ment over the rice genome database has also been
observed.

Related works
The assembled whole genome sequencing data are in
the FASTA format. FASTA format is a text-based for-
mat for storing nucleotide data developed for biological
sequence comparison [25]. It contains an identifier and
multiple lines of sequence data. The identifier starts with
greater symbol “>”. The sequence data is constructed by
the standard IUB/IUPAC code (International union of
biochemistry, International Union of Pure and Applied
Chemistry) [26] nucleic acids in base pairs represented
using single-letter codes.

The common idea of the existing reference-based
genome compression algorithms is to map subsequences
in the target genome sequence to the reference genome
sequence [8]. Firstly, an index such as a hash table or
a suffix array is constructed from the reference genome
to reduce the time complexity of the search process.
Then an encoding strategy such as LZ77 [27] is applied
to parse the target sequence to position number and
length of the subsequence with regard to the reference
sequence or mismatched subsequence. For instance, a
subsequence in the target sequence is encoded as “102 72”,
which stands for that this subsequence is identical to the
subsequence from position 102 to 173 in the reference
genome.

For a set of target genome sequences, the similarity
between the reference sequence and the selected target
sequence has a large effect on compression ratio. Exist-
ing attempts for reference selection in the compression of
genome sequence databases can be categorized into three
types. The first category selects a single reference genome
to perform one-by-one sequential reference-based com-
pression on all target genomes, which is named straight-
forward reference-fixed approach as in the previous

section. Most of the reference-based compression algo-
rithms applied that on genome set compression and select
the single reference sequence randomly from the genome
database, such as HiRGC [13], GECO [28], ERGC [12],
iDoComp [11], CoGI [14], RLZ-opt [29], RLZAP [15].
GDC [9] and FRESCO [20] selects one single reference
with a heuristic technique and provides fast random
access. MRSCI [30] proposed a compression strategy that
splits string set into references set and to-be-compressed
set and then applied a multi-level reference-based
compression.

The second category of algorithms utilizes not only one
fixed reference for the compression of all sequences, but
also the inter-similarity of the whole sequence set. Then
it parses the subsequences not only based on the ini-
tial references but also the recorded pair. In other words,
it considers all the compressed sequences as a ‘potential
reference’ for the current compression. GDC2 [10] applies
a two-level Ziv Lempel factorization [27] to compress
large set of genome sequences. MSC [16] utilizes both
intra-sequence and inter-sequence similarities for com-
pression via searching subsequence matches in reference
sequence and other parts of the target sequence itself, the
compression order is determined by a recursive full search
algorithm.

The third category of algorithms selects reference via
unsupervised learning. RCC [17] performs clustering on
the local histogram of dataset and derives a representa-
tive sequence of each cluster as the reference sequence for
the corresponding cluster. A final representative sequence
is then selected from the representative sequence set.
For each cluster, the sequence data is compressed based
on intra-similarity and inter-similarity with reference to
the corresponding representative sequence. However, the
derivation of representative sequence requires a large
amount of time for assembly. The computation time is
proportional to (N2L + L2), where N is the number
of sequences and L is the average length of sequences.
Hence it is not suitable for large-scale databases. In real
experiment, it could not work on human or rice genome
sequence set.

Method
Our algorithm ECC consists of three stages: Distance
matrix construction for chromosome sequences, chromo-
some sequences clustering and chromosome sequences
compression. A schematic diagram of the method is
shown in Fig. 1.

Construction of distance matrix for a set of chromosome
sequences
Let S = {S1, S2, · · · , Sn} be a collection of genomic
sequences (i.e., a genome database or a chromosome
database). We use a MinHash toolkit called Mash [22]
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Fig. 1 Schematic diagram of our algorithm ECC

to compute pairwise sketch distances of the sequences to
form a distance matrix. By the tool Mash, a sequence Si is
firstly transformed into the set of its constituent k-mers,
then all the k-mers are mapped to distinct 32-bit or 64-bit
hash values by a hash function. Denote the hash values set
of the constituent k-mers set from Si as H(Si), and denote
the set of q minimal hash values as Sk(H(Si), q), which
is a size-reduced representative of H(Si), and is called a
sketch of H(Si). For two hash-value sets A and B, the
Jaccard index ofA and B is defined as J(A, B) = |A∩B|

|A∪B| , and
it can be estimated by J ′(A, B) = |Sk(A∪B,q)∩Sk(A,q)∩Sk(B,q)|

|Sk(A∪B,q)| .

The sketch distance dsk between two sequences Si and Sj
is defined as

dsk(Si, Sj) = −1
k

ln
2 ∗ J ′(H(Si), H(Sj))

1 + J ′(H(Si), H(Sj))
(1)

where the Jaccard index between Si and Sj is approxi-
mately computed using the sketches of H(Si) and H(Sj).
We construct a distance matrix M for sequence set S with
size n. M is a square matrix with dimension n × n that
contains all the pairwise sketch distances between these
genomic sequences. The elements of M are defined as:

Mij =
{

0 i = j
dsk(Si, Sj) i �= j

i, j ∈[ 1, n]
(2)

It is clear that M is a symmetric matrix (i.e., Mij = Mji).
It can also be understood that the calculation of the
sketch distance between two long sequences is much
more efficient than the calculation by using k-mer feature
vector direct comparison. The efficiency becomes signifi-
cant, especially in the construction of the whole distance
matrix M.

Clustering of chromosomes from the distance matrix
Clustering is the process of grouping a set of samples
into a number of subgroups such that similar samples
are placed in the same subgroup. Here our clustering
is to ensure a higher similarity between each reference-
target pair for achieving an outstanding compression
performance. An important step in the process of cluster-
ing is to determine the number of clusters in the data. We
take a subtractive clustering approach [31, 32] to decide
the number of clusters in the distance matrix M, and then
use the K-medoids clustering method [33] to group the n
number of genomic sequences into K number of clusters.

Subtractive clustering to determine the number of clusters K
Most clustering algorithms require the number of clus-
ters as a parameter. However, the cluster number for a set
of genomic sequences is normally unknown. We utilize a
modified subtractive clustering algorithm to specify the
cluster number.

Subtractive clustering is an extension of the Mountain
method [34]. It estimates cluster centroid based on the
density of points in the data space. We apply the exponen-
tial function for the Mountain Value Calculation. Given a
sequence set S , the corresponding sketch distance matrix
M with dimension n × n and a threshold percentage ε ∈
(0, 1), the process to determine the number of clusters is:

1 Create the empty cluster centroid set O. Compute
the mountain value of each sample Si:
Mt(Si) = ∑n

j=1 e−Mij

2 Let o = argmaxn
i=1Mt(Si), add So to O.
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3 Update the mountain value of each remaining
sequence by:
Mt(Si) = Mt(Si) − e−Mio

4 Repeat step 2 and 3 until Mt(Si) < εMtmax or
|O| ≥ √

n.
5 Return centroids set O and cluster number K= |O|.

K-medoids clustering of the collection of n genomic sequences
K-medoids is a partition-based cluster analysis method.
K-medoids iteratively finds the K centroids and assigns
every sample to its nearest centroid [33], which is similar
to K-means [35] but more effective for handling outliers.
It divides the data set S into K non-overlapping subgroups
C that contains every element of S and select a centroid
sequence Oi from each subgroup:

Definition 1 For a set of sequence S = {S1, · · · , Sn},
the corresponding cluster set C = {C1, C2, · · · , CK } and
centroid sequence set O = {O1, O2, · · · , OK } satisfies the
following requirements:Ci ⊆ S , C1 ∪ C2 ∪ · · · ∪ CK =
S , Ci ∩ Cj = ∅ for i �= j, Oi ∈ Ci.

The cluster set C is determined via minimizing the cost
function λ as follows:

λ(S) =
K∑

i=1

∑
Sa∈Ci

dsk(Sa, Oi)

Though K-medoids is efficient, it has some drawbacks.
The clustering result highly depends on the setting of the
initial centroids. To improve the stability and quality of
clustering result, instead of arbitrarily selecting the initial
centroids by the standard K-medoids, we use the centroid
set O as computed by subtractive clustering in previous
section.

Given a sequence set S , sketch distance matrix M, clus-
ter number K and centroid sequence setO, the K-medoids
proceeds by the following steps:

1 Set O as the initial centroid sequence set.
2 Associate each Si to the centroid Oj with minimum

sketch distance, also associate Si to cluster Cj.
3 Recalculate the new centroid of each cluster based on

its elements :

Oj = argmin
Sa∈Cj

∑
Sb∈Cj

dsk(Sa, Sb)

4 Repeat steps 2 and 3 until C and O no longer change
or reach a pre-set number of iterations.

5 Return cluster set C and cluster centroid set O.

Compression
Chromosome sequences set S is compressed based on
the cluster set C and centroids set O computed by
K-medoids. First, use Oi as the reference sequence for the
other sequences in cluster Ci. Then select a final reference

R from the centroid set as the reference for the other
centroid sequences:

r = argmin
Oi∈O

∑
Oj∈O

dsk(Oi, Oj)

In detail, all the sequences in cluster Ci is compressed
using Oi as the reference sequence except Oi itself. Then
all the reference sequences except R is compressed using
R as the reference sequence. The final reference R can be
compressed by the block-sorting compression (bsc) algo-
rithm (http://libbsc.com/) or other reference-free com-
pression algorithms.

All non-centroids sequences will be compressed with
centroid sequences as reference and centroid sequences
(except R) will be compressed with R as reference, only one
final reference sequence R will remain uncompressed. It is
clear that the same number of sequences is compressed in
ECC as in straightforward approach.

All reference-based compression algorithms can take
this clustering approach to compress a set of genomic
sequences. The pseudo-code of our compression method
is presented in Algorithm 1.

Algorithm 1 Compression of n genomic sequences
Input Sequence set S = {Si}n

i=1. Distance Matrix M.
Cluster set C = {Ci}K

i=1, Cluster centroid set O =
{Oi}K

i=1.
1: L ←an array with K integers
2: count ← 1
3: for i = 1ton do
4: if Si �∈ O then
5: g ← the id of cluster that corresponds to Si
6: compress Si with Og
7: else
8: L[ count] ← i
9: count ← count + 1

10: r ← argmin
i∈L

∑
j∈L Mij

11: R ← Sr
12: for i = 1toK do
13: if L[ i] �= r then
14: compress SL[i] with R

Decompression
The decompression process is the reversion process of
compression. All the sequences except R require a refer-
ence to decompress. Firstly, R is decompressed; then the
reference sequence of each cluster is decompressed by R,
all the remaining sequences in the cluster are decom-
pressed by the reference sequence in its cluster. As the
process is invertible, the compression scheme is lossless as
long as the used reference-based compression algorithm
is lossless.

http://libbsc.com/
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Data
To assess the performance of our proposed method ECC,
we compare the compression ratio based on ECC result
with the reference-fixed compression approach on multi-
ple genome databases.

These include: a set of 60 human genome sequences
(denoted by dataset-60) from National Center for Biotech-
nology Information (NCBI) with a file size of 171 GB, a
set of 1152 human genome sequences (dataset-1152) from
the 1000 Genomes Project [2] and NCBI having a file
size of 3128 GB, and a set of 2818 rice genomes (dataset-
2818) from the 3000-rice project [36] having a file size of
1012 GB.

Results and discussion
This section describes our experimental results on
dataset-60, dataset-1152 and dataset-2818 to evaluate
the performance of our approach. In particular, the
compression ratio and running time of our algorithm
are presented and discussed in comparison with the
reference-fixed compression approach.

Test methodology
Our algorithm was implemented in the C++11 language.
All experiments were conducted on a machine running
Red Hat Enterprise Linux 6.7 (64 bit) with 2 × Intel Xeon
E5-2695 processors(2.3GHz,14 Cores), 128 GB of RAM,
and 4 cores.

Six state-of-the-art reference-based compression algo-
rithms were tested on the three genome databases
to understand the performance improvement achieved
by our clustering approach in comparison with the
reference-fixed compression approach. These compres-
sion algorithms are HiRGC [13], iDoComp [11], GDC2
[10], ERGC [12],NRGC [18] and SCCG [19]. All the
algorithms that are compatible with multi-cores comput-
ing were executed with 4 cores.

We also attempted to test the performance of RCC
[17] on the same genome databases. However, it was not

runnable for the compression of long genome sequences
(such as human and rice) due to its time complexity—
RCC was taking longer than 10 h to compress only four
human genome sequences.

For GDC2, as its two-level compression structure tends
to compress all the target sequences using the same ref-
erence, we compress the datasets using the final reference
selected by ECC, and the compression order of GDC2
is also adjusted in accordance with the ECC clustering
result.

As mentioned before, the performance of a reference-
based algorithm on the NGS dataset is highly depend-
able on the option of the reference sequence. To reduce
the variance from an arbitrary selection, we randomly
selected multiple reference sequences from the tar-
get dataset and obtain the compression performance
with each of them for the compression algorithms (the
randomly selected reference file itself is not compressed,
so all experiments compress the same number of genome
sequences).

To measure the performance improvement, we denote
the compression ratio with fixed single reference as CS and
the compression ratio on same dataset with ECC as CE ,
and introduce a relative compression ratio gain as:

G =
(

1 − CS
CE

)
× 100%

A larger value of compression ratio gain indicates a more
significant improvement. Due to page limitation, we only
report the compression gain against the best result of the
reference-fixed compression approach for the reference-
based compression methods.

Gains of compression performance
Our proposed ECC method outperforms over the
reference-fixed compression approach in all cases on
dataset-60 (see Table 1). The compression gains against
the best results by the reference-fixed compression
approach are 22.05%, 22.83%, 2.22%, 56.31%, 3.41%,

Table 1 Compression ratio for the H. sapiens dataset-60 (171GB)

Reference Compression ratio with algorithm

HiRGC iDoComp GDC2 ERGC NRGC SCCG

GCA_000004845 339.80 184.20 238.98 11.00 122.67 225.35

hg19 346.80 26.78 242.60 128.11 137.41 265.03

YH 351.74 134.13 237.39 108.26 123.24 228.20

GCA_000252825 241.01 92.65 230.45 102.62 176.08 122.25

Huref 245.79 140.84 224.47 69.59 177.85 123.26

ECC clustering result 443.51 238.68 248.11 293.24 184.13 313.60

Ratio gain* 22.05% 22.83% 2.22% 56.31% 3.41% 15.49%

Bold text indicates the highest compression ratio of an algorithm, italic text indicates the best case of fixed single reference compression result
*The ratio gain of ECC against the best case
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15.49% for HiRGC, iDoComp, GDC2, ERGC, NRGC, and
SCCG respectively. On dataset-60, HiRGC, iDoComp,
ERGC and SCCG gained more compression improve-
ment, while the effect of ECC on NRGC and GDC2 is
relatively smaller. Moreover, HiRGC, iDoComp, SCCG
and GDC2 achieved higher compression ratio on this
database than ERGC and NRGC in general.

We added the 1092 human genomes from the 1000
Genome Project to dataset-60 (denoted by H. sapiens
dataset-1152) and conducted another round of experi-
ments. Performance details are summarized in Table 2
for HiRGC, iDoComp and GDC2 which are the three
algorithms of the highest compression performance on
dataset-60. The overall compression performance is
higher than on dataset-60. Through ECC, iDoComp
gained 15.86% compression performance against the best
reference-fixed compression case, while HiRGC gained
7.95%. The ratio gain of GDC2 is only 3.77%, but more
importantly, ECC helped GDC2 avoid 3 of the 7 time-
consuming cases in the reference-fixed approach.

On the rice genome dataset-2818, through our ECC
clustering approach, HiRGC gained 13.89% compression
performance against the best case by the reference-fixed
compression approach, iDoComp gained 21.22%, and
GDC2 gained 2.48% (Table 3). The compression ratio gain
of HiRGC is more stable than on the first two human
genome databases. A reason is that all the genomes in
the rice database were aligned to the sequenced rice culti-
vars: 93-11 (indica variety) [37]. Hence this dataset has a
higher inter-similarity and the variance from the random
selection of the fixed reference is smaller.

From these comparisons, we can understand that our
ECC clustering approach can make significant com-
pression improvement for most of the state-of-the-art
algorithms and can avoid selecting some inappropriate

Table 2 Compression ratios on H. sapiens dataset-1152 (3128 GB)

Reference Compression ratio with algorithm

HiRGC iDoComp GDC2

HG00096 991.77 485.35 2919.58

NA18856 889.32 437.05 2805.19

GCA_000004845 784.84 53.94 2901.44

GCA_000252825 504.41 114.40 2897.76

GCA_000365445 13.07 / /

hg19 1046.84 68.36 /

hg38 826.31 52.03 /

Result of ECC 1137.21 576.84 3033.84

Ratio gain* 7.95% 15.86% 3.77%

’/’ indicates a running time longer than 500 h. Bold text indicates the highest
compression ratio of an algorithm, italic text indicates the best case of fixed single
reference compression result.
*The ratio gain of ECC against the best case

Table 3 Compression ratio on the Oryza sativa
Ldataset-2818(1012 GB)

Reference Compression ratio with algorithm

HiRGC iDoComp GDC2

B035 79.31 77.62 529.40

CX319 73.76 81.55 537.09

IRIS_313-10010 69.93 64.74 519.43

IRIS_313-10776 70.97 77.10 533.81

IRIS_313-9937 71.39 66.42 535.31

Result of ECC 92.10 103.52 550.77

Ratio gain* 13.89% 21.22% 2.48%

Bold text indicates the highest compression ratio of an algorithm, italic text
indicates the best case of fixed single reference compression result
*The ratio gain of ECC against the best case

references such as the 3 extremely time-consuming cases
of GDC2 on the human dataset-1152.

Speed performance
Running time is an essential factor for measuring the
applicability of an algorithm in the compression of
large-scale genome databases.The running time of ECC
includes two parts: reference selection time (only depend-
ing on the input sequence set) and the compression time
(depending on the input sequence set and the reference-
based compression algorithm). The detailed compression
time of each reference-based compression algorithm with
difference references are listed in Additional file 1.

As shown in Table 4, ECC took 0.02, 0.83, 0.76 h on
the reference selection part for dataset-60, dataset-1152
and rice genome dataset-2818 respectively. But the com-
pression time for these three datasets are 0.98, 13.94, 2.82
h (Table 5) by HiRGC ,which is the fastest algorithm in
the compression. The reference selection time is much
shorter than the sequence compression time.

We have also observed that the total time of reference
selection and compression by ECC is highly competi-
tive with the reference-fixed compression approach. In
fact, the compression time via ECC after the reference
selection is shorter than the compression time of the
reference-fixed compression in most cases except GDC2
on the dataset-1152 (Table 5).

Conclusion
In this work, we introduced ECC, a clustering-based ref-
erence selection method for the compression of genome
databases. The key idea of this method is the calculation

Table 4 Reference selection time of ECC (in hours)

Dataset dataset-60 dataset-1152 dataset-2818

Number of genomes 60 1152 2818

Total running time 0.023 0.830 0.759
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Table 5 Compression time of each algorithm on the three datasets

Algorithm Compression time (in hours) for

dataset-60 dataset-1152 datset-2818

reference-fixed ECC reference-fixed ECC reference-fixed ECC

HiRGC 1.18 0.98 15.12 13.94 2.91 2.82

iDoComp 6.54 2.82 102.94 29.77 15.58 10.34

GDC2 110.73 117.82 129.24 126.43 25.29 23.61

The time by the reference-fixed approach is the average running time of several fixed single-reference cases by each algorithm, please see the supplementary file for the time
range of all the cases and compression time by ERGC, SCCG and NRGC

of a MinHash sketch distance between chromosome
sequences to group the chromosome sequences into sub-
sets of similar sequences. Within each cluster, the ref-
erence chromosome is best updated according to the
shortest sketch distance to the centroid chromosome.
This algorithm is universal for genome sequence sets of
the same species. We have demonstrated that the six
state-of-the-art reference-based compression algorithms
all achieved a substantial improvement after the clustering
of the genome sequences, with similar amounts of com-
pression time consumed by the reference-fixed approach.

Although ECC provides an efficient reference selec-
tion scheme for reference-based compression, there are
some other aspects that are worth consideration for fur-
ther improvement. First, ECC is unable to handle dynamic
genome sequence dataset. When new sequence added
to compressed dataset, it can only be compressed with
the final reference in previous. There are two possible
ways to solve that: 1. Store the sketch set information
of existing centroid sequences and update the clustering
result based on new sequence. 2. Select the reference for
new sequence via heuristic method. In addition, we did
not exploit the structure of representative sequences of
each dataset provided. If make full use of the k-mer fea-
tures computed in distance matrix construction stage, it
is possible to construct a universal sequence via merging
k-mers with suffix-prefix overlaps. There are some
research works proposed for merging sequence with
suffix-prefix overlaps [38]. We will investigate these issues
to provide new functionalities on top of current ECC.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12864-019-6310-0.

The additional file can be downloaded from https://drive.google.
com\/file\/d\/173EWl_gnlO28tlkrSHEVKr4nIP-rzpUk\/view?usp=sharing

Additional file 1: The list of researched dataset and supplementary results

• The list of genomes in 60-dataset.
• The access to dataset from 1000 Genomes Project and 3000 rice

genomes project.
• The compression time(in hours) for algorithms using different

references on three datasets.
• Compressed size of chromosome 1 of dataset-60 with different

cluster number K.
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