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Abstract

Background: Bacterial cells during many replication cycles accumulate spontaneous mutations, which result in the
birth of novel clones. As a result of this clonal expansion, an evolving bacterial population has different clonal
composition over time, as revealed in the long-term evolution experiments (LTEEs). Accurately inferring the
haplotypes of novel clones as well as the clonal frequencies and the clonal evolutionary history in a bacterial
population is useful for the characterization of the evolutionary pressure on multiple correlated mutations instead of
that on individual mutations.

Results: In this paper, we study the computational problem of reconstructing the haplotypes of bacterial clones from
the variant allele frequencies observed from an evolving bacterial population at multiple time points. We formalize the
problem using a maximum likelihood function, which is defined under the assumption that mutations occur
spontaneously, and thus the likelihood of a mutation occurring in a specific clone is proportional to the frequency of
the clone in the population when the mutation occurs. We develop a series of heuristic algorithms to address the
maximum likelihood inference, and show through simulation experiments that the algorithms are fast and achieve
near optimal accuracy that is practically plausible under the maximum likelihood framework. We also validate our
method using experimental data obtained from a recent study on long-term evolution of Escherichia coli.

Conclusion: We developed efficient algorithms to reconstruct the clonal evolution history from time course
genomic sequencing data. Our algorithm can also incorporate clonal sequencing data to improve the reconstruction
results when they are available. Based on the evaluation on both simulated and experimental sequencing data, our
algorithms can achieve satisfactory results on the genome sequencing data from long-term evolution experiments.

Availability: The program (ClonalTREE) is available as open-source software on GitHub at https://github.com/COL-
IU/ClonalTREE.
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Background
Long-term evolution experiment (LTEE) has long been
adopted to study how genetic variations are generated and
maintained in a period of time and how novel variations
are associated with the adaptation of the species to novel
environmental conditions [1]. Due to their high genetic
diversity and rapid evolution, unicellular microbes, pre-
dominantly E. coli, are used in LTEEs [2–4], although
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LTEE was also conducted on multi-cellular model animals
such as Drosophila [5]. The E. coli long-term evolution
experiment conducted by Lenski and colleagues is the
longest on-going LTEE, in which twelve initially identi-
cal E. coli strains (i.e., the founder clones) were grown
in parallel, each under a daily serial passage for 30 years
[3, 6, 7]. A variety of phenotypic changes were observed
in the bacterial population during the experiment, includ-
ing increased fitness to specific growth conditions [8] and
elevated mutation rates [9].
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In recent years, LTEE were combined with metagenome
sequencing (i.e., sequencing the whole genomes in the
population, also referred to as the Pool-Seq, or the
sequencing of pooled individual genomes) to character-
ize genetic variations introduced during the course of
experiment, and the allele frequencies of these variations
in a population [3, 10]. Some of these novel variations
were revealed to be associated with observed pheno-
typic changes, e.g., the defective mutations in the DNA
repair pathways causing elevated mutation rates [9], and
the novel genetic traits selected for citrate use [10].
Furthermore, population-wide metagenome sequencing
can be conducted on the evolving population at mul-
tiple time points to monitor the dynamic changes of
genetic variations in complex and heterogeneous growth
environments. The main objective of these studies is to
identify clones adapted to specific environmental niche
over the time course. However, due to the nature of
metagenome sequencing, it is not straightforward to
determine the haplotypes of the clones arising in the
experiment. Instead, selections are often detected on the
novel variations by applying statistical tests [11, 12] to the
time series allele frequencies derived from the sequencing
data. Because a novel variation, e.g., a single nucleotide
variation (SNV), may be shared by multiple clones in
the population (i.e. subsequent mutations may occur in a
clone already containing mutations instead of the founder
clone), the tests on variation may be less sensitive than
the tests directly on the frequency profiles of haplotypes,
and thus may miss the selection on some clones, espe-
cially when the population is dominated by a few clones
containing many variations.

To address this issue, in a recent study, metagenome
sequencing coupled with clonal sequencing was adopted
for the study of populations of wild-type (WT) and repair-
deficient E. coli evolving over three years [4]. To charac-
terize the haplotypes in the populations, whole genome
sequencing was carried out on randomly selected clones
at the end of the experiments. In addition, the haplo-
type frequencies of the major clones were derived from
the metagneome sequencing data. The dynamic changes
of these major clones during the course of experiment
showed a clear picture of the subpopulation structure
(e.g., using a Muller plot; see Fig 1c), in which the major
clones evolved with different genotypes associated with
nutrition metabolism. Despite the demonstrated success
here, the clonal sequencing has two disadvantages in prac-
tice. First, because the sequenced clones are randomly
selected, minor clones with low abundances in the pop-
ulation may not be characterized (while major clones are
sequenced repetitively), and thus their frequency profiles
during the time course will not be considered in the sub-
sequent analyses. More importantly, the clones are usually
chosen at the end of the experiment; as a result, the

clones with high abundance in the middle but becoming
less abundant towards the end of the experiment are less
likely to be characterized, which will not only miss some
clones under selection during the time course, but also
miscalculate the allele frequencies of characterized clones
in the middle of time course. Therefore, unless the clonal
sequencing covers a large number of clones (that may con-
tain many duplicated clones) compared to the complexity
of the population, it is desirable to develop computational
methods to reconstruct the haplotypes of clones from
time series metagenome sequencing data.

Interestingly, the clonal reconstruction has been exten-
sively studied in the field of cancer genomics for track-
ing the evolution of cancer cells by bulk tumor genome
sequencing [13, 14], in an attempt to characterize the
intra-tumor heterogeneity (i.e., clonal tree and composi-
tion) and in the mean time to identify the clones carrying
driver mutations that occur in the early stage of cancer
and drive the cancer progression [15]. Computationally,
the clonal reconstruction (also referred to as the clonal-
ity inference) takes as input the allele frequencies of a
set of genetic variants in multiple samples (e.g., dissected
from the same tumor tissue), and aims to reconstruct a
set of clones, each carrying a subset of the variants, and
simultaneously infer the fraction of these clones in each
sample [16]. Many algorithms addressed the clonal recon-
struction problem [16–21] by inferring the evolutionary
history of reconstructed clones and the generation of vari-
ants (assuming that each variant is generated only once,
i.e., the infinite sites assumption [22]), from which the
likelihood of a variant being the driver can be prioritized
[23, 24]. It is worth noting that here, the clonal evolu-
tion was not inferred from time series sequencing data
(which are difficult to obtain in cancer genomics), but
the inherent constraints among variant frequencies due to
the infinite sites assumption, (e.g., no clone can carry two
variants unless the frequencies of one variant is always
greater than the other; for details see [16]). Finally, similar
to the clonal sequencing in LTEE, single cell sequencing
data offers complementary information to clonal recon-
struction in cancer genomics [25], and algorithms became
available to infer tumor heterogeneity from low coverage
single cell sequencing data [26, 27].

In this paper, we formalize the problem of clonal
reconstruction from time course genomic sequencing
data in a maximum likelihood framework, and devise a
series of heuristic algorithms to address it. We further
extend the algorithms to incorporate clonal sequencing
data, aiming at reconstructing additional clones that are
not sequenced. We simulated the bacterial population
in long-term evolution experiments, and use the simu-
lated genomic data to test our algorithms. The results
show that the heuristic algorithms could accurately recon-
struct as many clones as reconstructed by the brute-force
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Fig. 1 A schematic illustration of the clonal structure in an evolving bacterial population and the time course clonal reconstruction problem. a
Starting from a single founder clone (shown in black) at time t1, four mutations (shown in red, green, yellow and blue, respectively) occur at time
point t2 to t5, respectively, resulting in four novel clones (denoted by their unique variants). b The clonal tree represents the evolutionary history of
these clones, in which each node represents a clone including the founder clone as the root, and each edge represents the mutations that occur at
specific time points. c The Muller plot shows the evolutionary dynamics with the novel clones along with their frequencies at each time point. d
Metagenome sequencing conducted at different time point, from which the variant allele frequencies (VAF) matrix can be derived. e The VAF matrix
can be viewed as the product of the clonal tree (T ) and the clone frequencies (C), similar to the formulation in cancer genomics [16]. The goal of this
work is to reconstruct the clonal tree (T ) and the clone frequencies (C) from the observed VAF matrix

algorithm or even better on average, while improving sig-
nificantly on speed. We also discuss the effect of varying
the number of clones in the population and the number
of time points. Finally, we test our algorithms on a real
LTEE dataset [4] from an E. coli population. Our algo-
rithms successfully reconstruct clonal haplotypes that are
not characterized by clonal sequencing, and reveal the
evolutionary dynamics of the clones during the LTEE.

Methods
Modeling clonal evolution of bacteria
We model an evolving bacterial population using the
clonal theory [28, 29], similar to the one used in can-
cer genomics [30]. We assume that all bacterial cells
in an evolving population are descendants of a single
founding clone. During the course of the evolution exper-
iment, bacterial cells accumulate novel mutations form-
ing new clones. In this study, we focus only on single
nucleotide variations (SNVs); but the other types of vari-
ations (e.g., indels, structural variations and copy number
variations) can be modelled in the same way. We fur-
ther assume that the occurrences of mutations follow
the infinite sites assumption, i.e., a mutation occurs at a

single locus at most once during the period of evolution
experiment.

The ancestral relationships between the clones in the
evolving population can be represented as a directed tree
T, referred to as the clonal tree in which the root rep-
resents the founder clone, every other node represents a
clone introduced by one or more novel mutations, and
each edge represents the direct ancestral relationships
between the clones (Fig 1b). Each edge is labeled by the
mutation(s) that distinguishes the child from its parent.
When more than one mutation occurs during the evolu-
tion from the parent to the child, they can be clustered
together and considered as a single mutation group. As a
result, the haplotype of a clone (i.e., the variants contained
in the clone) is represented by the path from the root to
the node representing the clone.

The frequency of each clone at each specific time point
is represented as a matrix C =[ cij], referred to as the
clonal frequency matrix (CFM), in which ci,j indicates
the frequency of clone j at the time point i. Our model
assumes that the mutation occurs spontaneously; as a
result, at any given time, the likelihood of a candidate
clone to acquire a new mutation hence spawn a new clone
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Algorithm 1 Exhaustive tree search algorithm (ET)
1: procedure EXHAUSTIVE-TREE-SEARCH(F) � F is a square lower diagonal matrix of VAFs
2: Let G be a graph such that an edge links vertices j and k, if Fi,j ≥ Fi,k , ∀i
3: for each spanning tree T in G do
4: likelihood ← LIKELIHOOD(T , F) � Compute the likelihood based on Eq. 1
5: keep max_tree with the maximum value of likelihood.
6: end for
7: return max_tree
8: end procedure

is proportional to the frequency of the clone in the popula-
tion at the time. The clonal tree T and the CFM C together
can be depicted in a Muller plot [31] (Fig 1c), which is
commonly used to visualize the evolutionary dynamics in
a population [32].

Time course clonal reconstruction problem
In order to monitor the evolutionary process in a bacterial
population, metagenome sequencing can be conducted at
a series of N time points, from which a variant allele fre-
quencies (VAF) for all variation sites are obtained at each
specific time point and represented as a VAF matrix [16],
F =[ fij], where fi,j indicates the allele frequency of the
variant j at the time point i. Notably, each variant is first
introduced by a mutation (or multiple mutations) at the
time point tj, generating a novel clone (denoted by the spe-
cific mutation j) from its parent. Apparently, tj is defined
as the earliest time point t, such that ft,j > 0, and for
∀i < t, fij = 0.

Given a VAF matrix F, our goal is to reconstruct the
haplotype of each clone (i.e, the novel variants it con-
tains) arising during the evolution experiment, or equiv-
alently, to infer a clonal tree containing all observed
mutations. Based on the clonal evolution model, we for-
mally define the time course clonal reconstruction prob-
lem using a maximum likelihood formulation: given the
input of matrix F =[ fi,j] where 1 ≤ i, j ≤ N over N
mutations (or novel clones) sorted over N time points
(i.e., each mutation occurring at a known distinct time
point), we want to find a directed tree T∗ = (pr(i), i),
i = 1, 2, ..., N on N nodes (where pr(i) is the only parent
node of node i) that maximizes the following likelihood
function,

L(T) =
N∏

i=2
C(i−1),pr(i) =

N∏

i=2

⎛

⎜⎜⎝F(i−1),pr(i) −
∑

j∈ch(pr(i)),
1≤j<i

F(i−1),j

⎞

⎟⎟⎠ (1)

where Ci,j represents the (unknown) frequency of the
clone j at the time point i, and ch(i) represents the set
of all children of the node i. The likelihood function is
computed by multiplying the likelihood of generating each
clone in the clonal tree. As described above, the likelihood

of generating the clone i or the probability of introduc-
ing the mutation i in clone pr(i) within the time segment
between the points i − 1 and i is approximated by the fre-
quency of the clone pr(i) at the time point i − 1, which
can be computed as the frequency of the variant pr(i) sub-
tracting the frequencies of all children of pr(i) born before
the time point i.

We search for the optimal solution of a clonal tree T
in the search space containing a total of (N − 1)! trees
because at any given time i there are i − 1 putative par-
ents to choose from. While some trees can be identified as
invalid solutions when

∃(1 ≤ i ≤ N) s.t.
∑

j∈ch(pr(i)),
1≤j<i

Fi,j > Fi,pr(i), (2)

a brute force approach to search the ML solution in
the entire tree space, referred to as the exhaustive tree
search algorithm (ET; Algorithm 1) is still computationally
expensive. Once the clonal tree is constructed, the haplo-
type of each clone (corresponding to a node in the tree)
can be derived from the path from the root to the node.
Note that a variant of this problem called the variant allele
frequency factorization problem (VAFFP), where the order
(time) of appearance of each mutation is unknown and the
likelihood assumption is not applicable, is proven to be
NP-complete [16].

Greedy tree search algorithm (GT)
To reduce the computational complexity of the exhaustive
tree search (ET), we propose an algorithm using a greedy
approach as follows (see Algorithm 2 for details). Start
growing the directed tree from the root node (founder)
such that at each iteration i > 1,

pr(i)←arg max
1≤k<i

C(i−1),k =arg max
1≤k<i

⎛

⎜⎜⎝F(i−1),k −
∑

j∈ch(k),
1≤j<i

F(i−1),j

⎞

⎟⎟⎠

(3)

provided pr(i) does not lead to an invalid solution (accord-
ing to Eq. 2). At any iteration i, if the assignment of
pr(i) leads to an invalid solution, choose the next optimal
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choice at iteration i − 1, and continue the search. At any
iteration i, if no more assignment leads to a valid solution,
choose the next optimal choice at iteration i − 1 and con-
tinue the search until we find a valid greedy solution or
until we run out of all choices (thus output no valid solu-
tion is found). Note that the worst case running time of
this algorithm is still in O(N ! ) time, although in best case
it runs in O

(
N2) time.

Algorithm 2 Greedy tree search algorithm (GT)
1: procedure GREEDY-TREE-SEARCH(F) � F is a square

lower diagonal matrix of VAFs
2: n ← size(F)

3: T ←[ −1] � T is a tree represented as a list of
parent of each index

4: Initialize a new stack choices
5: choices.push(T)

6: while choices is not empty do
7: T ← choices.pop()

8: Continue loop if T is invalid (Eq. 2)
9: if size(T)= n then

10: return T
11: end if
12: c_row ← Calculate clone frequencies corre-

sponding to T and F[ size(T)] �
Eq. 1

13: putative_parents ← argsort(c_row)

14: for each x in putative_parents do
15: if x ≤ size(T) and c_row[ x] > 0 then
16: new_T ← T
17: new_T .append(x)

18: choices.push(new_T)

19: end if
20: end for
21: end while
22: return “No valid solution found!"
23: end procedure

Addressing sparse time course sequencing data
In practice, because of the often scattered genomic
sequencing conducted in a time course, we may observe
many mutations at the same time point. If the VAFs of
some of these mutations are very similar across the time
course, they are likely from the same clone, and thus can
be grouped together and represented as a single mutation
(group) as described above. If multiple mutations remain
not grouped, but are all first observed at the same time
point t, multiple clones should have emerged between the
time points t − 1 and t. If the occurrence order of these
mutations is determined, we may assume that the VAFs
of all variants remain approximately constant between the

time points i − 1 and i. Hence, we can simply extend
the VAF matrix into a square lower diagonal matrix by
introducing new rows between t − 1 and t for each muta-
tion that is first observed at t while keeping the remain-
ing VAFs constant. Then we can apply the greedy tree
search (GT) algorithm to identify the ML clonal tree. In
practice, as we do not know the occurrence order of these
mutations, we have to also search for their optimal occur-
rence order among all possible permutations. An exhaus-
tive permutation search (EP; Algorithm 3) would include∏m

i=1 ni! candidate permutations when there are m sets of
unordered mutations with cardinalities n1, n2, ..., nm, such
that

∑m
i=1 ni ≤ N . This is again computationally very

expensive.

Greedy permutation search (GP)
To reduce the computational complexity of the exhaustive
permutation search (EP) algorithm, we propose a heuris-
tic algorithm (for details see Algorithm 4) using a greedy
approach as follows. For each set of unordered mutations
groupt that first occur at the same time point t, extend
the F matrix into a square lower diagonal matrix (up to
time t) using each permutation of groupt . Then, using the
greedy tree search (GT; Algorithm 2) find the ML tree and
the ML score for all permutations. The ML permutation
at time t is determined as the one with the maximum ML
score. At any iteration i, if the assignment of a permuta-
tion leads only to invalid trees, choose the next optimal
choice at iteration i − 1, and continue the search until
we find a valid tree. In the greedy permutation search
algorithm, we only search

∑m
i=1 ni! candidate matrices

in the best case, but
∏m

i=1 ni! candidates in the worst
case.

Constrained search using sequenced clones
Sometimes we have additional information from the
experiment when some randomly selected clones are
sequenced during or at the end of the experiment. The
haplotypes of these clones can be used to improve the
search algorithm by enforcing that the clonal tree is con-
sistent with the sequenced clones. There are two con-
straints that can be checked during the tree search to
ensure the consistency. First, let the haplotypes of each
sequenced clone (or the variants present in each clone) be
represented as sets A1, A2, ...Am. Then for each variant v
in any sequenced clone, pr(v) ∈ ⋃m

j=1(Aj|v ∈ Aj) − {v}.
That is when we know the haplotype of at least one clone
that contains variant v, its parent can only be one of the
other variants in all the sequenced clones that has v. The
second constraint is that for each pair of clones Ai and
Aj and any variant v ∈ (Ai − Aj) ∪ (Aj − Ai), all vari-
ants u ∈ Ai ∩ Aj must appear before v in the path from
the root node to v in the clonal tree. This constraint will
make sure that the variants in the symmetric difference
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Algorithm 3 Exhaustive permutation search algorithm (EP)
1: procedure EXHAUSTIVE-PERMUTATION-SEARCH(F)
2: groups ← Find groups of mutations whose first occurrence time are equal
3: for each product in product of permutations of groups do
4: sq_F ← SQUARIFY(F , product) � SQUARIFY extends F into a square matrix.
5: T ← GREEDY-TREE-SEARCH(sq_F) � or EXHAUSTIVE-TREE-SEARCH(sq_F)
6: likelihood ← LIKELIHOOD(T , sq_F) � Compute the likelihood based on Eq. 1
7: keep max_tree with the maximum value of likelihood.
8: end for
9: return max_tree

10: end procedure

Algorithm 4 Greedy permutation search algorithm (GP)
1: procedure GREEDY-PERMUTATION-SEARCH(F)
2: n ← Number of columns (mutations) in F
3: groups ← Initialize queue with groups of muta-

tions whose first occurrence time are equal
4: (T , P) ← ([ −1] , [ 0] ) � T is a tree. P is a list of

indices (permutation).
5: Initialize a new stack choices
6: choices.push((T , P))

7: while choices is not empty do
8: (T , P) ← choices.pop()

9: if size(T)= n then
10: return T
11: end if
12: group ← groups.next()
13: for each p in permutations of group do
14: partial_F ← SQUARIFY(F , P + p) �

SQUARIFY extends F into a square matrix.
15: partial_T ←

GREEDY-TREE-SEARCH(partial_F)

16: end for
17: Push all valid (partial_T , P + p) into choices in

ascending order of their likelihood
18: end while
19: return “No valid solution found!"
20: end procedure

of two clones branch off after the common ancestral path
is formed by the variants in the intersection of the two
clones; otherwise, the infinite sites assumption will be
violated.

Metagenome sequencing data from an evolving E. coli
population
We used data from the LTEE study on an E. coli popula-
tion [4] to validate our methods. We used the paired-end
Illumina sequencing reads data for the population 125,
on which the metagenome sequencing was performed
at six months interval during the course of three years,

and eight clones were isolated and sequenced separately
at the end of the experiment. We used Trimmomatic
version 0.33 [33] to remove adapters and low quality
bases and then mapped the reads to E. coli K12 MG1655
reference sequence (NC_000913.3) [34] with bwa-mem
version 0.7.12 [35]. We removed reads supporting bases
with forward/reverse read balance less than 0.25. Then
we called variant sites where all of the following con-
ditions satisfied: the VAF (approximated by the ratio of
the number of reads supporting the variant allele to the
sum of number of reads supporting the reference and
variant alleles) was above 0.05, the sum of the number
of reads supporting the variant and reference allele was
above 10 and the number of variant reads was above
6. Then we removed inconsistent sites comparing the
calls from different time points when the VAF at a site
becomes zero and then non-zero again at a later time
point. The VAFs were input to our algorithms to predict
the clonal tree and the clonal frequencies, which were then
visualized using Muller plot created using the R library
ggmuller [36].

Algorithm 5 Simulation algorithm
1: procedure SIMULATE(n) � n is number of clones
2: T ←[ 0] ∗n
3: C ←[ [ 0] ∗n]
4: C[ 0] [ 0] ← 1
5: likelihood ← 1
6: for i ← 1, n − 1 do
7: parent ← random sample from distribution

C[ i − 1]
8: T[ i] ← parent
9: likelihood ← likelihood ∗ C[ i − 1] [ parent]

10: rand ← choose i + 1 random numbers
11: norm_rand ← rand/sum(rand)

12: new_row ← norm_rand + ([ 0] ∗(n − i − 1))

13: C.append(new_row)
14: end for
15: return C, T , likelihood
16: end procedure
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Fig. 2 Comparison of recall, running time and likelihood scores of algorithms: RP-RT (Random Permutation search + Random Tree search),
AncesTree, CITUP, EP-ET (Exhaustive Permutation search + Exhaustive Tree search), EP-GT (Exhaustive Permutation search + Greedy Tree search),
GP-GT (Greedy Permutation search + Greedy Tree search). PL represents the likelihood score of the predicted clonal tree, and TL stands for the
likelihood score of the true tree. Positive Log(PL/TL) indicates the algorithm predicted a clonal tree with greater likelihood than the real tree

Results
We compare the prediction performance of combinations
of the two tree search algorithms (ET and GT) and the
two permutation search algorithms (EP and GP), with
two algorithms designed for tumor clonal reconstruction,
AncesTree [16] and CITUP [21] on simulated data. EP-ET
is the slowest algorithm. Hence, this algorithm is applied
only to the case where the number of clones is very small.
The other two combinations compared are EP-GT and
GP-GT. The combination GP-ET does not differ much in
performance with GP-GT. Therefore, we do not include
the results from this combination here. We also compare
the results with a baseline (or random) algorithm (RP-RT)
where at each time-point t the parent is chosen at random
from all the clones that have appeared before t. For non-
square F matrices, a random permutation is chosen
for each group of mutations that appear at the same
time. The simulation procedure follows the clonal model
described in methods. It starts with a founder clone
and then at each new time point a new clone is intro-
duced whose parent is chosen by random sampling from
existing clones based on their frequencies in the popu-
lation. The clonal frequencies are modified following a

stochastic process between two consecutive time points
(Algorithm 5).

Effect of number of clones
We generated 100 simulations for different number of
clones −10, 15, 20, 25, using the simulation algorithm. The
number of time points at which the VAFs were observed
is sampled from binomial distribution B(n, 0.6) where n
is the number of clones. Figure 2 shows the distribution
of recall (the proportion of clones correctly reconstructed
by the algorithm), the running time in log scale and the
log likelihood ratio of the predicted likelihood score over
the true likelihood score. Since AncesTree and CITUP
can output more than one solution, we calculated recall
for each solution and used the maximum recall for
comparison. The GP-GT algorithm correctly reconstructs
almost as many or even more clones on average than EP-
ET and EP-GT algorithms, while having a considerable
(2-3 magnitudes) speed advantage (Fig. 2a and 2b). The
likelihood score returned by the EP-ET algorithm is the
upper bound of any ML algorithm because this algorithm
traverses the entire space of valid solutions and returns
the tree that gives the maximum likelihood score. But
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the real clonal tree (following the simulation) may not be
the same as the ML tree (Fig. 2a and 2c). As the num-
ber of clones increases the likelihood scores returned by
EP-GT deviates much further from the likelihood score of
the true tree compared to the deviation of GP-GT, imply-
ing that the greedy heuristic not only helps in improving
the speed but also reduces error in clonal reconstruction
as the number of sequenced clones increases. Notably,
AncesTree and CITUP do not take into consideration
the sequential order of pooled sequencing data, and thus
none of their reported trees are similar to the real clonal
trees.

Effect of sparse time course data
To study the effect of sparse time course sequencing data
for a fixed number of clones, we generated 100 simulations
with fixed number of clones (15), but varied the number of
time points, where the VAFs were observed at 6, 10, 12, 14
and 15 time points, respectively. The results are shown in
Figs. 2d, 2e and 2f. As the number of time points increases,
the number of unordered mutation groups reduces, which
in turn reduces the size of the search space for the permu-
tation search. As a result, the recall increases, reaching a
maximum of about 0.85 on average when the number of
time points is equal to the number of clones, for which no
permutation search is needed.

Constrained search
To test the effectiveness of constrained search given a set
of sequenced clones we used the simulations generated
earlier with 20 clones and compared the performance of
the constrained search version of GP-GT algorithm by

giving different number of true clones as input. We see
that as the number of sequenced clones increases, the
average number of misconstructed clones decreases, and
so does the standard deviation (Fig. 3).

Analysis of metagenome sequencing data from the E. coli
population
We used the metagenome sequencing data obtained from
an LTEE study of an E. coli population [4], to validate
our methods. It is to be noted that since the proportion
of read support is used as an approximation for variant
allele frequencies, these values are very noisy. When we
did not allow any negative values in the clonal frequency
matrix C, our algorithm did not return any valid solu-
tion. Thus, we relaxed this criterion to allow cells in C
to have negative values greater than -0.4, which are then
considered to have the frequency of 0. The input matrix F
provided to the algorithm had VAF for 14 mutations at 6
time points. We use four haplotypes from eight sequenced
clones (the other four being redundant clones with respect
to the variants observed) in the constrained search using
GP-GT[P]. The resulting clonal tree is shown in Fig. 4a,
which is consistent with sequenced clones (highlighted in
gray). Figure 4b shows the haplotype of each clone and
Fig. 4c shows the Muller plot showing the change in clonal
frequencies over time. Note that the negative values in C
were set to zero and then the rows were normalized to one.
Figure 4d shows the clonal tree obtained when the known
clones were not given as constraints. As shown in the sim-
ulation experiments, the accuracy of clonal reconstruction
can be improved by including more time points, or by
sequencing more clones.

Fig. 3 Results of constrained search on 100 simulations of 20 clones each
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Fig. 4 Clonal reconstruction on the E. coli LTEE data. a Clonal tree obtained by constrained search with GP-GT on the metagenome sequencing
data. The four sequenced clones are shown in gray. b Reconstructed haplotypes depicted in a table where each row represents a clone and each
column represents a variant. The variant locus and the gene where it is located are shown in the column header. Non coding region is marked as nc.
When a clone has a specific variant, the corresponding cell is marked as 1, otherwise 0. Sequenced clones are highlighted in gray. c The Muller plot
showing the predicted clonal frequency changes over time. The colors correspond to those in the clonal tree. d Clonal tree obtained without
constrained search

Discussion
In this paper, we presented a maximum likelihood frame-
work and a series of greedy-based heuristic algorithms
to reconstruct the clonal haplotypes in a bacterial popu-
lation from metagenome sequencing data obtained in a
time course. All these algorithms can tolerate sparse time
points sampling (thus multiple clones may arise in the
same time period) while the constrained search algorithm
can also incorporate clonal sequencing data as additional
constraints for reconstructing un-sequenced clonal hap-
lotypes. The results based on simulation experiment
showed that, although the clones reconstructed by our
algorithms are not identical to the real ones used in the
simulation, they are highly similar, and more importantly,
the likelihood computed on the reconstructed clones is
comparable with (often higher than) the likelihood of the
real ones, which implies that our algorithms achieved
practically plausible optimal solutions under the max-
imum likelihood framework. Furthermore, our results
demonstrated that the accuracy of clonal reconstruction
can be improved by increasing the number of time points
for metagenome sequencing or by increasing the number
of sequenced clones. In particular, by sequencing more
clones, not only the haplotypes of more clones can be
directly derived, these derived haplotypes can impose
additional constraints on the unknown (minor) haplo-
types and thus improve the clonal reconstruction.

We note that the algorithms presented here report not
only the haplotypes of clones, but also their frequencies
over the time course. The next step after the clonal recon-
struction is to identify the clones under selection during
the course of evolution based on their frequencies. In this
paper, we started to evaluate our algorithms on a relatively
simple wild-type E. coli population. We plan to apply our

algorithms to analyzing the time course genomic sequenc-
ing data from DNA repair deficient E. coli strains, in which
hundreds of mutations occurred [4], to characterize the
evolutionary dynamics of the complex population.

Although our algorithms were designed to analyze the
sequencing data acquired from LTEE of bacterial pop-
ulations (e.g., E. coli), it may have other applications
such as in cancer genomics as described in the introduc-
tion. In addition, the metagenome sequencing approach
was commonly adopted to study microbial communities
containing hundreds of bacterial species, e.g., the human
microbiome [37, 38] and the microbiome from natural
habitats [39]. Recently, sequencing data acquired from
the same microbial community at multiple time points
become available [40, 41]. The current analyses of these
data focus on the investigation of species and func-
tional diversity in these communities. The computational
approaches presented here can also be applied to these
data, which will enable haplotype reconstruction of bacte-
rial genomes and may reveal concerted evolution among
bacterial species in the community. Interestingly, in the
applications to both the cancer genomics and microbiome
studies, clonal sequencing can be obtained through single
cell sequencing, where our algorithm incorporating the
clonal sequencing data can be directly applied.

Conclusions
The main contribution of this paper is to develop a
maximum likelihood framework to infer clonal evolution-
ary history from time course pooled sequencing data.
The testing results on the simulation data show that our
approach works better than the existing methods that
do not take into consideration the sequential order of
pooled sequencing data. The algorithms presented here is
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ready to be used for the analyses of sequencing data from
large-scale LTEEs.
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