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Abstract

Background: There is a plethora of methods for genome-wide association studies. However, only a few of them
may be classified as multi-trait and multi-locus, i.e. consider the influence of multiple genetic variants to several
correlated phenotypes.

Results: We propose a multi-trait multi-locus model which employs structural equation modeling (SEM) to describe
complex associations between SNPs and traits - multi-trait multi-locus SEM (mtmlSEM). The structure of our model
makes it possible to discriminate pleiotropic and single-trait SNPs of direct and indirect effect. We also propose an
automatic procedure to construct the model using factor analysis and the maximum likelihood method. For
estimating a large number of parameters in the model, we performed Bayesian inference and implemented Gibbs
sampling. An important feature of the model is that it correctly copes with non-normally distributed variables, such
as some traits and variants.

Conclusions: We applied the model to Vavilov’s collection of 404 chickpea (Cicer arietinum L.) accessions with 20-
fold cross-validation. We analyzed 16 phenotypic traits which we organized into five groups and found around 230
SNPs associated with traits, 60 of which were of pleiotropic effect. The model demonstrated high accuracy in
predicting trait values.
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Background
Understanding how genetic variation translates into
phenotypic effects is one of the central challenges facing
fundamental biology, agriculture, and medicine. Solutions
of this problem fall into two main classes: association
studies and trait prediction studies. Genome-wide associ-
ation studies (GWAS) are designed to identify genetic var-
iants associated with a trait. Initially, GWAS was
conducted for each trait separately testing SNPs one by
one. However, single-locus approaches may lead to biased
estimates due to multiple testing correction, and they are
not suitable in the common case of genetically correlated
traits.

To alleviate the latter challenge, multi-trait models
have been proposed [1, 2]. One way to cope with cor-
related traits is to model the inter-trait covariance as
a random effect in linear mixed effects models [3].
Until recently, this model could use only a pair of
correlated traits at a time due to the computational
intensity [4]. To avoid this complexity, variable reduc-
tion techniques were suggested to replace several
phenotypic traits with new independent constructs.
These constructs play the role of new traits and can
be obtained with a standard principal component ana-
lysis of traits (PCA), various principal components of
heritability (PCH) [5–7] or pseudo-principal compo-
nents [8]; however, the biological interpretation of
these artificial traits is not clear. Moreover, these
methods do not distinguish trait-specific and pleio-
tropic variants. To carry this out, meta-analysis
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combining several single-trait GWAS of different
traits was proposed [9]. It can derive trait-specific
variants, but, as correlated traits were not analyzed
simultaneously, this method is not multi-trait by
definition.
Another challenge in association studies is to develop

a powerful multi-locus model. Single-locus models re-
quire correction for multiple testing, which dramatically
reduces power. To avoid this problem, multi-locus
models that consider all markers simultaneously have
been proposed. Due to the ‘large p (number of SNPs),
small n (sample size)’ problem, many multi-locus models
are based on regularization/penalized techniques:
LASSO [10], Elastic Net [11], Bayesian LASSO [12],
adaptive mixed LASSO [13]. Other multi-locus methods,
which are incorporated in the mrMLM package, involve
a two-step algorithm which first selects candidate vari-
ants from a single-locus design and then examines them
together in a multi-locus manner [14]. Despite their di-
versity, the multi-locus models are limited in multi-trait
cases and seldom pay attention to different types of SNP
effects (e.g. pleiotropic, single-trait, direct, indirect).
In contrast to GWAS, the second broad class of

studies make genome-wide trait predictions. These
studies have gained popularity and enjoy practical ap-
plication in agriculture, specifically, in estimating indi-
vidual breeding values and selecting breeding lines
[15]. Genomic prediction methods not only search for
trait-variant associations but also validate them by
demonstrating their predictive ability. Similar to
GWAS, these methods are based on various regres-
sion models that typically include multiple loci and
consider kin relationships between individuals. The
latter is usually treated as the random effect, i.e. the
multivariate normally distributed variable with zero
mean and a covariance matrix proportional to
pedigree-based or marker-based kinship [16]. The
random effect can be estimated together with marker
effects as in BLUP and various GWAS mixed-models
[17–19] or before the association analysis as in
GRAMMAR [20].
Despite the broad spectrum of multi-trait and

multi-locus models in GWAS and trait prediction
studies, only a few of them simultaneously incorpor-
ate correlated traits and several associated variants
[21–25]. In principle, multi-trait and multi-locus
models have the potential to reveal complex and im-
portant types of associations; for instance, a single
variant might have a direct effect on one trait and an
indirect impact on the other trait, may act on a single
trait or its effect might be pleiotropic affecting several
traits. However, none of these traits-variants
associations are explicitly embedded into known
models. This is why it is tempting to have these

relationships described explicitly, as in structural
equation models.
Structural equation modeling (SEM) is a multivariate

statistical analysis technique first introduced for path
analysis by geneticist Sewell Wright [26, 27]. Once pre-
dominantly used in genetics, econometric, and sociology,
SEM applications have gradually shifted to the field of
molecular biology [28]. For example, SEM has been used
to explore alterations in gene networks in diseases [29,
30], to provide a quantitative map of relationships be-
tween traits and disease [31], and to infer gene regula-
tory networks involving several hundred genes and
eQTLs [32, 33].
SEM models have also been applied in association

studies in both multi-trait and multi-locus designs. For
example, the GW-SEM method has been developed to
test the association of a SNP with multiple phenotypes
through a latent construct [34]. In comparison with the
existing multi-trait single-locus GWAS software package
GEMMA (Zhou and Stephens 2014), GW-SEM provides
more accurate estimates of associations; however,
GEMMA is almost three times faster than GW-SEM.
Another SEM-based model which can be used in associ-
ation studies has been proposed for multi-trait QTL
mapping [35]. This method assumes that phenotypes are
causally related forming a core structure without latent
constructs, and QTLs play the role of exogenous variable
to the structure. This approach allows the model to de-
compose QTL effects into direct, indirect, and total ef-
fects. However, the assumption of causally related traits
is limiting because the correlation between traits can
additionally be caused by pleiotropy rather than the dir-
ect influence of traits on each other. Therefore, the
current SEM-based models for genotype-phenotype as-
sociations can be improved to address these drawbacks.
Here, we propose a new multi-trait multi-locus SEM-

based model – mtmvSEM – that considers both corre-
lated traits joined into latent constructs, which can be
causally related to each other, and multiple SNPs influ-
encing both traits and latent variables. In contrast to
PCA-based approaches, our model does not operate with
artificial phenotypes in the form of linear combinations
of traits, but rather the phenotypes are regressed on the
latent constructs. The proposed configuration of the
model distinguishes pleiotropic and single-trait effects of
SNPs on latent variables and phenotypes, respectively.
Moreover, SNP effects can be differentiated between dir-
ect and indirect. This explicit separation of SNP roles
may provide a better understanding of genetic mecha-
nisms underlying a trait than other multi-trait multi-
locus models.
Our approach faces several challenges. First, in case of

a large number of traits and variants, the model poten-
tially belongs to the “large p, small n” class, so that the
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standard maximum likelihood (ML) method for estimat-
ing parameters in SEM models is limited due to the par-
ameter identification criteria. This problem can be
solved by applying the Bayesian approach, which uses
prior information about model parameters. Bayesian
multiple-regression methods are widely used for gen-
omic prediction in agriculture and in GWAS [36] redu-
cing the number of tests, and consequently, increasing
robustness and power as compared to standard GWAS
analyses [37]. In our model, we performed Bayesian in-
ference and obtained posterior distributions of parame-
ters by Gibbs sampling, a Markov chain Monte Carlo
(MCMC) algorithm.
Another challenge in our model is the inclusion of

both continuous and ordinal variables given that variants
and many phenotypes are measured on ordinal scales.
As a result, it is impossible to estimate parameters in
SEM models using statistical models relying on the nor-
mality assumption. These limitations explain the sparsity
of studies conducting SEM analyses in a genome-wide
context. In our model, we incorporated techniques to
cope with ordinal data – polychoric and polyserial corre-
lations – that provide a correct analysis of genetic vari-
ants and traits.
Our model was applied to a dataset of 404 chickpea

landraces analyzed recently [38]. Chickpea is the second
most widely grown food legume, providing a vital source
of nutritional nitrogen for ~ 15% of the world’s popula-
tion. To accelerate chickpea breeding, it is important to
identify regions controlling agronomically important

traits. However, while performing GWAS, we found that
16 out of 30 phenotypic traits considered were corre-
lated. Therefore, to obtain statistically reliable markers
and to understand the causal relationships between traits
and variants, the mtmlSEM model developed here was
applied to this dataset. We also used the model to pre-
dict chickpea phenotypic traits and got sufficiently good
results for most of them.

Results
Application of mtmlSEM model to chickpea dataset
To test whether the relations between latent factors
in the model are reasonable and to evaluate impacts
of different types of SNPs, we compared four types of
models (Fig. 1). We denote a model having parame-
ters in the B matrix as connected and a model with-
out a B matrix as zero. We denote a model without
the K matrix as base and a model having parameters
in the K matrix as extended. Four model configura-
tions were considered covering all possible combina-
tions (Fig. 1).
For each of the four models, we assessed its predictive

ability with the fixed 20-fold cross-validation. In each of
the 20 training sets, we automatically obtained the same
set of 5 factors influencing 16 partly correlated pheno-
types (Table 1, Additional File 1). The first two factors
reflect different types of productivity traits. The third
factor reflects joint variation in the color of different
plant parts. The fourth can be interpreted as a pheno-
logical factor. The fifth reflects joint variation of traits

Fig. 1 Examples of the genome-wide multi-trait SEM model. a Connected base model; (b) Zero base model; (c) Zero extended model; (d)
Connected extended model
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related to plant architecture, in particular, plant height
and height of the lover pod attachment.
In the connected model, the latent factors were joined

into a directed acyclic graph and this procedure resulted
in slightly different structural parts for the 20 training
set models. We found that the number of connections
between latent variables varied from four to six with four
being common to all training sets (Fig. 2). From the stat-
istical viewpoint, relationships between latent variables
reflect their common variances that maximize the likeli-
hood of the sample covariance matrix subject to parame-
ters of the model. However, a biological interpretation of
the connections may be that the relationships between
factors related to productivity and plant color reflect se-
lection on market class: desi chickpeas have a small dark
seed, while kabuli have large lightly colored seeds [39].
Relations between productivity and phenology as well as
between productivity and plant architecture are also ap-
parent: plant productivity reflects the efficiency of plant
metabolism that obviously influences plant architecture
and phenology [40].
We first added SNPs influencing the latent factors to

obtain both the connected and zero base models. The
number of SNPs in the connected base models con-
structed for 20 training sets varied from 52 to 62; for zero
base models, this number was in the range from 36 to 46.
The larger number of SNPs in connected models as com-
pared with zero models can be explained by the essential
difference between SNPs attributed to these model types.
In connected base models, some SNPs are associated with
several latent factors and therefore affect a larger number
of phenotypic traits than in zero models. Therefore, in
connected models, SNPs describe a more complex
variance-covariance structure and, as a result, a larger
number of SNPs is required to estimate it.
Notably, SNPs influencing latent factors do not ex-

plain the variances specific to individual phenotypic
traits. To take into account these variances, we built
extended models for each training set. The number of
SNPs in connected extended models varied from 223
to 256; in zero extended models, this number was in
the range from 218 to 242. The significant increase in
the number of SNPs in extended models as compared
with base models can be explained by the fact that
extended models additionally consider around ten
SNPs per each of the 16 traits on average.
To obtain parameter estimates for each of the 80

models (4 model types and 20 training sets), we per-
formed five Gibbs sampling chains of length 2000 and
checked several diagnostics with tools in the coda
CRAN package. The Gelman-Rubin diagnostics was
higher than 1.05 in only 1% of all parameters. The mini-
mum effective sample size for a parameter was 83 and
the mean and median effective sample sizes across all

Table 1 5 factors influencing 16 partly correlated phenotypes

Factor Attributed phenotypes Description

1 NoPodsWeight Plant weight without pods

PodsWeight Pods weigth

PodsNumber Number of pods per plant

SeedsNumber Number of seeds per plant

SeedsWeight Seeds weight per plant

2 PodLength Pod length

PodWidth Pod width

Seed1000W Thousand seeds weight

3 FloCol Flower colour

StemCol Stem colour

FlowStemCol Peduncle colour

SeedCol Seed colour

4 BegFEndF Days from beginning of flowering
to end of flowering

EndFBegM Days from end of flowering to
beginning of maturation

5 Height Plant height

Hlp Height of lower pod attachment

Fig. 2 Latent factors joined to form structural part of connected
SEM model. Dashed arrows represent relationships, which were not
present is all training sets for directed acyclic graph obtained; Solid
lanes represent relationships, which were found in each of 20
training sets
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parameters and models were 3193 and 3304, respect-
ively. Based on these diagnostic values, we concluded
that there was good convergence of the Gibbs sampling
chains and took parameter estimates for testing.
For all model types, the accuracy of trait prediction

is good for plant height, some traits related to prod-
uctivity, and all traits related to plant color (Table 2,
Additional File 2). Closer inspection of the table
showed that the connected base model outperformed
the zero base model for 9 phenotypic traits, the op-
posite situation was observed for 5 traits, and predic-
tions for the remaining 2 traits were nearly equal.
When comparing the connected and zero extended
models, the number of times one model outperforms
the other is nearly equal (Table 2) and the number of
predictions with equal accuracy increases pointing to
greater similarity between these models.
Next, we analyzed positions of trait-associated SNPs

on the chromosomes in both connected and zero ex-
tended model types. For each of these types, we had
independently built 20 models due to the fixed 20-
fold CV, and, consequently, the sets of SNPs included
into the models were different. To evaluate the con-
gruence between chromosomal positions of SNPs
from different sets, we applied the sliding window
technique (500 kb window size with 100 kb step) and,

for each window, we counted the number of models
having at least one SNP in it. We applied this tech-
nique for five subsets of SNPs separately, such that
each subset was associated with a factor and its at-
tributed phenotypes. We visualized the evaluated con-
gruence between 20 models in Fig. 3. We found that
the models agree with each other due to the signifi-
cant amount of windows, where all models have
SNPs. We next compared positions of peaks with
GWAS-hits obtained by a single-trait, single-locus
model for the chickpea dataset [38]. Utilizing the per-
mutation test, we found that positions of the GWAS-
hits and the peaks are not independent (p-value <
0.05) indicating that there is some concordance be-
tween our models and GWAS analysis. In Fig. 3,
some GWAS hits do not have any matches with
peaks, because our model does not include correlated
SNPs, which naturally occur in GWAS results. More-
over, our model describes essentially more informa-
tion than single-trait GWAS; therefore, some peaks
do not match any GWAS hits.

Discussion
GWAS often relies on data with a number of highly cor-
related phenotypic traits. Due to these correlations, sig-
nificant SNPs are frequently associated with several
phenotypes, i.e., they are pleiotropic. Until recently,
multi-trait multi-locus models could neither distinguish
SNP effects between pleiotropic and single-trait ones
nor analyze a large number of traits and variants. In a
SEM-based model, aggregation of pleiotropic effects into
latent constructs makes it possible to distinguish SNP ef-
fects and, therefore, shed more light on mechanisms
underlying associations. Large numbers of SNPs and
traits in the model can lead to a parameter identification
problem that, nevertheless, can be solved by applying
Bayesian approach for parameter estimation.
Here we developed the mtmlSEM (multi-trait multi-

locus SEM) model that estimates and evaluates casual
relations between phenotypes and SNPs, reliably dis-
criminates variant effects between single-trait and
pleiotropic ones, and has good predictive ability. The
developed model is a general one and can be applied
to analysis of associations between variants and corre-
lated traits in any dataset. It consists of two main
steps. Firstly, the structure of the model is automatic-
ally constructed, such that correlated traits are joined
into latent factors and explanatory SNPs are intro-
duced to latent factors and phenotypic traits directly.
Under this paradigm, one could consider latent fac-
tors as aggregating yet unknown biological processes
that explain the SNP influence on phenotypes. At the
second step, the parameter estimates are obtained

Table 2 Accuracy of trait prediction for four models (Pearson
correlation between actual values and predicted and coefficient
of determination). Bold font: connected model outperforms
zero model; Italic font - prediction accuracies of connected and
zero models are nearly equal

Model type Connected Zero Connected Zero

SNPs influence extended extended base base

Measure corr, r r2 corr, r r2 corr, r r2 corr, r r2

Seed1000W 0.75 0.56 0.75 0.56 0.75 0.56 0.75 0.57

FloCol 0.69 0.48 0.71 0.50 0.65 0.42 0.64 0.42

FlowStemCol 0.68 0.46 0.67 0.45 0.67 0.45 0.66 0.44

SeedCol 0.67 0.45 0.68 0.46 0.60 0.36 0.63 0.39

NoPodsWeight 0.67 0.45 0.67 0.45 0.59 0.34 0.57 0.33

PodLength 0.67 0.44 0.69 0.47 0.65 0.42 0.64 0.41

StemCol 0.64 0.42 0.67 0.45 0.65 0.43 0.67 0.45

PodWidth 0.63 0.40 0.66 0.44 0.64 0.40 0.67 0.44

Height 0.59 0.34 0.59 0.35 0.57 0.33 0.49 0.24

PodsWeight 0.45 0.20 0.42 0.18 0.44 0.19 0.42 0.18

SeedsWeight 0.38 0.14 0.36 0.13 0.38 0.15 0.37 0.14

SeedsNumber 0.36 0.13 0.32 0.10 0.15 0.02 0.15 0.02

EndFBegM 0.33 0.11 0.33 0.11 0.35 0.12 0.32 0.10

Hlp 0.32 0.10 0.35 0.12 0.31 0.10 0.35 0.12

BegFEndF 0.30 0.09 0.28 0.08 0.27 0.07 0.28 0.08

PodsNumber 0.30 0.09 0.27 0.07 0.26 0.07 0.25 0.06
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with MCMC (Gibbs sampling) after the Bayesian in-
ference of posterior distributions for parameters.
At the next step, the applicability of the mtmlSEM

model was illustrated on a dataset of chickpea acces-
sions. Many phenotypic traits in this dataset are corre-
lated and therefore single-trait GWAS inferences can be
biased. We compared four models: zero or connected
means inclusion or not parameters in B, base or ex-
tended means inclusion or not parameters in K. To esti-
mate model accuracy, we applied the 20-fold cross-
validation, which led to construction of 20 different
models for each model type.
After the accuracy of trait prediction was assessed, it

became evident that among base models, connected
ones describe the covariance structure of the data more
accurately and, therefore, showed better predictive abil-
ity than the zero models. Therefore, one may conclude
that joining latent factors into a structure was reasonable

as all phenotypes are mutually dependent and cannot be
considered as isolated blocks of traits.
In the case of extended models, the supplementary

SNPs added to phenotypes described the residual vari-
ance not covered by the base models, so that the con-
nected and zero extended models were comparable in
both total numbers of SNPs and accuracy.
We next tested the utility of the models to predict as-

sociations between SNPs and phenotypes. We found that
in that base and connected extended models behave
similarly supporting their resemblance to one another.
The associations revealed with mtmlSEM model and in
standard GWAS analysis are consistent and the differ-
ences observed arise due to exclusion of correlated SNPs
from the mtmlSEM models, and because mtmlSEM
models consider individual and pleiotropic effects of
SNPs separately. These effects could be singled out by
calculating the difference between SNP effects in

Fig. 3 The sliding-window congruence between models obtained in 20-fold cross validation. The hight of a peak reflects the number of models
having at least one SNPs within the window corresponding to the peak
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extended and zero models. However, the pleiotropic
SNP effects are central to trait prediction in the models
since the addition of SNPs to traits does not result in
marked increase of prediction accuracy (see Table 2).

Conclusions
We developed the mtmlSEM model that describes casual
relations between between single-trait and pleiotropic
SNPs and phenotypic traits. The particular strength of
mtmlSEM model developed here is its ability to predict
traits from genomic data. Notably, while the chickpea
dataset used in this study is relatively small, the accuracy
of the predictions for many traits was good and is com-
parable or even superior to the accuracy of breeding
values predictions in genomic selection models. How-
ever, the applicability of mtmlSEM models in genomic
selection studies requires further investigation.

Methods
Structural equation modeling
First proposed by S. Wright [26] for path analysis,
SEM is defined today as a diverse set of tools and ap-
proaches covering regression models, path analysis
and confirmatory factor analysis. The first SEM model
was LISREL, and it has two distinct parts: structural
and measurement [41, 42]. The structural part of LIS-
REL reflects the causal relationships between en-
dogenous and exogenous latent variables; the
measurement model describes how latent variables in-
fluence their manifest variables:

η ¼ Bηþ ε
p ¼ Ληþ δ

ð1Þ

where η is a vector of nη latent factors (both exogeneous
and endogenous), p is a vector of np observed manifest
variables, Λ is a matrix of factor loadings, B is a matrix
of relationships between latent factors, ε ∼N(0,Θε) and
δ ∼N(0,Θδ) are random errors, Θε and Θδ are diagonal
matrices of sizes (nη, nη) and (np, np), respectively.
To adapt this model for genotype-phenotype stud-

ies, we considered p as a vector of phenotypes, and η
as a vector of latent variables, which describe the
shared variance of genetically correlated traits. One
possible interpretation of the measurement part of
the model in these terms is that latent variables play
the role of molecular mechanisms governing the cor-
relation between traits. The structural part describes
the interplay between these mechanisms.
To construct the mtmlSEM model, we extended the

LISREL model with observed exogenous variables
assuming them as SNPs. New exogenous variables in-
fluence either latent factors or phenotypes traits1 and
mean pleiotropic and single-trait effects, respectively.

As a result, latent variables η become only
endogenous and the SEM model is transformed as
follows:

η ¼ BηþΠg þ ε
p ¼ Ληþ Kyþ δ

ð2Þ

where g and y are variables of SNPs influencing latent
factors and phenotypic traits, respectively; Π and K are
matrixes of SNP influences on latent factors and pheno-
types, respectively. We assumed that each column of
both the Π and K matrices can contain only one cell
with a parameter such that each SNP can influence only
one variable. SNPs in the structural part, g, describe a
part of phenotypic variance, which is common for sev-
eral traits. However, each phenotype has its own vari-
ance, which is described by SNPs in the measurement
part, y. If the B matrix is not zero, a pleiotropic SNP,
which directly influences one latent variable and its re-
lated traits, can indirectly affect other latent variables
and their traits. Therefore, in mtmlSEM model, SNPs
can be subdivided into single-trait, pleiotropic and dir-
ect/indirect effects.
The Maximum likelihood method, most often used

to estimate parameters in SEM model, assumes that
all observed and latent variables are normally distrib-
uted. Under this assumption, the sample covariance
matrix of observed variables follows the Wishart dis-
tribution with the mean equal to the model-implied
covariance matrix. In our dataset, some of the pheno-
typic traits and all SNPs take discrete ordinal values;
therefore, the ML approach cannot be applied. To
consider ordinal variables as normally distributed, we
substituted sample covariances between ordinal vari-
ables with polychoric correlations and between or-
dinal and continuous variables with polyserial
correlations (see section Ordinal variables). The ML
approach can be applied after this manipulation (see
Additional File 3).

Construction of measurement part
We identified latent variables influencing phenotypic
traits applying factor analysis (FA). To determine the
number of factors, we applied the parallel analysis [43].
Then, we performed FA and attributed a trait to a factor
if the absolute value of the factor loading (i.e. standard-
ized regression coefficient) exceeds 0.5. Factors influen-
cing less than two phenotypes and phenotypes not
attributed to the factors were filtered out. As a result, we
obtained the measurement part of the model (1), which
is a set of latent factors that influence the subsets of
phenotypic traits:

p ¼ Ληþ δ ð3Þ
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where Λ is a sparse matrix. The model does not contain
an intercept term because traits are standardized to have
mean zero and variance one.

Construction of structural part
In FA, factors are independent and influence all ob-
served variables. By setting some factor loadings to zero,
we probably violated the factor independency; therefore,
we expect them to be non-independent. To include fac-
tor dependency into the model, we allowed factors to be
in causal relationships that describe presumable com-
mon variance between them:

η ¼ Bηþ ε ð4Þ

where B is the coefficient matrix for relationships between
latent variables, η. The model does not contain an inter-
cept term because latent variables are assumed to have
mean zero. Eq. (4) together with eq. (3) form the trad-
itional LISREL model. To obtain the positions of parame-
ters in the B matrix, we iteratively add them one by one
until a stopping criterion is met. At an iteration, we con-
sidered each pair of latent factors and examined two pos-
sible relationships within the pair: to and back links. For
each causal relationship not forming a cycle in the struc-
tural part, we estimated the parameters of the correspond-
ing LISREL model by the ML method and checked for
statistical significance of all the parameters in both Λ and
B matrices (p-value < 0.05). Next, we defined the best rela-
tionship between latent factors as having the highest likeli-
hood value and fixed the corresponding position of a new
parameter in B. The iterations continued until the log-
likelihood value stops decreasing.

SNP selection
Before SNPs were incorporated into the model, we esti-
mated parameters for the constructed LISREL part of
the model (Eq. (1)) and fixed all parameter values in B
and Λ matrices. This is necessary to do as SNP addition
enlarges the number of parameters that makes further
ML estimation unstable. Therefore, we added SNPs to
the model with fixed B and Λ matrices.
We first automatically introduced SNPs for each latent

variable (vector g in Eq. (2)) into the model starting from
the exogenous latent variables and breadth-first follow-
ing the direct acyclic graph (DAG) of the structural part.
Then, we performed the same automatic procedure and
introduced SNPs for phenotypes (vector y in Eq. (2)).
Selecting a SNP for a variable, whether it is a latent

factor or phenotype, consisted of three steps. At the
first step, we included SNPs one by one as influen-
cing the variable and perform the ML estimation of
model parameters. The sample covariance matrix of
all observed variables for both phenotypic traits and

SNPs follows the Wishart distribution with the mean
equal to model-implied covariance matrix (see Add-
itional File 3). Secondly, based on the ML estimates,
we calculate the Wishart density for the sample co-
variance matrix of phenotypes only taking as the
mean parameter of the distribution the model-implied
covariance of phenotypes. At the third step, we sort
all SNPs according to the calculated densities and put
the top SNP into the model fixing the corresponding
parameter in Π or K matrix with the ML estimate.
This automatic algorithm for selecting SNPs was im-
plemented using the tools of the semopy [44] Python
package.

Ordinal variables
The estimation of parameters in the SEM model is trad-
itionally based on the assumption that all variables,
whether they are observed or latent, are normally dis-
tributed. However, in the mtmlSEM model, this assump-
tion is inevitably violated because SNPs take only
discrete values, for instance, {0, 1, 2}, in the additive
model. Moreover, the ordinal scale is often used for
measurements of phenotypic traits.
We considered ordinal data as coming from a hidden

continuous normal distribution with a threshold specifi-
cation [45] and introduced additional latent variables to
the model as follows. Let ~x be a latent normally distrib-
uted variable that mimics the ordinal variable x taking
values from {x1, x2,…xn}. Suppose for a given data set
the proportions of these values are {f1, f2,…fn}, respect-
ively. Let thresholds {−∞ = t0, t1,…tn =∞} divide the
normal distribution into n parts corresponding to the
proportions tk equal to the standard normal quantile at
Pk

i¼1 f i . Although the exact continuous measurements
of ~x are not available, we consider that if x = xk, then tk−1
< ~x≤ tk [45]. Thereby, for each SNP and ordinal pheno-
typic trait, we introduce to the model additional nor-
mally distributed latent variables.
Let the vector of phenotypes p be split into two parts:

continuous traits, u, modelled as normally distributed,
and discrete phenotypes, v, measured on an ordinal
scale. For the latter, as well as for g and y variables, we
apply the threshold approach described above and intro-
duce vectors of latent variables ~v , ~g and ~y , respectively.
Therefore, the model (2) is transformed to

η ¼ BηþΠ~g þ ε
� u

~v

�
¼ Ληþ K~yþ δ

ð5Þ

Bayesian estimation of model parameters
The ML method is used to estimate parameters of SEM
models most of the time. However, if the number of
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parameters is large, as in our mtmlSEM model, this
method is computationally unstable and prone to
optimization failure. In contrast to the ML method, the
Bayesian approach can cope with this situation taking
into account prior information about parameters and
maximizing the posterior distribution of parameters and
latent variables. We considered values in the B, Λ, Π, K
matrices that were fixed during model construction as
prior information and performed the Bayesian inference
to obtain the posterior distributions for all parameters (de-
note set of all parameters as ϕ = {B, Λ, Π, K, Θε, Θδ }) and
latent variables (η;~v; ~g;~y) (see Additional File 4). As a re-
sult, we were able to generate posterior distributions of
parameters by the Gibbs sampler, a Markov chain Monte
Carlo algorithm. We initiated each chain with random
values, and, at each iteration of the sampler, we draw

1. datasets for ~v, ~g and ~y from truncated normal
distributions, independently of ϕ;

2. datasets for η from the multivariate normal
distribution conditional on ϕ;

3. diagonal values in Θε from the inverse gamma
distribution conditional on ϕ;

4. values in rows of the block matrix [B,Π] from
multivariate normal distributions conditional on ϕ;

5. diagonal values in Θδ from the inverse gamma
distribution conditional on ϕ;

6. values in rows of the block matrix [Λ, K] from
multivariate normal distributions conditional on ϕ.

To get parameter estimates, we performed Gibbs sam-
pling on 5 chains of length 2000, checked convergence
indicators (Gelnman-Rubin diagnostics and the effective
sample size), and calculated the parameter estimates.

The chickpea dataset
The chickpea dataset (Cicer arietinum L.) consists of 404
accessions from the Vavilov Institute of Plant Genetic

Fig. 4 Distributions of the data after preparation. Grey-coloured traits were not transformed. Yellow-coloured traits are categorial traits that were
transformed; orange-coloured traits are non-categorial and were log-transformed
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Resources (VIR) seed bank. In 2017, these accessions were
phenotyped for 30 phenological, morphological, agronomi-
cal, and biological traits. Some of these traits are categorical
and others are quantitative. Phenotype abbreviations and
units of measurement are in Additional File 2. Genotyping
by sequencing (GBS) of chickpea accessions identified 56,
855 segregating single nucleotide polymorphisms (SNPs).
These SNPs were further filtered to meet requirements for
minor allele frequency (MAF) > 3% and genotype call-
rate > 90%. 2579 SNPs in 404 accessions passed all filtering
criteria and were retained for further analysis. The pheno-
type data were further transformed in two ways. Firstly, for
some categorial traits, we merged categories to make them
more distinct (Additional File 2). Secondly, several quantita-
tive traits were log-transformed to satisfy the assumption of
normality (Fig. 4). All quantitative traits were further cen-
tered and scaled by calculation of z-score.

Test for predictive ability
The model was validated by 20-fold cross-validation. We
randomly partitioned the dataset into 20 training (about
380 samples) and test (20 samples) sets and fixed the
splits. For each training set, we independently con-
structed an mtmlSEM model and obtained parameter es-
timates after Gibbs sampling on 5 chains taking these
parameters to predict values of phenotypic traits in the
corresponding test set. The prediction accuracy was esti-
mated by calculating the Pearson correlation between
observed and predicted values across all test sets, the co-
efficient of determination and normalized rooted mean
square error (Additional File 5).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-06833-2.

Additional File 1. Absolute values of correlations between phenotypic
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