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Abstract

Background: Researchers discover LncRNA–miRNA regulatory paradigms modulate gene expression patterns and
drive major cellular processes. Identification of lncRNA-miRNA interactions (LMIs) is critical to reveal the mechanism
of biological processes and complicated diseases. Because conventional wet experiments are time-consuming,
labor-intensive and costly, a few computational methods have been proposed to expedite the identification of
lncRNA-miRNA interactions. However, little attention has been paid to fully exploit the structural and topological
information of the lncRNA-miRNA interaction network.

Results: In this paper, we propose novel lncRNA-miRNA prediction methods by using graph embedding and
ensemble learning. First, we calculate lncRNA-lncRNA sequence similarity and miRNA-miRNA sequence similarity,
and then we combine them with the known lncRNA-miRNA interactions to construct a heterogeneous network.
Second, we adopt several graph embedding methods to learn embedded representations of lncRNAs and miRNAs
from the heterogeneous network, and construct the ensemble models using two ensemble strategies. For the
former, we consider individual graph embedding based models as base predictors and integrate their predictions,
and develop a method, named GEEL-PI. For the latter, we construct a deep attention neural network (DANN) to
integrate various graph embeddings, and present an ensemble method, named GEEL-FI. The experimental results
demonstrate both GEEL-PI and GEEL-FI outperform other state-of-the-art methods. The effectiveness of two
ensemble strategies is validated by further experiments. Moreover, the case studies show that GEEL-PI and GEEL-FI
can find novel lncRNA-miRNA associations.

Conclusion: The study reveals that graph embedding and ensemble learning based method is efficient for
integrating heterogeneous information derived from lncRNA-miRNA interaction network and can achieve better
performance on LMI prediction task. In conclusion, GEEL-PI and GEEL-FI are promising for lncRNA-miRNA interaction
prediction.
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Background
Non-coding RNAs (ncRNAs), including long non-coding
RNA (lncRNA), miRNA, snRNA, are a category of RNAs
that are not translated into functional proteins. A surge
of studies has betrayed that ncRNAs have regulatory
functions in biological processes [1–4]. LncRNAs are a
class of ncRNAs with more than 200 nucleotides (nt),
playing important roles in gene imprinting, immune re-
sponse, and chromatin remodeling [1, 2]. MiRNAs are a
category of single-stranded, endogenous, evolutionally
conserved ncRNAs with 20-25 nt, which are involved in
diverse biological processes, such as the regulation of
metabolism, cell differentiation, gene expression, embry-
onic development, and apoptosis [3–5]. LncRNA-
miRNA regulatory paradigms modulate gene expression
patterns that drive major cellular processes (e.g., cell pro-
liferation, cell differentiation, and cell death) which are
central to mammalian physiologic and pathologic pro-
cesses [6]. Furthermore, it has been found that both
lncRNAs and miRNAs relate closely to severe diseases
[7, 8]. Therefore, a critical key to reveal the mechanism
of associated biological processes and diseases is to
characterize various functions of lncRNAs and miRNAs.
LncRNAs and miRNAs produce complicated effects

through their interactions with other biological mole-
cules such as DNAs, RNAs, and proteins, thus conduct-
ing researches on lncRNA-biomolecule interactions
contributes to portraying the functions of lncRNAs and
miRNAs [9–11]. Lately, some studies have demonstrated
that lncRNAs can be used as a decoy or sponge to regu-
late miRNAs’ behavior [12], indicating that identifying
lncRNA-miRNA interactions (LMIs) helps to understand
the functions of lncRNAs and miRNAs.
In earlier researches, unknown LMIs were identified

through wet experiments. However, due to the laborious,
costly, and time-consuming process of wet methods, it is
more common to refine the candidate list in silico pre-
diction for further validation experiments, in order to
accelerate the identification of LMIs.
Recently, plenty of computational approaches have

been proposed to predict LMIs. Huang et al. [13]
propose a two-way diffusion model EPLMI for lncRNA-
miRNA interaction prediction, which considers the
known LMIs as a bipartite network. Huang et al. [14] de-
velop GBCF, which builds a Bayesian collaborative filter-
ing model using sequence, expression profiles, and
target genes. Hu et al. [15] introduce a model, namely
INLMI, which is based on the sequence similarity net-
work and the expression similarity network. Zhang et al.
[16] propose SLNPM which constructs the integrated
similarity-based graph exploiting LMIs and genomic se-
quences, and implement a label propagation process on
graphs for LMI prediction. These pioneers have pro-
duced good performances, but there still exist some

limitations. On the one hand, some of the existing
methods (e.g., EPLMI, GBCF and INLMI) heavily rely
on biological features of lncRNAs and miRNAs, such as
target gene information or expression profiles, which are
not obtainable for all lncRNAs (miRNAs). On the other
hand, the structure of the LMI network cannot be fully
in pervious methods; nevertheless, it is fairly crucial to
effectively utilize the structural and topological informa-
tion of the LMI network for link inference.
Graph embedding learning (a.k.a. network representa-

tion learning), can be employed to preserve the struc-
tural property of the graph and map nodes of the graph
into low-dimensional space, attracting widespread atten-
tion recently. To the best of our knowledge, some graph
embedding methods have been exploited to reveal un-
known associations between biomedical entities [17–19].
Motivated by the previous work in bioinformatics, we
use graph embedding methods to capture information
from LMI network.
Ensemble learning is one of the research hotspots in

machine learning and pattern recognition. To date, en-
semble learning methods have been increasingly used in
computational biology because of their unique advan-
tages in managing small samples, complex data struc-
tures, and high dimensionality [20]. Ensemble learning is
an efficient technique that aggregates multiple machine
learning models to achieve overall high prediction accur-
acy and good generalization [21]. It usually performs
better than individual methods. Inspired by pioneering
works [22–27], we adopt ensemble strategies to integrate
individual predictions and embeddings to enhance the
performance of LMI prediction.
In this paper, we propose novel LMI prediction

methods based on graph embedding and ensemble strat-
egies. Firstly, we calculate similarity based on lncRNA
sequences and miRNA sequences and construct a het-
erogeneous network by combining them with the known
LMIs. Secondly, we utilize five graph embedding
methods (i.e., Laplacian Eigenmaps [28], HOPE [29],
GraRep [30], DeepWalk [31], and GAE [32]) to capture
structural information from the heterogeneous network,
and learn the representation of lncRNAs and miRNAs.
Later, we represent the lncRNA-miRNA pairs by mer-
ging lncRNA’s representation with miRNA’s representa-
tion, and build ensemble models based on pair features.
As the extension of our previous work [33], we consider
two ensemble strategies. For the former, we consider all
the individual graph embedding based models as base
predictors and integrate their predictions to develop a
prediction method, named GEEL-PI. As for the latter, we
construct a deep attention neural network (DANN) to
learn lncRNA-miRNA pair representations by combining
various graph embeddings, and develop a method, named
GEEL-FI. The experimental results demonstrate that the
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proposed methods GEEL-PI and GEEL-FI can predict
lncRNA-miRNA interactions with higher accuracy
compared with other state-of-the-art methods. More-
over, the effectiveness of the prediction integration
and attention network is proved by extensive experi-
ments. Furthermore, we conduct case studies to valid-
ate the predicted LMIs which do not exist in our
dataset. In conclusion, both GEEL-PI and GEEL-FI
are useful for predicting LMIs. Our contribution can
be summarized as:

(1) We consider a variety of graph embedding methods
to learn the embedded representations from the
lncRNA-miRNA heterogeneous network.

(2) We introduce a deep attention neural network to
learn high-level sophistic representations by focus-
ing on different aspects of embedded
representations.

(3) We consider two different ensemble strategies in
this work. Then we design comprehensive
experiments to compare them and analyze their
effectiveness.

Results and discussion
Evaluation metrics
In this paper, we implement 5-fold cross-validation (5-
CV) to evaluate our models. The following metrics are
adopted in our experiments: the area under the
precision-recall curve (AUPR), the area under the
receiver-operating characteristic curve (AUC), F-
measure (F1), accuracy (ACC), recall (REC), specificity
(SPEC), and precision (PRE).

Parameter settings
In this study, both GEEL-PI and GEEL-FI have two
major components: graph embedding and ensemble
learning. Here, we introduce parameter settings.

Parameter settings for graph embedding methods
In this study, both GEEL-PI and GEEL-FI adopt five
graph embedding methods: LE, GraRep, HOPE, Deep-
Walk, and GAE to learn representations of lncRNAs and
miRNAs. The graph embedding methods are imple-
mented by BioNEV [19].
Here, we discuss the parameter settings of five

graph embedding methods. Firstly, we fix the repre-
sentation dimension of all the graph embedding
methods θ as 120 and consider other specified param-
eters of each graph embedding method. For GraRep,
we consider the k th transition probability matrix k-
step ∈ {1, 2, 3, 4}. For DeepWalk, we fix the walk
length t as 80, and consider the combinations of win-
dow size w ∈ {10,20,30,40} and walk per vertex γ ∈ {10,
20,30,40}. For GAE, we consider autoencoder and

variational autoencoder respectively, and select the
size of hidden layers β ∈ {32,64,128,256,512,1024}. For
the aforementioned graph embedding methods, we
adopt the optimal parameters which achieve the high-
est AUPR scores.

Parameter settings for ensemble methods
In this paper, we propose two ensemble strategies: pre-
diction combination for GEEL-PI and attention neural
network for GEEL-FI. The detailed parameter settings
are described below.
For GEEL-PI, Random Forest and Logistic Regression

are implemented by “scikit-learn” [34] where default
hyperparameters are adopted. For the logistic regression,
we additionally adopt L2 regulation with default
parameters.
For GEEL-FI, we tune the following parameter set-

tings: (1) the number of hidden layers μ and the size of
hidden layers β in DANN (2) the embedded representa-
tion vectors ε involved in the feature fusion (3) the di-
mension of lncRNA-miRNA pair features θ (4) the
number of estimators η in Random Forest classifier.
In the attention layer of DANN, we design two groups

of attention weights for individual lncRNA-miRNA pair
features. For fully-connected layers, we consider differ-
ent combinations of the parameters: number of hidden
layers μ ∈ {1, 2, 3, 4}, size of hidden layers β ∈ {480, 240,
120, 60, 30}. Then we use the grid search to optimize
these parameters according to their performances on 5-
CV. Finally, we design a two-hidden-layer neural net-
work, and the size of each layer is 120 and 60
respectively.
As for the embedded representation vectors ε, we con-

sider combinations of embedded representation vectors
for merged lncRNA-miRNA pair features. For individual
graph embedding methods, we implement 5-CV for 20
times. In the light of AUC and AUPR scores, we reorder
five graph embedding methods as GraRep, LE, GAE,
HOPE, DeepWalk. And then we select the top K features
as the candidates for lncRNA-miRNA pair features. Here
we visualize the trend of AUC scores over the combin-
ation of top K features in Fig. 1 (a). The fused feature
based on the top 2 graph embedding methods (i.e.
GraRep and LE) owns the best performances. Hence, we
adopt ε = {GraRep, LE}.
We consider the dimension of lncRNA-miRNA pair

features θ ∈ {80, 120, 160, 240, 280, 320} with the consid-
eration of the AUPR and AUC scores. As presented in
Fig. 1 (b), fused features of 160 dimensions have a higher
AUPR score and that of 240 dimensions has a higher
AUC score. In the subsequent experiment, pair features
of 160 dimensions achieve better performance, thus we
set θ = 160.
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Eventually, we consider the number of estimators η in
Random Forest from 80 to 2000. In Fig. 1 (c), when the
number of estimators equals to 2000, the AUPR score
has little improvement. Considering computational effi-
ciency and time costs, we set η = 2000.
After analysis above, we adopt μ = 2, β = {240,120}, ε =

{GraRep, LE}, θ = 160 and η = 2000 for GEEL-FI. All the
parameters used in graph embedding ensemble methods
are summarized in Table 1.

Comparison with state-of-the-art methods
Here, we compare our models with several state-of-the-
art methods including EPLMI [13], INLMI [15], and
SLNPM [35]. EPLMI infers link probability according to
the similarity between lncRNA and miRNA expression
profiles. Specifically, EPLMI constructs a bipartite net-
work using known lncRNA-miRNA interactions and ex-
ploits lncRNA (miRNA) expression profile information
via the network for LMI prediction. INLMI integrates
the sequence similarity and the expression similarity,
and adopts a two-way diffusion algorithm to infer LMIs.
SLNPM predicts LMIs by implementing a label propaga-
tion algorithm on two biomedical entities similarity
graphs respectively. EPLMI and SLNPM are

implemented according to the descriptions in the publi-
cations, then we evaluate the above models on our data-
set by using 5-fold cross-validation experiments.
As shown in Table 2, GEEL-FI achieves the best AUPR

score (0.7011), and the best AUC score (0.9578), and
GEEL-PI achieves the second-best AUPR score (0.7004)
and AUC score (0.9537), which significantly outperform
other state-of-art methods. The substantial improvement
of our models could be attributed to two factors: (1)
GEEL-PI and GEEL-FI make the best of the structural
properties implied in the lncRNA-miRNA heterogeneous
network by employing graph embedding. (2) GEEL-PI
and GEEL-FI adopt ensemble strategies (i.e. prediction
integration and feature integration) to integrate multi-
view information.
In computational experiments, the top-ranked predic-

tions are critical to reflect the performances of models.
Here, we calculate the recall and precision of the afore-
mentioned models on top-ranked predictions ranging
from the top 100 to the top 1000. As presented in Fig. 2
(a), both GEEL-PI and GEEL-FI achieve best recall
scores over all thresholds. For instance, when checking
the top 500 predictions, GEEL-PI and GEEL-FI achieve
recall scores of 0.5719 and 0.5706, nevertheless, the

Fig 1 The influence of hyperparameters on performances of GEEL-FI model. a shows the box plot of AUC scores of GEEL-FI with different
embedded representation integration. b shows the scatter plot of AUC and AUPR scores of GEEL-FI with different dimensions of lncRNA-miRNA
pair embedded representations. c shows the line plot of AUPR scores of GEEL-FI with the different numbers of Random Forest estimators

Table 1 Parameter settings for proposed methods

Methods Components Parameters

Graph embedding methods Representation vector dimension θ: 120

GraRep k-step: 1

DeepWalk walk length t: 80, walk per vertex γ: 30, window size w: 30

GAE variational Autoencoder, hidden size β: 512

GEEL-PI Random Forest default parameters

Logistic Regression L2 regulation with default parameters

GEEL-FI DANN hidden layers μ: 2, hidden size β: {240,120}

Representation vector embeddings ε: {GraRep, LE}

Pair feature dimension θ: 160

Random Forest estimators η: 2000
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recall scores for SLNPM, EPLMI, INLMI remain 0.5283,
0.0921, 0.0884 respectively. Similarly, both GEEL-PI and
achieve better precision scores than other benchmark
methods as given in Fig. 2 (b). For example, both GEEL-
PI and GEEL-FI can infer 86% real interactions in the
top 500 predictions, whereas SLNPM, EPLMI, INLMI
can only find 80, 10, 10% real interactions. Therefore,
both GEEL-PI and GEEL-FI are preferable for LMI pre-
diction compared with other state-of-the-art methods.

Effect of ensemble learning
In this paper, we adopted two ensemble strategies to in-
tegrate heterogeneous information and develop our
methods: GEEL-PI and GEEL-FI. In the following, we
evaluate the performances of base predictors and our
methods by 20 runs of 5-CV and discuss how the en-
semble strategies improve performances.
As demonstrated in Table 3, generally, these graph

embedding based models could produce satisfactory per-
formances, achieving AUPR scores> 0.65 and AUC
scores> 0.92. In terms of the standard deviations of 20
runs of experiments, all these prediction models could
lead to stable results. The experimental results indicate
that graph embedding methods can efficiently capture
inherent properties from the lncRNA-miRNA heteroge-
neous network for LMI inference.
Further, we integrate above five graph embedding

based methods by ensemble strategies to enhance the
accuracy of the model. GEEL-PI integrates different pre-
diction scores from five graph embedding-based predic-
tors, achieving AUPR score of 0.7004 and AUC score of
0.9537. GEEL-FI attentively integrates lncRNA and
miRNA representations to obtain distinctive lncRNA-
miRNA pair features, achieving AUPR score of 0.7011
and AUC score of 0.9578. Both GEEL-PI and GEEL-FI
achieve superior performances compared with base pre-
dictors, which indicates our ensemble strategies can con-
tribute to higher accuracy for LMI prediction.
To evaluate the generalization ability of our ensemble

models, we design an experiment on different sparsity of
the heterogeneous network by removal of a certain pro-
portion of links. In the experiments, we randomly delete
10, 20, 30, and 40% of LMIs in the heterogeneous net-
work. Then, we build the base predictors and the ensem-
ble models on the networks with fewer interactions.

Table 4 reports the AUPR scores of different prediction
methods. As we can observe, the ensemble models
GEEL-PI and GEEL-FI produce higher AUPR scores
than all the base predictors as the ratios of removed
links ranging from 10 to 40%. More importantly, when
the network becomes sparser, the performances of the
ensemble models are less affected than other individual
predictors. For instance, when the number of removed
interactions ranging from 10 to 20%, the AUPR scores of
LE, GraRep, HOPE, DeepWalk, GAE, GEEL-PI and
GEEL-FI reduce by 2.7, 2.1, 2.1, 2.3, 4.3, 1.7, and 1.7%
respectively, which verifies the generalization ability and
robustness of our ensemble models.
In conclusion, integrating individual graph embedding

based models with ensemble learning can effectively im-
prove accuracy, generalization ability, and robustness in
LMI prediction.

Effect of attention network
In the design of GEEL-FI, we consider a deep attention
neural network to integrate graph embeddings as the en-
semble strategy. DANN learn lncRNA-miRNA pair fea-
tures by capturing the different aspects of representation
vectors. To validate the effectiveness of the attention
mechanism, we evaluate the performances of GEEL-FI
and our designed comparison method on LMI prediction.
To validate the effect of attention network on feature

fusion, we design the comparison variant as GEEL-F,
which merges diverse embedded lncRNA and miRNA
representations directly, without considering the differ-
ent importance of embedded representations. For i th
lncRNA and j th miRNA, the merged representation of

lncRNA is defined as Li ¼
X
k∈S

lki and the merged repre-

sentation of miRNA is defined as Mj ¼
X
k∈S

mk
j , where S

is a set of lncRNA and miRNA representations learned
by graph embedding methods. And the lncRNA and
miRNA pair feature is computed as Fij = [Li;Mj]. We
construct GEEL-FI and GEEL-F based on learned graph
embeddings. To validate the effectiveness of our atten-
tion mechanism at a larger scale, we choose the K em-
beddings for the fused feature. Here we respectively
adopt S = {GraRep}, {GraRep,GAE}, {GraRep,HOPE,
DeepWalk}, {GraRep,HOPE,DeepWalk, LE} and {LE,
GraRep,HOPE,DeepWalk, and GAE} with respect to
K = {1, 2, 3, 4, 5} as our benchmarks to compare the per-
formances of GEEL-F and GEEL-FI for LMI prediction.
As shown in Fig. 3, given K = {1, 2, 3, 4, 5}, GEEL-FI
achieves AUPR scores of 0.6810, 0.6838, 0.6539, 0.6538
and 0.6670 which outperforms 0.6805, 0.6725, 0.6493,
0.6487 and 0.6541 respectively. The experimental result
demonstrates the utilization of attention mechanism can
contribute to better performance for LMI prediction.

Table 2 Performances of different methods

Methods AUPR AUC F1 ACC REC SPEC PRE

EPLMI 0.0706 0.8494 0.1055 0.9939 0.1373 0.9962 0.0883

INLMI 0.0723 0.8477 0.1086 0.9935 0.1531 0.9956 0.0867

SLNPM 0.6207 0.9165 0.6652 0.9972 0.6331 0.9988 0.7016

GEEL-PI 0.7004 0.9537 0.6933 0.9977 0.5945 0.9995 0.8342

GEEL-FI 0.7011 0.9578 0.6915 0.9977 0.5790 0.9996 0.8604
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Therefore, we can conclude that our deep attention
neural network can effectively merge multiple embedded
lncRNA and miRNA representations and learn better
lncRNA-miRNA pair features for LMI prediction.
To further probe into how the attention network cap-

tures different aspects of embedded representations, we
fix K as 5 and implement 5-CV for 20 times. Then we
visualize the attention weights of lncRNA representations
and miRNA representations learned by attention neural
network. In Fig. 4, we can observe that (1) for lncRNAs,
DANN generally pays much attention to the GAE-based
embeddings, and for miRNA, it assigns higher attention
weights to GraRep-based embeddings, which indicates the
graph embedding based on neural network and matrix
factorization method are efficient in LMI prediction. (2)
furthermore, attention weights vary with lncRNA se-
quences and miRNA sequences in each fold, which vali-
dates DANN can adaptively adjust its attention to learn
distinctive lncRNA-miRNA pair features according to spe-
cific lncRNA and miRNA data.
Consequently, our deep attention neural network can

learn high-level sophistic representations of lncRNA-

miRNA pairs and enhance the performances of GEEL-FI
on LMI prediction.

Case studies
The primary goal of computational methods is to refine
the candidate list and guide further validation experi-
ments. Here, we conduct case studies to demonstrate
the practical capability of the proposed method for un-
known LMI inference. Firstly, we train the model on our
dataset. Then, we employ our model to score unlabeled
lncRNA-miRNA pairs. Later, we validate the prediction
result by a comprehensive datasets starBase [36]. Here,
we list the top 10 LMIs in Table 5. As we can observe,
both GEEL-PI and GEEL-FI can correctly infer 8 LMIs
among their top 10 predictions. For instance, our pro-
posed model can accurately predict that lncRNA lnc-
ACER2–1:1 can interact with miRNA hsa-miR-106a-5p.
ACER2 is one of the human alkaline ceramidases, and
can produce lncRNA lnc-ACER2–1. MiRNA hsa-miR-
106a-5p can participate in various biological processes,
and are involved in severe diseases (e.g., gastric carcin-
oma and glioblastoma) [37, 38]. Some researchers have

Fig 2 The top recall and top precision performances for different methods. a shows recall of different methods in top-ranked predictions. b shows
precision of different methods in top-ranked predictions

Table 3 Performances of based predictors and the ensemble models

Embedding AUPR AUC F1 ACC REC SPEC PRE

LE 0.6654 ± 0.0033 0.9430 ± 0.0017 0.6592 ± 0.0040 0.9976 ± 0.0001 0.5429 ± 0.0079 0.9995 ± 0.0001 0.8420 ± 0.0144

GraRep 0.6805 ± 0.0037 0.9417 ± 0.0019 0.6818 ± 0.0036 0.9977 ± 0.0001 0.5703 ± 0.0066 0.9996 ± 0.0001 0.8498 ± 0.0137

HOPE 0.6573 ± 0.0036 0.9281 ± 0.0022 0.6796 ± 0.0035 0.9976 ± 0.0001 0.5813 ± 0.0087 0.9994 ± 0.0001 0.8198 ± 0.0134

DeepWalk 0.6511 ± 0.0037 0.9383 ± 0.0018 0.6463 ± 0.0051 0.9974 ± 0.0001 0.5452 ± 0.0133 0.9994 ± 0.0001 0.7993 ± 0.0248

GAE 0.6664 ± 0.0031 0.9292 ± 0.0023 0.6754 ± 0.0033 0.9976 ± 0.0001 0.5666 ± 0.0086 0.9995 ± 0.0001 0.8395 ± 0.0185

GEEL-PI 0.7004 ± 0.0035 0.9537 ± 0.0022 0.6933 ± 0.0032 0.9977 ± 0.0001 0.5945 ± 0.0063 0.9995 ± 0.0001 0.8342 ± 0.0128

GEEL-FI 0.7011 ± 0.0030 0.9578 ± 0.0013 0.6915 ± 0.0029 0.9977 ± 0.0001 0.5790 ± 0.0063 0.9996 ± 0.0001 0.8604 ± 0.0124
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discovered that the expression of hsa-miR-106a-5p is
down-regulated in breast tissues, and ACER2 could serve
as a target gene of hsa-miR-106a-5p [39]. Whereas, the
interaction between lnc-COL6A3–5:1 and hsa-miR-4500
is to be confirmed in the future. In general, both GEEL-
PI and GEEL-FI are effective tools to indicate novel in-
teractions between lncRNA and miRNA.

Conclusions
LncRNAs and miRNAs are critical to cellular processes,
and inferring their interactions contributes to betraying
the mechanism of complicated disease. In this paper, we
propose novel graph embedding ensemble learning
methods: GEEL-PI and GEEL-FI. Comparison with other
state-of-art methods demonstrates both GEEL-PI and
GEEL-FI achieve higher accuracy performances for LMI
prediction. The adoption of graph embedding methods
overcomes the limitation of traditional features, and
makes our model efficiently capture the inherent struc-
tural properties of LMI heterogeneous network. Further
experiments indicate that ensemble learning and

attention mechanism are powerful to enhance accuracy,
generalization ability, and robustness of LMI prediction
model. Moreover, the case studies are also performed to
prove the practical capability of our methods. In conclu-
sion, both GEEL-PI and GEEL-FI are promising for LMI
prediction.

Datasets and methods
Datasets
We collect 8091 experimentally verified lncRNA-miRNA
interactions from the lncRNASNP dataset [40]. After re-
moving duplicated interactions, we obtain 5118 interac-
tions between 780 lncRNAs and 275 miRNAs. We then
download lncRNA sequences from NONCODE dataset
[41] and miRNA sequences from miRBase dataset [42]
separately. Ultimately, we compile our dataset with 3784
interactions between 642 lncRNAs and 275 miRNAs.

Heterogeneous network
To model the complicated relationship between biomed-
ical entities, we design a lncRNA-miRNA heterogeneous

Table 4 Performances on the network of different sparsity

Removal ratio LE GraRep HOPE DeepWalk GAE GEEL-PI GEEL-FI

10% 0.6496 0.6666 0.6448 0.6341 0.6537 0.6858 0.6838

20% 0.6323 0.6524 0.6311 0.6192 0.6254 0.6744 0.6719

30% 0.6124 0.6355 0.6171 0.5982 0.6206 0.6561 0.6579

40% 0.5884 0.6156 0.5959 0.5761 0.6009 0.6347 0.6372

Fig 3 The AUPR scores of GEEL-F and GEEL-FI when different embeddings involved in feature fusion. GEEL-FI adopts attention mechanism to
integration embeddings, GEEL-F does not
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network by integrating the known LMIs with the se-
quence similarity, as shown in Fig. 5 (a).
Given r lncRNAs and t miRNAs, the interaction

matrix can be denoted by A ∈ ℝr × t, where A(i, j) = 1 if
i th lncRNA and j th miRNA are interacting, other-
wise A(i, j) = 0. Our previous work [35] indicates that
the pairwise similarity between biomedical entities
(i.e. lncRNA and miRNA sequence similarity) can
help to infer interactions. Therefore, same as our pre-
vious work, we extract 5-spectrum feature [43] from
lncRNA (miRNA) sequence and then calculate simi-
larity by linear neighborhood similarity measure
(LNS) [35]. In this way, we acquire lncRNA similarity
matrix Sl ∈ ℝ

r × r and miRNA similarity matrix Sm ∈
ℝt × t, where S(i, j) is the similarity score between i th
and j th lncRNAs (miRNAs). Further, for a single bio-
medical entity, we consider the top 10 most similar

entities as its immediate neighborhoods, and obtain
adjacency matrix Wl ∈ ℝr × r and Wm ∈ ℝm ×m from Sl
and Sm separately. Ultimately, we regard biomedical
entities (i.e. a lncRNAs and a miRNAs) as nodes and
their relationships (i.e. LMs, lncRNA-lncRNA similar-
ity and miRNA-miRNA similarity) as edges to con-
struct the heterogeneous network H:

H ¼
�
Wl A

AT Wm

�
∈ RðrþtÞ�ðrþtÞ ð1Þ

where AT denotes the transpose of the matrix A.

Graph embedding methods
To fully exploit the topological properties of the hetero-
geneous network, we choose graph embedding methods

Fig 4 Attention weights in lncRNA and miRNA representations integration. a shows attention weights of lncRNA representations in GEEL-FI. b
shows attention weights of miRNA representations in GEEL-FI

Table 5 Top 10 prediction of GEEL-PI and GEEL-FI

GEEL-PI GEEL-FI

Rank LncRNAs MiRNAs Evidence LncRNAs MiRNAs Evidence

1 lnc-COL6A3–5:1 hsa-miR-4500 × lnc-COL6A3–5:1 hsa-miR-4500 ×

2 lnc-ACER2–1:1 hsa-miR-17-5p √ lnc-ALYREF-1:1 hsa-miR-372-3p √

3 lnc-FAS-1:1 hsa-miR-302b-3p √ MIR17HG:2 hsa-miR-520a-3p √

4 lnc-PDK3–1:1 hsa-miR-93–5p √ lnc-PDK3–1:1 hsa-miR-302d-3p √

5 lnc-ACER2–1:1 hsa-miR-106a-5p √ USP2-AS1:10 hsa-miR-302b-3p √

6 lnc-ALYREF-1:1 hsa-miR-372-3p √ lnc-PDK3–1:1 hsa-miR-93–5p √

7 MIR17HG:2 hsa-miR-520a-3p √ lnc-NMRK1–1:1 hsa-miR-520d-3p √

8 lnc-NMRK1:1 hsa-miR-520d-3p √ lnc-ACER2–1:1 hsa-miR-17-5p √

9 lnc-RPE-1:1 hsa-miR-130a-3p × lnc-ACER2–1:1 hsa-miR-106a-5p √

10 lnc-PDK3–1:1 hsa-miR-302d-3p √ lnc-RPE-1:1 hsa-miR-130a-3p ×
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from three categories [19] (i.e. matrix factorization, ran-
dom walk, and neural network).
From the matrix factorization-based category, we

adopt Laplacian Eigenmaps (LE) [28], GraRep [30] and
HOPE [29]. LE computes a low-dimensional representa-
tion of the dataset, optimally preserving local neighbor-
hood information by using the Laplacian of the graph
[28]. GraRep integrates global structural information of
the graph into the learning process and learns high-
order proximity [30]. HOPE can preserve high-order
proximities of large scale graphs and is capable of cap-
turing the asymmetric transitivity [29].
From the random walk-based category, We select

DeepWalk [31]. DeepWalk uses local information ob-
tained from truncated random walks to learn latent rep-
resentations by treating walks as the equivalent of
sentences [31].
We consider Graph Auto Encoder (GAE) [32] as a

representative of the neural network-based methods.

GAE obtains low-dimensional node representations by
reconstructing the heterogeneous network with consid-
eration of the first-order and second-order of
proximities.
By employing the aforementioned graph embedding

methods, the topological and inherent properties of the
heterogeneous network are acquired, then the learned
distinctive representations will be further used in the
downstream task. as shown in Fig. 5 (a).

Graph embedding ensemble learning based on prediction
integration
In this section, we introduce a graph embedding ensem-
ble learning method based on prediction integration
(GEEL-PI). We build base predictors based on individual
graph embedding methods, and further combine their
predictions with ensemble strategy to infer LMIs.
To build a base predictor, firstly, we acquire the

low-dimensional representations of miRNAs and

Fig 5 Flowchart of the proposed GEEL-PI and GEEL-FI. a by integrating the two similarity networks with the known lncRNA-miRNA interaction network, we
construct a lncRNA-miRNA heterogeneous network. Different graph embedding methods are applied to the lncRNA-miRNA heterogeneous network to learn
low-dimensional representations of lncRNAs and miRNAs. b for GEEL-PI, base predictors are trained based on the learned representations from different
embedding methods. Then, their output predictions are integrated for further improving the performance and generalizability. c for GEEL-FI, by constructing a
deep attention neural network, we integrate abundant embedded representation of lncRNA and miRNA to obtain distinctive lncRNA-miRNA pair features
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lncRNAs using the corresponding graph embedding
method. Then we denote lncRNA-miRNA pairs as the
concatenation of two kinds of embeddings and further
build a Random Forest predictor based on pairs. The
reason why we adopt Random Forest lies in its high-
efficiency.
Following the steps outlined above, we can construct

five base predictors based on corresponding graph em-
bedding methods. The five graph embedding methods
are heterogeneous, which captures inherent structure
properties from different aspects, thus they may demon-
strate different generalization abilities on datasets.
Therefore, it is natural to integrate several predictors by
using ensemble strategies. Theoretically, ensemble learn-
ing is to build a model ϕ : (f1(x), f2(x),…, fn(x))→ {0, 1},
which maps the outcome of n base predictors to a label.
Specifically, we consider logistic regression as the map-
ping function ϕ, which is simple but can model the non-
linear relationship between base predictors and labels. In
this way, we construct GEEL-PI for LMI prediction as
described in Fig. 5 (B).

Graph embedding ensemble learning based on feature
integration
In this section, we introduce a graph embedding ensem-
ble learning method based on feature integration
(GEEL-FI). We construct a deep attention neural net-
work to learn lncRNA-miRNA pair representations, and
further develop a classifier for LMI prediction.
The deep attention neural network contains attention

layer and deep fully-connected neural layers, as given in
Fig. 5(c). First, we consider attention mechanism to inte-
grate different embedded representations. Because
heterogenous lncRNA and miRNA features could be
correlated and have redundant information, if directly
merge them, it may affect the performances of conven-
tional classifiers negatively. Attention mechanism can be
used to assign importance weights to different represen-
tations which can determine the most relevant aspects,
disregarding noise and redundancies in the input [44].
Motivated by its successful applications in many fields
[45–51], we adopt an attention mechanism to integrate
heterogeneous genomic representations. Then we con-
sider the deep neural network (DNN) for feature refine-
ment. DNN allows computational models with multiple
processing layers to learn representations of lncRNAs
and miRNAs with multiple levels of abstraction. More-
over, deep learning discovers intricate structure in large
data sets by using the backpropagation algorithm to in-
dicate how a machine should change its internal param-
eters that are used to compute the representation in
each layer from the representation in the previous layer
[52]. Therefore, we construct a DANN to adaptively cap-
ture the importance of each embedding feature and

learn distinctive high-level representations for LMI
prediction.
Specifically, given i th lncRNA and j th miRNA, by

using five embedding methods, we obtain five lncRNA

representations and five miRNA representations, let lki
and mk

j (k = 1, 2, 3, 4, 5) denote embeddings from LE,

GraREP, HOPE, DeepWalk and GAE, i = 1, 2, , …, r and
j = 1, 2, , …, t. Then these representations are fed into at-
tention networks. Let Li denotes the integrated feature
for i th lncRNA, and Mj denotes the integrated feature
for j th miRNA. The merged representation of lncRNA
and miRNA are defined as:

Li ¼
X
k

alk l
k
i ð2Þ

Mj ¼
X
k

am
k m

k
j ð3Þ

where al
k denotes an attention weight measuring the im-

portance of embedded representation k with respect to i
th lncRNA, and amk is an attention weight measuring the
importance of embedded representation k with respect
to j th miRNA.
Next, we concatenate i th lncRNA representation Li

and j th miRNA representation Mj to obtain lncRNA-
miRNA pair feature Fij, which indicates the interaction
between i th lncRNA and j th miRNA:

Fi j ¼ ½Li;Mj� ð4Þ

where [Li;Mj] is the concatenation of the two vectors.
To learn preferable representations of lncRNA-miRNA

interactions, we consider the interacting lncRNA-
miRNA pairs as positive instances and non-interacting
lncRNA-miRNA pairs as negative instances to build a
deep neural network. For i th lncRNA and j th miRNA,
the lncRNA-miRNA pair feature Fij is fed into deep fully
connected layers as following:

ZL ¼ ReLUðWLðReLUðWL−1⋯ReLUðW 1Fi j

þ b1ÞÞ þ bL−1Þ þ bLÞ ð5Þ

where L denotes the number of hidden layers; ReLU is
an activation function [53], and Wl and bl are the weight
matrix and bias vector for the l th layer, respectively.
And the prediction score between i th lncRNA and j

th miRNA ρ̂ij is computed as:

p̂i j ¼ SigmoidðWZL þ bÞ ð6Þ

where Sigmoid is an activation function; W and b are the
weight matrix and bias vector, respectively.
And we adopt the following binary cross entropy as

the loss function:
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L ¼ −
1
r�t

Xr

i¼1

Xt

j¼1

½pi jlogp̂i j
þ ð1 − pi jÞlogð1 − p̂i jÞ� ð7Þ

where L denotes loss function; r and t are total numbers
of lncRNAs and miRNAs respectively. pij is a label, pij =
1 if i th lncRNA and j th miRNA are interacting, other-
wise pij = 0;
Therefore, the attention weights al

k and am
k can be up-

dated through the backpropagation algorithm [54] and
gradient descent algorithm according to the above loss
function L . The update procedure can be described as:

alk ¼ alk − α
∂L
∂al

k

ð8Þ

amk ¼ amk − α
∂L
∂am

k

ð9Þ

where α is the learning rate of the neural network .
Here, to improve performances of LMI prediction, we

build a Random Forest classifier based on pair features.
Therefore, we utilize DANN to integrate multiple fea-

tures obtained by graph embedding methods to learn
better representations of lncRNA-miRNA pairs, and
construct GEEL-FI.
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