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Abstract

Background: Read coverage of RNA sequencing data reflects gene expression and RNA processing events.
Single-cell RNA sequencing (scRNA-seq) methods, particularly “full-length” ones, provide read coverage of many
individual cells and have the potential to reveal cellular heterogeneity in RNA transcription and processing. However,
visualization tools suited to highlighting cell-to-cell heterogeneity in read coverage are still lacking.

Results: Here, we have developed Millefy, a tool for visualizing read coverage of scRNA-seq data in genomic
contexts. Millefy is designed to show read coverage of all individual cells at once in genomic contexts and to highlight
cell-to-cell heterogeneity in read coverage. By visualizing read coverage of all cells as a heat map and dynamically
reordering cells based on diffusion maps, Millefy facilitates discovery of “local” region-specific, cell-to-cell
heterogeneity in read coverage. We applied Millefy to scRNA-seq data sets of mouse embryonic stem cells and
triple-negative breast cancers and showed variability of transcribed regions including antisense RNAs, 3′ UTR lengths,
and enhancer RNA transcription.

Conclusions: Millefy simplifies the examination of cellular heterogeneity in RNA transcription and processing events
using scRNA-seq data. Millefy is available as an R package (https://github.com/yuifu/millefy) and as a Docker image for
use with Jupyter Notebook (https://hub.docker.com/r/yuifu/datascience-notebook-millefy).
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Background
Single-cell RNA sequencing (scRNA-seq) has been
increasingly important in many areas, including develop-
mental biology and cancer biology. In scRNA-seq data
analyses, visualization is crucial for quality control (QC)
as well as exploratory data analyses. For example, dimen-
sionality reduction techniques such as principal compo-
nent analysis (PCA) [1] or t-distributed stochastic neigh-
bor embedding [2] are applied to a gene expression
matrix to visualize individual cells as points in 2- or
3-dimensional space. Heat maps are also used to visual-
ize gene expression matrices and highlight latent clusters
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of genes and cells. To date, many tools for visualizing
gene expression matrices of scRNA-seq data have been
proposed [3].
In contrast to visualization of gene expression matrices,

visualization of read coverage, which is the distribution
of mapped reads along genomic coordinates, helps reveal
diverse aspects of RNA sequencing data and thus RNA
biology and functional genomics. For example, read cover-
age reflects transcribed gene structures (e.g., exon-intron
structures and transcript isoforms) [4], RNA process-
ing events (e.g., normal and recursive splicing [5]), and
transcription of intergenic and unannotated regions (e.g.,
enhancer RNAs [eRNAs]) [6]. Moreover, visual inspection
of read coverage enables quality assessment of experimen-
tal methods (e.g., whether amplification is biased [7]) and
bioinformatic methods (e.g., the accuracy of expression
level estimation).
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Given that scRNA-seq has revealed cellular heterogene-
ity in gene [8] and splicing isoform expression [9, 10], visu-
alization of read coverage of scRNA-seq data is expected
to reveal cellular heterogeneity in read coverage, which
can be interpreted as biological (e.g., transcription and
RNA processing) and technical (e.g., amplification biases)
heterogeneity. Read coverage is informative, especially for
so-called “full-length” scRNA-seqmethods such as Smart-
seq2 [11] and RamDA-seq [12], compared with “3′-tag
sequencing” scRNA-seq methods, which sequence only
the 3′ ends of RNAs and cannot be used to extract rich
information from read coverage [13, 14]. Despite their
potential importance, however, tools specifically for the
visualization of read coverage of scRNA-seq data are still
lacking.
To explore cell-to-cell heterogeneity in read coverage,

we propose several requirements of a tool for visualization
of read coverage in scRNA-seq data (Table 1). First, the
tool must be able to display read coverage of all individ-
ual cells in a scRNA-seq dataset at once. This is because
scRNA-seq data consist of many (102–103) cells and fre-
quently includes latent heterogeneity that is masked by
the summation of expression across cells. Second, the
tool must associate read coverage with genomic con-
texts, such as gene structures and epigenomic features,
because read coverage data can be interpreted only when
it is displayed simultaneously with their genomic contexts.
Third, the tool must highlight the cell-to-cell heterogene-
ity of read coverage within focal regions. This is because
there should be “local” region-specific cell-to-cell hetero-
geneity in read coverage at transcriptional (e.g., antisense
RNAs and eRNAs) and post-transcriptional (e.g., alterna-
tive splicing) levels, and such heterogeneity is difficult to
notice in advance by cell groupings defined according to
global similarity among cells.
Genome browsers and heatmaps are twomajor tools for

read coverage visualization. However, they are insufficient
for fulfilling the above requirements.
Genome browsers, such as IGV [15] and JBrowse [16],

utilize “tracks” to display various types of biological data,
including gene annotations, positions of regulatory ele-
ments, and read mapping of next-generation sequencing
(NGS) data along genomic coordinates. By stacking tracks

Table 1 Comparison of Millefy to other visualization tools

Millefy Genome browsers Heatmaps

Visualize many cells at
once

� �

Associate read coverage
with genomic contexts

� �

Highlight cell-to-cell
heterogeneity in read
coverage

� �

in genome browsers, read coverage can easily be com-
pared with other features and be interpreted in genomic
contexts like gene models and epigenomic signals, which
helps to generate and validate biological hypotheses.
However, existing genome browsers are not suited for
the large numbers of samples (i.e., cells) in scRNA-seq
experiments. Indeed, efforts to visualize read coverage of
scRNA-seq data using genome browsers have been lim-
ited to displays of a few dozen cells without the need to
scroll [17, 18]. Although IGV and JBrowse implement heat
map representations of tracks to show many cells at once,
they cannot dynamically reorder tracks to reveal local
cell-to-cell heterogeneity in read coverage.
Tools for heat maps combined with clustering algo-

rithms have been used in the analysis of scRNA-seq data.
Thus, heat maps can be used to visualize read coverage of
all cells at once and reveal heterogeneity in read coverage.
However, tools for generating heat maps are unsuited for
visualizing read coverage of scRNA-seq data in genomic
contexts, or they lack functionality to directly extract read
coverage from standard NGS data formats.
Here, we have developed Millefy, which combines

genome-browser-like visualization, heat maps, and
dynamic reordering of single-cell read coverage and
thus facilitates the examination of local heterogeneity
within scRNA-seq data. Millefy extracts and organizes
various types of useful information from read coverage of
scRNA-seq data.

Implementation
Millefy visualizes read coverage from each individual cell
as a heat map in which rows represent cells and columns
represent genomic bins within a focal region. The heat
map is aligned with tracks for gene annotations, genomic
features, and bulk NGS data, enabling comparisons of
single-cell read coverage with genomic contexts. To high-
light latent cell-to-cell heterogeneity in read coverage, the
heat map rows (i.e., cells) are automatically and dynami-
cally reordered by ’local’ pseudo-time, which is calculated
using diffusion maps [19], a nonlinear dimensionality
reduction method. Specifically, diffusion maps are applied
to matrices of single-cell read coverage, where rows are
cells and columns are genomic bins, and the first diffu-
sion component is used to dynamically reorder cells either
in an“all cells” manner or in a “group-wise” manner when
groupings of cells are provided by users. Alternatively,
PCA can also be used to rearrange the order of cells.
Effective visualization requires iterative adjust-

ment of various aspects of plots by visual inspection.
Millefy supports iterative adjustment of plots by the
millefy_adjust() function, which reuses the read
coverage matrices of the last plot, enabling faster adjust-
ment than simply replotting. For example, after viewing
plots, users can easily adjust the maximal value of the
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color scale, which is essential in cases with exceptionally
high read coverages in the focal region.
Millefy visualizations consist of five types of tracks

(Fig. 1): (1) scRNA-seq tracks, which display scRNA-
seq read coverage as a heat map with ordered cells, (2)
mean scRNA-seq read coverage tracks, (3) bulk NGS data
tracks, which display read coverage of other NGS data, (4)
BED tracks, which display genomic intervals defined by
BED files, and (5) gene annotation tracks. In scRNA-seq
tracks and bulk NGS data tracks, read coverage is normal-
ized by user-provided normalization factors to correct for

differences in the number of mapped reads among sam-
ples. Using the above tracks, Millefy can simultaneously
display read coverage of each cell and mean read cover-
age of cells in each user-defined cell group as well as align
scRNA-seq data with genome annotation data and NGS
data.
Millefy was implemented in R and can import scRNA-

seq data without the need for format conversion. For
scRNA-seq data, Millefy accepts BAM and BigWig for-
mats, which are standard file formats for NGS data anal-
ysis. Millefy is dependent on the rtracklayer package [20]

Fig. 1 Overview of Millefy. aMillefy imports scRNA-seq data and visualizes read coverage of individual cells as a heat map. The rows (i.e., cells) of the
heat map are dynamically reordered by diffusion maps. This automatic reordering highlights cell-to-cell heterogeneity in read coverage, which is
hidden by mean read coverage data. Millefy associates genomic contexts, including bulk NGS data, genomic features, and gene annotations, thus
facilitating the interpretation of single-cell read coverage. The parallelograms represent different types of input data. Gray boxes represent displayed
tracks in Millefy. White boxes represent computation of a read coverage matrix. b An example plot in Millefy
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and Rsamtools package [21] for importing BAM and
BigWig files, respectively. For gene annotation data and
genomic features, Millefy accepts GTF and BED formats,
respectively. The data.table package [22] is used to import
GTF and BED files. For performing diffusion maps on
read coverage data, Millefy utilizes the destiny package
[23].
We provide Millefy as an R package and as a Docker

image based on the Jupyter Notebook Data Science stack
(https://github.com/jupyter/docker-stacks) for use with
Jupyter Notebook.

Results
Millefy highlights cellular heterogeneity in gene
expression and transcribed gene structures
Researchers often merge read alignment files of single
cells and visualize “synthetic bulk” data using standard
genome browsers. However, in such cases, the merged
(or averaged) read coverage cannot capture heterogene-
ity in read coverage. For example, a change in the merged
read coverage cannot indicate whether the number of cells
expressing a gene increased or the expression level of
that gene increased across all cells. In contrast, Millefy
visualizes read coverage of all individual cells in a scRNA-
seq dataset as a heat map and thereby provides detailed
information on cellular heterogeneity in read coverage.
To demonstrate the usefulness of Millefy’s ability to

visualize read coverage in scRNA-seq data, we used a
time-course RamDA-seq dataset derived from mouse
embryonic stem cells (mESCs) upon induction of cell dif-
ferentiation to primitive endoderm cells (at 0, 12, 24, 48,
and 72 h) [12]. The dataset consists of 421 single cells.
Figure 2 shows the read coverage at Sox17, a differen-

tiation marker gene. Cells were reordered according to
the first diffusion component values calculated by a dif-
fusion map of read coverage data for the locus, either
within user-defined cell groups (Fig. 2a) or across all
cells (Fig. 2b). While the height of the mean read cover-
age increased along the differentiation time course, the
reordered heat map highlights the heterogeneity of read
coverage among cells from the same time points (e.g., the
12 h group) (Fig. 2). Specifically, Millefy showed that the
number of cells with Sox17 expression increased, indicat-
ing asynchronous cell differentiation progression among
cells.
Another example is Zmynd8, a transcriptional repres-

sor. Figure 3 shows read coverage of 421 individual cells at
the Zmynd8 locus. The cells were dynamically reordered
using diffusion maps based on the read coverage in the
focal region. Expression of the Zmynd8 short isoform is
known to be associated with the expression of its antisense
RNA Zmynd8as [24]. While Zmynd8as is unannotated
in the current gene annotation, the heat map by Millefy
clearly showed differential regulation of the long isoform

of Zmynd8 and Zmynd8as, facilitating visual inspection
of the two separated transcription units (Figure 3). We
note that the averaged read coverage for each time point
cannot distinguish whether the long and short isoforms
of Zmynd8 and Zmynd8as are correlated or uncorrelated.
These results demonstrate that Millefy’s functionality for
displaying read coverage as a reordered heat map reveals
cell-to-cell heterogeneity at the focal locus.

Millefy application on scRNA-seq data from triple-negative
breast cancer patients
We also applied Millefy to a scRNA-seq dataset

from triple-negative invasive cancer (TNBC) patients:
the Smart-seq2 data of single sorted cells from six
tumors collected from six women with primary, non-
metastatic triple-negative invasive ductal carcinomas [25].
The dataset consists of B-cells (n=19), endothelial cells
(n=14), epithelial cells (n=868), macrophages (n=64), stro-
mal cells (n=94), and T-cells (n=53), according to the cell
type annotation published by the authors. Epithelial cells
were further classified into five clusters by the authors
[25]: Clusters 1 (n=22), 2 (n=398), 3 (n=231), 4 (n=170),
and 5 (n=47).
We checked whether 3′ UTR shortening is observed

in the endothelial cell clusters. The Neuroblastoma RAS
viral (v-Ras) oncogene homolog (NRAS) and the Jun
proto-oncogene (c-JUN) are known to show alternative
polyadenylation (APA)-dependent 3′ UTR shortening in
TNBC cells [26]. Millefy appears to show that there is
cell-to-cell heterogeneity in the length of the 3′ UTRs of
c-JUN and NRAS (Fig. 4). Specifically, for c-JUN, some
cells showed short read coverage and others showed long
read coverage (Fig. 4a). In the last exon of NRAS, many
cells showed long 3′ UTR read coverage but some cells
showed a shortened 3′ UTR read coverage (Fig. 4b). Such
heterogeneity cannot be determined by the aggregated
(averaged) read coverage alone (Fig. 4). The triple-
negative breast tumors with the 3′ UTR shortening of
c-JUN and/or NRAS are reported to be smaller and less
proliferative but more invasive than those without the
3′ UTR shortening [26]. Therefore, such subpopulations
may confer heterogeneous invasiveness even when the
population size is small; thus, further investigation is
warranted.

Millefy associates read coverage with genomic contexts to
facilitate interpretation of read coverage
Genomic contexts are crucial for interpretation of read
coverage in bulk and single-cell RNA sequencing data. For
example, read coverage overlapped with gene annotations
can confirm known and reveal novel exon-intron struc-
tures. Moreover, read coverage overlapped with enhancer
annotations can be interpreted as eRNA expression [6].
Using Millefy, single-cell read coverage can be compared

https://github.com/jupyter/docker-stacks


Ozaki et al. BMC Genomics          (2020) 21:177 Page 5 of 10

Fig. 2Millefy visualization of read coverage at the Sox17 locus. Millefy was applied to RamDA-seq data from mouse embryonic stem cells (mESCs)
upon induction of cell differentiation to primitive endoderm cells. The top heat map shows single-cell read coverage. Color keys on the left side
represent cells from different time points. The middle tracks show the averaged read coverage at different time points, the bulk RNA sequencing
read coverage, and enhancer annotations. The bottom track shows the GENCODE reference gene annotation. Cells were reordered within a
user-specified groups and b across all cells
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Fig. 3 Visualization of the Zmynd8 locus by Millefy across all cells. Millefy was applied to RamDA-seq data from mouse embryonic stem cells (mESCs)
upon induction of cell differentiation to primitive endoderm cells. All cells were reordered together without specified groupings. The green arrow
has been added to indicate the position of Zmynd8as

Fig. 4 3′ UTR shortening in c-JUN and NRAS in TNBC Smart-seq2 data. Millefy was applied to the Smart-seq2 data of epithelial cells from six women
with primary, non-metastatic triple-negative invasive ductal carcinomas. Cells were reordered and visualized according to the cell cluster annotations
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with genomic and epigenomic features like enhancer
elements.
To demonstrate the usefulness of the simultaneous

visualization of single-cell read coverage and genomic
contexts, we compared read coverage of the RamDA-seq
data from mESCs (0 h) with mESC enhancer regions.
We downloaded H3K4me1 and H3K4me3 ChIP-seq peak
regions for mESCs from the ENCODE project [27] and
defined mESC enhancers as the H3K4me1 peaks that (1)
did not overlap with the H3K4me3 peaks, (2) were at least
2 kbp away from the transcriptional start sites, and (3)
were not included in the gene bodies of the GENCODE
gene annotation (vM9) [28].
Figure 5 displays read coverage at the Myc locus, with

the positions of enhancers active in mESCs. TheMyc gene
models and read coverage reveal thatMycwas transcribed
in mESCs. In addition, Millefy showed that some of the
intergenic regions with transcribed RNA overlapped with
the Myc downstream enhancer regions (Fig. 5). This is
consistent with the previous report that RamDA-seq can
detect eRNAs [12]. This result exemplifies how Millefy
can help to interpret read coverage of scRNA-seq data in
genomic contexts.

Millefy facilitates quality control in full-length scRNA-seq
methods
Millefy can also be used for QC in full-length scRNA-
seq methods. For example, scRNA-seq read coverage of
long transcripts indicates whether the method employed
provided full-length transcript coverage. Full-length tran-
script coverage provides accurate information about iso-
form expression and gene structures and is a fundamental
feature of full-length scRNA-seq methods [29].
We applied Millefy to C1-RamDA-seq data (n = 96)

and C1-SMART-Seq V4 (n = 95) data from a dilution of
10 pg of mESC RNA. Figure 6 shows the read coverage at
Mdn1, a gene with a long transcript (17,970 bp) consisting
of 102 exons. C1-RamDA-seq detected all exons in most
samples, while C1-SMART-seq V4 failed to detect a frac-
tion of known exons. Interestingly, the patterns of missing
exons in C1-SMART-seq V4 seemed to vary among the
samples. The lower reproducibility in read coverage of C1-
SMART-seq V4 relative to C1-RamDA-seq is likely owing
to technical noise because the samples were prepared not
from living cells but from a dilution of 10 pg of RNA.
We note that mean read coverage cannot provide such
detailed information on reproducibility in read coverage

Fig. 5Millefy visualization of read coverage and enhancer regions around theMyc locus. Millefy was applied to RamDA-seq data from mouse
embryonic stem cells (mESCs). All cells were reordered together without specified groupings. RNA transcription was observed for the enhancers on
the left
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Fig. 6 Example of quality control of scRNA-seq methods. Visualization of read coverage from C1-RamDA-seq (n = 95) and C1-SMART-Seq V4
(n = 96) data from a dilution of 10 pg of RNA at theMdn1 locus by Millefy. The samples were reordered within user-specified groups

(Fig. 6). This result exemplifies how Millefy can be used
for quality control of scRNA-seq methods.

Computational time
We measured the computational time of Millefy for visu-
alizing whole gene bodies using RamDA-seq data with 793
samples from mESCs [12]. For 1000 randomly selected
gene loci (of expressed genes with average TPM>5),
Millefy processed BigWig and BAM files in 39.3 and 138.9
s, respectively, on average.

Discussion
In this paper, we proposed Millefy, a tool for visualizing
cell-to-cell heterogeneity in read coverage in scRNA-seq
data. Millefy combines genome-browser-like visualiza-
tion, heat maps, and dynamic reordering of single-cell
read coverage. Thereby, Millefy can display read coverage
of all cells at once, associate read coverage with genomic

contexts, and highlight the cell-to-cell heterogeneity of
read coverage within focal regions (Table 1).
Using scRNA-seq data of mESCs and TNBC, we

demonstrate the effectiveness of Millefy to reveal local
heterogeneity in read coverage within scRNA-seq data.
First, Millefy showed cellular heterogeneity in gene
expression and transcribed gene structures through the
cell differentiation time course of mESCs (Figs. 2 and 3).
Second, we found cellular heterogeneity in the 3′ UTR
shortening of c-JUN and/or NRAS in TNBC data (Fig. 4),
which was not mentioned in the original paper [25].
Third, by associating read coverage with enhancer anno-
tations, Millefy helped to interpret RNA transcription
events in non-coding regions (Fig. 5). Collectively, these
results indicate that Millefy enables the exploration of cel-
lular heterogeneity of various biological events from read
coverage of scRNA-seq data, which could be missed by
conventional visualization tools.
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Quality control is essential for developing new experi-
mental and computational tools. Using scRNA-seq data of
diluted RNA with different full-length scRNA-seq meth-
ods (Fig. 6), we demonstrate that Millefy visualizes read
coverage in scRNA-seq as a QC measure and comple-
ments existing scRNA-seq QC pipelines based primarily
on gene expression matrices [3]. In the development of
bioinformatics methods using rule-based and machine
learning approaches for profiling alternative splicing or
novel RNAs by scRNA-seq, read coverage visualization
tools like Millefy will become more important for eval-
uating and representing the predictions of algorithms.
Indeed, Millefy was recently used for evaluating and
visualizing the results of software developed to discover
differentially expressed (DE) gene regions [30].

Conclusions
Millefy, which is integrated with Jupyter Notebook and
provided as a Docker image, can easily be utilized in
exploratory analyses of scRNA-seq data. In conclusion,
Millefy will provide new opportunities to analyze scRNA-
seq data from the point of view of cell-to-cell heterogene-
ity in read coverage, and help researchers assess cellular
heterogeneity and RNA biology using scRNA-seq data.

Availability and requirements
Project name:Millefy
Project home page: https://github.com/yuifu/millefy
(R package), https://hub.docker.com/r/yuifu/datascience-
notebook-millefy (Docker image)
Archived version: DOI:10.5281/zenodo.3591109
Operating system(s): Platform independent
Programming language: R
Other requirements: R version 3.2.2 or higher
License:MIT
Any restrictions to use by non-academics: No

Abbreviations
eRNAs: enhancer RNAs; mESCs: mouse embryonic stem cells; PCA: principal
component analysis; QC: quality control; scRNA-seq: single-cell RNA
sequencing; TNBC: triple negative breast cancer
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