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Abstract

Background: Genomic inversion is one type of structural variations (SVs) and is known to play an important
biological role. An established problem in sequence data analysis is calling inversions from high-throughput
sequence data. It is more difficult to detect inversions because they are surrounded by duplication or other types of
SVs in the inversion areas. Existing inversion detection tools are mainly based on three approaches: paired-end
reads, split-mapped reads, and assembly. However, existing tools suffer from unsatisfying precision or sensitivity (eg:
only 50~60% sensitivity) and it needs to be improved.

Result: In this paper, we present a new inversion calling method called InvBFM. InvBFM calls inversions based on
feature mining. InvBFM first gathers the results of existing inversion detection tools as candidates for inversions. It
then extracts features from the inversions. Finally, it calls the true inversions by a trained support vector machine
(SVM) classifier.

Conclusions: Our results on real sequence data from the 1000 Genomes Project show that by combining feature
mining and a machine learning model, InvBFM outperforms existing tools. InvBFM is written in Python and Shell
and is available for download at https://github.com/wzj1234/InvBFM.
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Background
It is widely known that genomic variation plays an import-
ant role in shaping the genetic diversity of populations.
Recently, high-throughput sequencing data becomes the
mature type of genomic data used in research. Finding
genomic variations from high-throughput sequence data
has become a major objective for large-scale genomics
studies, such as the 1000 Genomics Project [1]. There are
various types of genomic variations, including single nu-
cleotide polymorphisms (SNPs), short (say 50 bp or less)
deletions or insertions (indels) and SVs (which are usually
longer than 50 bp). There are different types of SVs, in-
cluding insertion, deletion, copy number variation, and

inversion. While some types of SVs (e.g. deletion) have
been very actively studied (e.g. [2–6]), other types of SVs
such as inversion are less studied. Different from deletion
calling where there are a growing list of deletion calling
tools, there are less tools for finding inversions. We note
that the impact of inversions can have large effect on an
organism [7]. For example, inversion inhibits recombin-
ation in heterokaryons, which may lead to distinct gene-
expression patterns. Inversion may also directly influence
gene structure or regulation in different ways as well as
secondary mutations in the offspring. In addition, inver-
sion may cause diseases such as hemophilia A [8], Hunter
syndrome [9] and increase the risk of infertility or miscar-
riage [10]. Therefore, developing effective inversion calling
tools may potentially be very useful.
We focus on calling inversions from mapped sequence

data (i.e. paired-end reads). Calling genomic variations
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from mapped sequence reads is usually based on the fol-
lowing three mapped sequence properties (called signa-
tures): insert size from mapped paired-end reads (ISPE),
split-mapped reads, and read depth. Note that there are
also approaches performing sequence assembly. Existing
inversion calling methods usually use these signatures.
Pindel [11] only uses split-mapped reads. Delly [12] and
Lumpy [13] are based on paired-end reads and split-
mapped reads. All these three tools have been used in
the 1000 Genomes Project. We note that although Delly
and Lumpy use the same sets of signatures, they appear
to perform differently. This implies that these tools are
individually engineered in different aspects in order to
call inversions more accurately. Our experience indicates
that none of these tools clearly outperforms the others.
A natural approach for calling inversions accurately is
using machine learning: we extract various sequence fea-
tures and treat inversion calling as a classification prob-
lem in machine learning. Previously, we have developed
machine learning approaches for finding deletions from
sequence data [14–17]. A main challenge for finding in-
versions from sequence data with machine learning is
that inversions are relatively rare. There are not many
known inversions in the benchmark data (e.g. from the
1000 Genomes Project).
In this paper, we develop a new inversion calling ap-

proach, called InvBFM. InvBFM uses multiple relevant
sequence properties (called features). InvBFM mines
features that are unique to both wild-type sequence and
inversions, and trains a model based on these features
using simulated data. Then InvBFM calls inversions

based on the model with real data by examining each
candidate inversion site found by multiple inversion
calling results. We demonstrate that InvBFM outper-
forms existing inversion calling tools on real data.
InvBFM in Python and Shell is available for download
at https://github.com/wzj1234/InvBFM.

Results and discussion
Analysis of features
We first analyze the correlation between the numerical
features and the target value. This helps to evaluate the
feasibility of using the features of simulated data to train
the SVM classifier and then generalize the real data fea-
tures. InvBFM converts the 15-dimensional feature space
which the initially extracted features of inversion are
mapped into two dimensions via the principal compo-
nent analysis (PCA) in order to be visualized as shown
in Fig.1. In Fig.1, the blue dots represent the inversions’
features of the simulated inversions, which are extracted
from simulated BAM files and then converted into 2-
dimensional feature. The red dots indicate the features
of wild-type in simulated data, which are also extracted
from simulated data and then mapped into 2-
dimensional features. The green dots correspond to the
converted 2-dimensional features which are extracted
from the 102 real samples near the inversion area re-
corded in the benchmark. It is evident that the blue and
green dots, representing the inversions’ features, are well
clustered. The red dots, which represent wild-type fea-
tures, are clearly separated. This shows that the 15 ex-
tracted features are justifiable. That is, the features used

Fig. 1 Visualization of features in simulation and benchmark. All features involved in this image are processed by PCA. The red dots mean wild-
type features from simulated data, and the blue dots mean the inversions’ features from simulated data. The green dots’ features come from
benchmark of inversion in real data. The green and blue dots are clustered and separated from the red dots, which indicate the features mined
by InvBFM are effective
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by InvBFM are correlated well to whether the target
value of the inversion occurs or not.
In order to further demonstrate that the feature selec-

tion indeed selects more effective features, we compare
the detection results by choosing a different number of
inversion features, as shown in Table 1. The threshold
here is chosen to be three times ISPE. Features15 refers
to the results of calling inversion for 15 features ex-
tracted initially, and Feature8 refers to the results of 8
features selected only by chi-square test. InvBFM uses 8
features selected in Feature8 and two additional features.
It is obvious that the Feature8 has 2% improvement in
precision, and about 1% improvement in recall over the
original Feature15. Although InvBFM only leads to a
small improvement in precision and recall compared to
Feature8, it is the best of the three. Thus, feature selec-
tion in InvBFM using both chi-square test and experi-
ence indeed makes the detection of inversion more
effective.
For measuring the difference in performance between

selected the 8 and 10 features, we use a 10-fold cross-
validation and take the average values of 100 times from
all simulated data and the 204 real samples are down-
loaded from 1000 Genomes Project to confirm the effort
of the two additional features based on experience. The
dataset contains a total of 5491 breakpoints of inversion
and wild-type from simulated data and real data. The
comparison of classification results of the 10 features by
InvBFM and the 8 features by chi-square test is shown in
Table 2, and we just focus on the occurrence of inversion.
In this experiment, we consider it is the true inversion and
set label 1 of the breakpoints within 3 times ISPE of the
benchmark, otherwise set label 0 as wild-type. Then, we
extract the 8 features and the 10 features around each
breakpoint respectively mentioned above. For 10-fold

cross-validation, we random shuffle the whole dataset,
doing 100 times of 10-fold cross-validation and evaluating
the average results of the validation set. In this part, we
only verify the critical SVM process. Our results here are
based on the comparison of expected labels. The param-
eter settings of the SVM in Table 2 are the same as those
in Table 1. As shown by the mean results of 100 times at
10-fold cross-validations, it is verified that the 10 features
selected by InvBFM are better than the 8 features in recall
and F1-score, although their precisions are very similar.
SVM is used by InvBFM to generalize real samples’

features. Different parameters in SVM may lead to dif-
ferent results. Table 3 shows the performance about pre-
cision, recall and F1-score of InvBFM in SVM with
different parameters. Meanwhile, in Radial Basis Func-
tion (RBF), the kernel of SVM, penalty factor sets 8 and
gamma sets 0.01 give the best result.
In order to evaluate the impact of different inversion

frequencies in tools, we analyze the tools’ sensitivity in
different inversion frequencies. The result is shown in
Table 4. InvBFM gets the best results than existing in-
version callers.
Moreover, the sensitivity of inversion length on the de-

tected results are shown in Table 5. Lumpy and Lum-
pyEP are the most unstable. InvBFM also performs the
best.

Accuracy of inversion calling
The inversion in our study is assumed to be longer than
the mean ISPE of the sample. We ignore the case where
the inversion length of candidate inversions is less than
the sample mean ISPE. In addition, the basis for deter-
mining whether a predicted region is a true inversion is

Table 1 Comparison of different features

Feature Version No. Calls TP0 FN TP FP Precision Recall

Features15 1468 168 70 478 990 32.56% 70.59%

Features8 1386 170 68 479 907 34.56% 71.43%

InvBFM 1379 170 68 479 900 34.73% 71.43%

Features15 means the first 15 features are extracted, Features8 means selecting
8 numeral features by the chi-square test from Features15, InvBFM means the
union of Features8 and 2 features that lead to better results in practice.
No.Calls: detected inversion count. TP true positive, TP0 remove repeats of TP,
FP false positive, FN false negative. The kernel of SVM is linear, with the
penalty factor of 0.1 and the gamma of 20

Table 2 Result of 10-fold cross-validation on the 8 features and
10 features

Feature Version TP TN FP FN Precision Recall F1-score

Features8 111 366 19 51 85.38% 68.51% 76.03%

InvBFM 133 363 22 29 85.81% 82.10% 83.91%

Threshold = 3*ISPE. The kernel of SVM is linear, with the penalty factor of 0.1
and the gamma of 20

Table 3 Precision, recall and F1-score of InvBFM in SVM with
different parameter

Para. Precision Recall F1-score

c:32, g:5 25.51% 72.69% 37.77%

c:32, g:1 26.71% 72.27% 39.01%

c:32, g:0.1 28.32% 72.27% 40.69%

c:32, g:0.01 29.94% 72.27% 42.34%

c:8, g:0.01 32.15% 71.85% 44.42%

Threshold = 3*ISPE. The kernel of SVM is RBF, “c” stands for penalty factor and
“g” stands for gamma

Table 4 Sensitivity of multiple tools on different frequencies on
102 samples of 1000 Genomes Project

INV. Freq. INV. No. Delly Lumpy LumpyEP Pindel InvBFM

1~10 10 85.71% 35.71% 35.71% 50.00% 89.29%

11~50 3 51.69% 1.12% 1.12% 31.46% 58.43%

> 50 2 78.51% 44.63% 41.32% 33.06% 79.34%

Threshold = 3*ISPE. The kernel of SVM is linear, with the penalty factor of 0.1
and the gamma of 20
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to compare the left and right breakpoints of the pre-
dicted inversion with those of the benchmark, with the
threshold being 1, 2, or 3 times the average ISPE of the
corresponding sequence reads. That is, if the distance
between the called breakpoints is more than this thresh-
old, we consider that the predicted inversion is not true.
Experiments show that all tools perform better when the
threshold is 3 times of the sample mean ISPE.
The comparison of the experimental results of differ-

ent thresholds with different tools of inversion calls is
shown in Table 6. The denominator value in the
InvBFM row represents the union of the three tools.
The numerator is a set of true inversion generalized by
the SVM classifier of InvBFM, which is the value in-
volved in the calculation. In addition, LumpyEP is the
abbreviation of Lumpy express tool also released by
Lumpy. Since LumpyEP results are not exactly the same
as Lumpy, its results of calling inversion are also shown
in Table 6. TP0 indicates the number of non-repetitive

regions in the reference benchmark that have records
and are judged to be true inversion by tools, i.e., regions
of TP after removing repeat inversions. F1-score is a
comprehensive evaluation indicator combining precision
and recall. The relevant indicators in Table 6 are calcu-
lated by the formulas shown in eq. (1) and (2). In
addition, InvBFM represents the training result of 10
features selected by the feature selection method men-
tioned above.
We can see from the results that Delly’s recall achieves

the best results among the three existing tools, regard-
less of different thresholds. Lumpy is the best in preci-
sion of the three existing tools in precision but with
recall less than 30%, which is the lowest. Pindel is the
worst in the precision and F1-score indicators. The re-
call and F1-score of InvBFM perform the best with the
10 features. InvBFM improves the F1-score by more
than 10% than Delly, which achieves the highest recall
among the existing tools. Therefore, InvBFM performs
better in inversion calling compared with existing tools.

FP ¼ No:Calls� TP; FN ¼ benchmark−TP0 ð1Þ

Precision ¼ TP
No:Calls

;Recall

¼ TP0

benchmark
; F1−score

¼ 2�Precision�Recall
Precisionþ Recall

ð2Þ

10-fold cross-validation was used to compare the perfor-
mances of InvBFM and other tools for calling inversion.

Table 5 Sensitivity of multiple tools on inversion length on 102
samples of the 1000 Genomes Project

INV. Len. (k) INV. No. Delly Lumpy LumpyEP Pindel InvBFM

0.3~0.5 10 80% 90% 90% 30% 90%

0.5~1 42 76.19% 0 0 47.62% 80.95%

1~2.5 73 86.30% 65.75% 60.27% 61.36% 87.67%

2.5~5 111 54.05% 6.31% 6.31% 27.93% 54.95%

5~10 2 100% 50% 50% 50% 100%

Threshold = 3*ISPE. The kernel of SVM is linear, with the penalty factor of 0.1
and the gamma of 20

Table 6 Result of different tools with different threshold values (used to determine when a called inversion matches benchmark)

Thre-shold Tool No. Calls TP TP0 FP FN Precision Recall F1-score

ISPE Delly 1142 183 150 959 88 16.02% 63.03% 25.55%

Lumpy 66 51 51 15 187 77.27% 21.42% 33.55%

LumpyEP 62 47 47 15 191 75.81% 19.75% 31.33%

Pindel 649 84 79 565 159 12.94% 33.19% 18.62%

InvBFM 1379
1919

359
365

163
166

1020 75 26.03% 68.49% 37.73%

ISPE *2 Delly 1142 244 164 898 74 21.37% 68.91% 32.62%

Lumpy 66 65 65 1 173 98.48% 27.31% 42.76%

LumpyEP 62 60 60 2 178 96.77% 25.21% 40.00%

Pindel 649 99 82 550 156 15.25% 34.45% 21.14%

InvBFM 1379
1919

462
468

167
172

917 71 33.50% 70.17% 45.35%

ISPE *3 Delly 1142 258 165 884 73 22.59% 69.33% 34.08%

Lumpy 66 65 65 1 173 98.48% 27.31% 42.76%

LumpyEP 62 61 61 1 177 98.39% 25.63% 40.67%

Pindel 649 101 82 548 156 15.56% 34.45% 21.44%

InvBFM 1379
1919

479
485

170
173

900 68 34.73% 71.43% 46.74%

No.Calls: detected inversion count. TP true positive, TP0 remove repeats of TP, FP false positive, FN false negative. The kernel of SVM is linear, with the penalty
factor of 0.1 and the gamma of 20
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The dataset we used in this part is the same as the data in
Table 2 from the simulated data and 204 real samples,
which contains a total of 5491 inversion and wild-type
breakpoints. The result of detected breakpoints of real
data from all the tools are shown in Table 7. Under the
threshold of 3 times ISPE, when the breakpoints deviation
is within the threshold, it is considered to be a true inver-
sion and we label it as 1; otherwise, it is set to 0. On this
basis, we use Delly, Pindel, Lumpy, LumpyEP and InvBFM
to call inversions and compare their results with the ex-
pected label to calculate various indicators, rather than
comparing predicted inversion to the benchmark in Table
6. In each 10-fold cross-validation process, we randomly
shuffled all the data, and divided the data set into 10 parts
averagely. We used 9 parts for training and 1 part for val-
idation. We repeat the process 10 times to make the valid-
ation set fully cover the whole data set. Only InvBFM
involves the training process. So, the SVM classifier is
trained using the inversion features of the training set for
each training step. Since the validation set is used to assess
the calling results of each tool, all the tools in Table 7
need to verify that each inversion is correctly detected in
the validation set. The specific results of mean values in
100 times of 10-fold cross-validation are shown in Table
7. It is worth mentioning that since the InvBFM is based
on modelling SVM using features from simulated data,
Table 7 filters out the breakpoints in simulated data and
only verifies the performance of the breakpoints from real
data comparing their expected labels. The results in Table
7 verify that our InvBFM does perform optimally on the
comprehensive performance of F1-score for detecting in-
version without overfitting.

Conclusions
This paper proposes InvBFM as a new approach to detect
inversion. Firstly, InvBFM uses Pindel, Delly, and Lumpy
to generate inversion candidates. From the candidate
inverting regions, the most significant features of inver-
sions such as read pair orientation, one end unmapped
and so on are assigned to specific values, and then the
most effective 10 features are selected by combining chi-
square test and experience. Finally, we use the SVM classi-
fier to determine candidates as true inversions or not. All

the real data in this paper comes from the 1000 Genomics
Project. Because the inversions in real data are too few to
train the classifiers, we use simulated data for model train-
ing and the real data for validation. The results show that
our method is better than the existing three tools on recall
and F1-score, ranks as second on precision, which is a lit-
tle lower than Lumpy. In the future work, we will consider
further mining the inversion features and exploiting the
full use of real data to make inversion calling more
effective.

Methods
Data
There are only a small number of validated inversions
that have been released so far. The 1000 Genomes Pro-
ject released a number of inversions. However, the num-
ber of called inversions from the 1000 Genomes Project
is not very large. There are only 238 inversions recorded
in Chromosome 11 in 102 samples. This is far from be-
ing enough to train the SVM classifier. Therefore, simu-
lated data is used for training.

Simulated data
In this experiment, the simulated data is used as the
training set of SVM classifier. The simulated data uses
the reference genome (hs37d5.fa) from the 1000 Ge-
nomes Project. SimulateSeq [18] is used to simulated
BAM files with different length, ISPE, and error rate on
the reference genome. In order to avoid overfitting by
the specific value of the parameters, we generated 13
sets of parameters in SimulateSeq, each parameter in
every set is randomly taken within a range of values. For
details, the range of inversion length is 500 to 6000, the
ISPE is set in 300 to 500, and the error rate range is set
from 0.003 to 0.005. There are also some parameters
that affect the SimulateSeq less, we set the read length
range from 70 to 150, the offset from 20 to 30, and the
depth from 4 to 25. It is worth mentioned that the obvi-
ous limitation of SimulateSeq is that even if the error
rate is introduced, the inversion area created is relatively
clean, unlike the real inversion surrounded repetition or
other SVs provided in 1000 Genomes Project. However,
the results of cross-validation in the previous paper
shown that the clean inversion can also train a better
SVM classifier without overfitting, this is the reason why
we choose the SimulateSeq. The 10 selected numerical
features are extracted from these BAM files. Further-
more, these features from simulated bam are normalized
with the candidate features of real bam, the specific ap-
proach is to employ scale function from preprocessing
of sklearn. And then put scaled simulated features into
the SVM classifier for training. This leads to a trained
SVM classifier.

Table 7 Result of 10-fold cross-validation on the different tools

Tool TP TN FP FN Precision Recall F1-score

Delly 85.30 124.10 186.70 0.90 31.36% 98.96% 47.63%

Lumpy 52.70 289.60 1.20 53.50 97.77% 49.62% 65.83%

LumpyEP 48.50 289.80 1.00 57.70 97.98% 45.67% 62.30%

Pindel 50.30 146.70 164.10 35.90 23.46% 58.35% 33.47%

InvBFM 59.72 288.47 22.33 26.47 72.78% 69.29% 70.99%

Threshold = 3*ISPE. The kernel of SVM is linear, with the penalty factor of 0.1
and the gamma of 20
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Real data
Real data from the 1000 Genomes Project is used as the
test data. Inversions released by the 1000 Genomes Pro-
ject are used as the benchmark in this paper. There are
not many called inversions in the benchmark: the max-
imum number of inversions recorded in the benchmark
for each sample on chromosome 11 is no more than
four. There are totally 102 samples (BAM files) as the
original data source. Chromosome 11 of the first 100
samples have more frequent inversions and chromosome
11 of the last two samples both have only one inversion
according to the benchmark. The BAM files for these
real data are low coverage, and they are released by the
1000 Genomes Project. The benchmark used in this
paper is from the 8th version of vcf file updated in May
2017. A total of 238 inversions are reported on chromo-
some 11 of 102 samples. In addition, in order to verify
the performance of InvBFM, we added another 102 sam-
ples of chromosome 11 (a total of 204 real data samples)
also from 1000 Genomes Project to complete the cross-
validation.

High-level idea
InvBFM calls inversions by examining candidate inver-
sions found by multiple inversion calling tools. The in-
version calling is model-based. That is, InvBFM trains a
classification model using SVM with various sequence-
based features. In this paper, we use simulated data for
model training. This is because there are only very lim-
ited real inversions available in the 1000 Genomes Pro-
ject data release, and these real inversions are needed for
validation. Our experience indicates that the model

trained by the simulation data can still be useful when
calling inversions in the real data.

Workflow of InvBFM
Our new method InvBFM takes mapped sequence reads
on a given reference genome in the BAM format as in-
put. There are two main parts for using InvBFM.as Fig.2
shown (i) Training model. InvBFM trains a classification
model by SVM on simulated data. This model classifies
a candidate inversion site to be either true inversions or
wild-type from a set of collected sequence features. The
sequence features are collected from the mapped reads
near the inversion site. These features are informative
about the presence of the inversion. (ii) Calling inver-
sion. InvBFM extracts the same set of sequence features
from sequence reads and calls inversion using the
trained classification model. For calling, InvBFM runs
multiple existing inversion calling tools, including Pin-
del, Delly and Lumpy. InvBFM then merges inversion
calls from these tools to form the candidate inversion
sites. InvBFM then calls inversions by examining each
candidate site and classifying with the trained model. In
order to improve accuracy, InvBFM mines the features
of inversions and chooses a subset of more informative
features in model training.

Features
Compared with other genomic variants, inversion has
some unique features. For example, read depth has been
used as a main signature for calling deletions. Due to in-
version is a balanced variation, read depth is not very in-
formative. InvBFM uses some features, including the
read pair orientation, one end unmapped, soft-clipped

Fig. 2 Workflow of InvBFM. It includes two major parts: (i) Training model. Bench-mark file is used to locate true inversion regions and non-SV
regions, and then InvBFM extracts features from sequence reads around each label region to train a classification model by SVM. (ii) Calling
inversion. Results of several tools are integrated as candidate inversion sites, then InvBFM extracts the same set of sequence features from
sequence reads and calls inversion using the trained classification model
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reads, concordance of ISPE and so on. Some of them are
shown in Fig.3, which is produced by the Integrative
Genomics Viewer (IGV) [19] on sequence data to
visualize the features of inversions. It is important to
note that we focus on diploid organisms in this paper.
Therefore, an inversion may be presented in one or both
copies of the chromosome. Also recall that we assume
the sequence data have pairs (i.e. paired-end reads).

Read pair orientation
One of the most important features of inversion is that
the two ends of a read pair has the same orientation while
they mapped to the reference gene, which is different from
the usual paired reads (where the two ends are oriented in
the opposite direction). This happens when one end is
outside the inversion and the other end is inside the
inverted region. When reads are obtained from the
paired-end sequencing technology, a read originates from
the forward strand, and its mate originates from the re-
verse strand. In other words, two reads in a read pair usu-
ally are mapped on different strand. However, when
inversion occurs, a read within the inversion area are
mapped on the same strand as its mate. See Fig.3a for an
illustration, the two reads linked by a straight line repre-
sent a read pair. The green reads linked by a straight line

indicate that the reads in a read pair are both mapped to
the forward strand of the reference and the blue indicates
they are both mapped to the reverse strand. It can be ob-
served that multiple reads mapped on the same strand are
produced in the inversion region. Therefore, read orienta-
tion is an important feature of inversion.

One end unmapped
One end unmapped means that only one read of a read
pair is successfully mapped to the reference. This occurs
when one end of a read pair overlaps with the boundary
of the inversion and becomes unmapped. As shown in
Fig.3b, two reads are wrapped by a red line that are not
linearly connected to another read. This means the read
has a mate that is not mapped to the reference, the oc-
currence of inversions causes this abnormality. Within
the inversion region, there are an increasing number of
one end unmapped read pairs, which can be an import-
ant feature for inversion.

Soft-clipped reads
Soft-clipped read refers to a read partly mapped to the
reference. Soft-clipped reads occur when one end of a
read pair overlaps with the boundaries of the inversion
region. Different from the one end unmapped case, the

Fig. 3 Inversion visualization in IGV. a Inversion region produces a large number of read pairs with the same orientation. The green read pair
means both of the ends are mapped on the forward strand. The blue part means both of the ends are mapped on the reverse strand. b One
end unmapped with the red line surrounded happens near the inversion, which means that an end mapping to the reference genome fails in
the read pair near the inversion breakpoint. c When a read is mapped on a breakpoint of inversion, soft-clipped read occurs, in which the
continuous bases are unmapped reflection as the color block. d ISPE is the distance between two ends in a read pair, ISPE is abnormally called
discordant read pair perhaps indicates inversion occurs. e The overall effect of inversion on a genomic region
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read is partially mapped (i.e. becomes a soft-clipped
read). Thus, there tends to be more soft-clipped reads
near the inversion boundary. This is shown in Fig.3c
Color blocks indicate continuous bases that are mis-
matched with the reference. Each streak represents a
mismatched base, and the soft-clipped read contains the
color bar blocks.

ISPE
ISPE stands for the insert size of pair-end reads, indicat-
ing the distance between the two ends in a read pair. In
a wild-type, ISPE usually has a range, which depends on
the sequencing technologies. If the observed ISPE of
mapped paired-end reads falls into this normal range,
we say the read pair is concordant read pair. Otherwise,
we say the read pair is discordant read pair. When one
end of a read pair is outside the inversion area and the
other end is inside the inversion area, the observed ISPE
may be different from the true ISPE and the read be-
comes discordant. The concordant and discordant read
pairs are shown in Fig.3d. This is more likely when the
inversion is longer.

Other features
Besides the above features, other features can also be
valuable for calling inversions, such as a read is uniquely
or multiply mapped to the reference, whether perfectly
mapped to reference, mapped quality and so on.
The features described above are specific features of

inversions. Figure 3e shows inversion’s overall perform-
ance in IGV. It shows the case of inversion and also the
case of wild-type. We can see the inversion features are
enriched at the inversion site.

Feature expression
InvBFM maps the features of inversion mentioned
above into numerical features for subsequent process-
ing. Table 8 shows more details of these features. The
extraction of numerical features is based on the over-
lapping paired-end reads of the BAM file. Since some
inversion features overlap with inversion breakpoints,
the scope of the InvBFM fetch features is defined to
be the left and right breakpoints of the ISPE of the
paired-end reads, as shown in Fig.4. We use pysam
[20] to extract features from the overlapping reads.
Regarding the numerical features expressed in inver-
sion, first, we extract the key information of overlap-
ping reads. The information includes the XT value
under the XT tag of read, which indicates the read is
uniquely or multiply mapped to reference. Cigartuples
indicate the specific bases’ mapped situations in reads.
We mainly extract the number of bases of total
mapped and soft-clip. Both of them contribute to the
number of middle mapped quality and the number of
clipped reads. We also look for its mate based on the
read so that we can get the mapped direction of its
mate. In addition, we also extract the length of the
read, the mapped quality and its ISPE. The collection
of the above information constitutes the set of read
information required for the features, and the corre-
sponding 15 numerical feature sets can be obtained
by integrating the corresponding quantities of the in-
formation in the order of Table 8.

Feature mining
Not all the features are equally informative about
finding inversions. In order to mine the most efficient

Table 8 Features. Each feature is assigned to an ID

Features ID. Description of numerical features

Uniquely/Multiply mapped 1 Number of uniquely mapped reads

2 Number of multiply mapped reads

One end unmapped 3 Number of read pairs with one end unmapped

Soft-clip read 4 Number of clipped read

Mapped with error/error free 5 Number of mapped with error free

6 Number of mapped with error

ISPE of read pair 7 Number of concordant pair whose ISPE is normal

8 Number of discordant pair whose ISPE is abnormal

Mapping quality 9 Sum of mapped quality

10 Number of low mapped quality

11 Number of middle mapped quality

12 Number of high mapped quality

Read pair orientation 13 Both mapped on reverse strand

14 Both mapped on forward strand

15 Both mapped on same strand
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features, InvBFM performs feature selection on the
initial extracted numerical features. InvBFM tests the
correlation between each feature and its target value
by using the chi-square test. The higher chi-square
value is, the closer the relationship between the fea-
ture and the target is. When calculating the chi-
squared value of a feature, we set O to be the ob-
served frequency of features. E is the expected fre-
quency of features. O is calculated from all the
features and its output. E is calculated from the mean
features and mean output. To estimate the difference
between the observation frequency and the expected
frequency, we use the chi-square test (3) to calculate
the final chi-square value.

x2 ¼
X O−Eð Þ2

E
ð3Þ

The highest 8 chi-square values obtained by the chi-
square test are features 2, 4, 6, 8, 11, 13, 14 and 15 in
Table 8. These 8 features are reserved as valid features.
The reason why only using the 8 features with the high-
est chi-square value is that the feature whose chi-square
value at the 9th indicates discordant pair. It is related to
concordant pair which is already selected, and also
selecting discordant pair as an effective feature causes
feature redundancy. In addition, according to our experi-
ence, the number of one end unmapped and the sum of
mapping quality are both important features for inver-
sions. These are not included in the above 8 features se-
lected by chi-square test. So, these two features are also
added to the list of chosen features. The final feature set
selected by InvBFM contains the following 10 features:
2, 3, 4, 6, 8, 9, 11, 13, 14, 15. The 10 features of InvBFM
are more effective than the 8 features of chi-square test,
which have been verified in previous results.

Calling inversions
We first collect the called inversions as candidate inver-
sions from existing tools, including Pindel, Delly and
Lumpy. We use multiply tools here because existing
tools for detecting inversion use different signatures:
Pindel only uses split-mapped reads, and both Delly
and Lumpy use ISPE of paired-end reads and split-
mapped reads. This helps to find candidate inversions
that are more likely to contain true inversions.
InvBFM uses the SVM classification to examine each

candidate inversion to predict whether inversion occurs
to get the final inversion set. Because there are a few val-
idated inversions, the SVM classifier is trained with the
simulated inversion. The SVM classifier then treats the
generalization candidate inversions’ features from real
data to get final inversion set.
In more details, InvBFM sets the number of simu-

lated samples Ns. Each sample has Ms1 simulated in-
versions. So InvBFM extracts the number of Ns*Ms1

numerical features from the simulated inversions.
These features from the inversions are set to 1. Simi-
larly, features from the wild-type region are set to 0.
The extracted features from the simulated data with
the labels constitute the training data, which are
scaled to train the SVM classifier. On the other hand,
the numerical features of the 10 features are extracted
according to the candidate inversion set of the real
samples. These real data features are scaled and then
put into the SVM classifier modeled by the simulated
data to judge whether inversion occurs. The result of
1 indicates that InvBFM determines that the region is
a true inversion, and 0 indicates that the region is a
wild-type. Finally, InvBFM gets the final inversion set
from the candidates with called label 1. The SVM
classifier of InvBFM chooses a linear kernel with the
penalty factor of 0.1 and the gamma of 20.

Fig. 4 Extracted features in InvBFM. The range of extracted features is defined as the enlargement of ISPE by both left and right breakpoints of
inversion area
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