
Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235
https://doi.org/10.1186/s12864-020-6605-1

RESEARCH Open Access

Unblended disjoint tree merging using
GTM improves species tree estimation
Vladimir Smirnov and Tandy Warnow*

From 17th RECOMB Satellite Conference on Comparative Genomics
Montpellier, France. 1–4 October 2019

Abstract

Background: Phylogeny estimation is an important part of much biological research, but large-scale tree estimation
is infeasible using standard methods due to computational issues. Recently, an approach to large-scale phylogeny has
been proposed that divides a set of species into disjoint subsets, computes trees on the subsets, and then merges the
trees together using a computed matrix of pairwise distances between the species. The novel component of these
approaches is the last step: Disjoint Tree Merger (DTM) methods.

Results: We present GTM (Guide Tree Merger), a polynomial time DTM method that adds edges to connect the
subset trees, so as to provably minimize the topological distance to a computed guide tree. Thus, GTM performs
unblended mergers, unlike the previous DTM methods. Yet, despite the potential limitation, our study shows that GTM
has excellent accuracy, generally matching or improving on two previous DTMs, and is much faster than both.

Conclusions: The proposed GTM approach to the DTM problem is a useful new tool for large-scale phylogenomic
analysis, and shows the surprising potential for unblended DTM methods.

Keywords: Large-scale phylogeny estimation, Species tree estimation, Divide-and-conquer pipelines

Background
The estimation of evolutionary trees (i.e., phylogenies,
whether of genes or of species) is a fundamental step in
much biological research, including understanding how
species adapt to their environments, how gene function
evolves, and how humans migrated across the globe.
Yet, phylogeny estimation is computationally intensive,
as nearly all the best approaches are based on NP-hard
optimization problems.

Divide-and-conquer approaches to tree estimation have
the potential to provide improved scalability to heuristics
for NP-hard optimization problems, but they depend on
supertree methods, which have not been established to be
highly scalable [1]. A new divide-and-conquer approach

*Correspondence: warnow@illinois.edu
Department of Computer Science, University of Illinois at Urbana-Champaign,
201 N Goodwin Ave, 61801 Urbana, IL, US

has been recently proposed to tackle this limitation: the
set of species is divided into smaller, disjoint subsets, trees
are computed on each subset (using the best available
methods), and then the trees are combined together into
a tree on the complete taxon set. In this approach, the
subset trees are considered hard constraints and so must
be induced in the output tree [2–6]; this property of the
output tree is expressed by saying it is a “compatibility
supertree" of the input constraint trees. Finally, merging
disjoint trees requires some auxiliary information (such
as a matrix of pairwise distances between the species),
and the problem of merging disjoint trees using auxiliary
information is called the “Disjoint Tree Merger" (DTM)
problem.

So far, three DTM methods have been developed:
NJMerge [2, 3], TreeMerge [4], and constrained-INC [5,
6], each of which uses a computed matrix of pairwise
distances to merge the disjoint trees and does so in

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-6605-1&domain=pdf
mailto: warnow@illinois.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 2 of 17

polynomial time. Constrained-INC was tested only for
gene tree estimation, where it had disappointing results.
TreeMerge and NJMerge were tested in the context of
species tree estimation on multi-locus datasets, where
they provided good advantages: they matched the accu-
racy of leading species tree estimation methods (ASTRAL
[7–9] and RAxML [10], which performs a concatenation
maximum likelihood analysis), while providing improve-
ments in speed. NJMerge can fail to return a tree under
some conditions (though never when merging two trees),
due to its algorithmic design [2, 3]; TreeMerge is a tech-
nique that uses NJMerge on pairs of trees (where it is
guaranteed to never fail), and then combines overlap-
ping trees using an innovative algorithm that exploits the
ability to estimate branch lengths. Thus, TreeMerge was
developed specifically to replace NJMerge because of the
capacity of NJMerge to fail and in order to improve the
speed. Finally, all three DTM methods have been proven
to enable statistically consistent tree estimation when
used within appropriate divide-and-conquer strategies.

We propose a new DTM approach, where the input is a
set of disjoint trees and also a tree on the full set of species
(called a “guide tree"), and the objective is to produce a
tree that agrees with all constraint trees and minimizes the
total topological distance to the guide tree. We prove this
optimization problem is NP-hard, but show that if we do
not allow blending (so that the output tree is formed by
just adding edges between the constraint trees), then the
problem is solvable in polynomial time.

We present the Guide Tree Merger (GTM) algorithm to
solve this unblended DTM-GT problem, and prove that it
uses polynomial time. We evaluate GTM for species tree
estimation from multi-locus datasets, where gene trees
can differ from the species tree due to incomplete lin-
eage sorting [11]. We prove that the pipeline using GTM
(Fig. 1) maintains statistical consistency, and demon-
strate (on a collection of multi-locus datasets with 1000
species) that GTM has very good performance. Specif-
ically, we show that GTM matches or improves on the
accuracy of NJMerge and TreeMerge on these datasets,
while completing in a fraction of their runtimes. See

Additional file 1 for details for the experimental perfor-
mance study, Additional file 2 for proofs, and Additional
files 3 and 4 for additional figures and tables, respectively.

The DTM-GT optimization problem
All phylogenetic trees are assumed to be unrooted and
leaf-labelled by taxa in a set S. We continue with some
basic terminology.

Given a tree T on leafset S and set S′ ⊆ S, the homeo-
morphic subtree of T defined by S′ (in which degree two
nodes are suppressed) is denoted by T |S′ .

Definition 1 Let A = {T1, T2, . . . , Tk} be a set of trees
on subsets of S. T is said to be a compatibility supertree
for A if (1) L(T) = ∪iL(Ti) (where L(t) denotes the leaf set
of t) and (2) T |L(t) = t for all t ∈ A.

Each edge e in a phylogenetic tree t defines a biparti-
tion πe on the leafset of t, and hence each tree t is defined
by the set of its bipartitions, which we denote by C(t) =
{πe|e ∈ E(T)}. The “FN” (false negative) distance of tree
A to tree B is |C(B) \ C(A)|, or the number of biparti-
tions in C(B) that are missing from C(A), and is denoted
by FN(A, B).

We continue with a discussion of DTM methods. Each
DTM method takes as input a set T of leaf-disjoint trees
and some auxiliary information and returns a compatibil-
ity supertree for T . Note that since the trees in T are on
disjoint leaf sets, a compatibility supertree is guaranteed
to exist (e.g., the tree formed by including a center node
v and making v adjacent to some internal vertex in each
of the trees in T is a compatibility supertree). The key to
making DTM methods have good accuracy is the use of
auxiliary information to merge the trees together well.

The current DTM methods perform this merger by
computing a matrix of pairwise distances between species
under a statistical model of evolution, and then carefully
use the resultant matrix while merging the subset trees.
For example, NJMerge accomplishes this by modifying the
popular Neighbor Joining method [12], which agglomer-
atively builds the tree, so that it never violates any subset

Fig. 1 A basic DTM pipeline with GTM. A starting tree is computed and then decomposed by deleting some set of edges. Constraint trees are
computed for these subsets and attached together with new edges using GTM

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 3 of 17

tree in T . Furthermore, the current DTM methods allow
blending, by which we mean that the subset trees in T may
not be separated from each other within the compatibility
supertree.

To understand why blending can be necessary, suppose
D is an additive matrix (i.e., there is an edge-weighted
tree T so that D[x, y] is the distance between x and
y in T) that defines a caterpillar tree on 8 leaves, i.e.,
T = (1, (2, (3, (4, (5, (6, (7, 8))))))). Now suppose t1 =
(1, (5, (6, 7))) and t2 = (2, (3, (4, 8))). Now consider when
the input to the DTM method is the pair T = {t1, t2} and
D. The desired output should be T, which is a compatibil-
ity supertree for T that realizes the input matrix D. Yet, T
can only be formed if t1 and t2 are blended together; thus,
unblended merges (formed by adding an edge connecting
the input trees) are not as powerful as blended mergers.

In this paper, we introduce GTM (Guide Tree Merger),
a new DTM method that does not allow blending. Despite
this limitation, we will show GTM matches or improves
on the previous DTM methods NJMerge and TreeMerge
under most tested conditions, and is much faster than
both. Before we show our method, we introduce an opti-
mization problem for DTM construction.

Definition 2 DTM-GT-FN:

• Input: A set T = {T1, T2, . . . , Tk} of leaf-disjoint
unrooted binary trees and a guide tree T∗ on the full
set of species

• Output: A compatibility supertree T for T that
minimizes |C(T∗) \ C(T)| (i.e., T minimizes the FN
distance to T∗).

Here, GT refers to “guide tree" and “FN" refers to the
optimization criterion, which is that we wish to minimize
the FN (false negative) distance between the guide tree
and the compatibility supertree we construct. We allow
the trees in the input set T to be non-binary, and for this
reason we use the FN distance rather than the RF dis-
tance. However, when the guide tree and all the trees in T
are binary, then the optimal compatibility supertree is also
binary, and the RF distance and FN distance to the guide
tree are identical.

Theorem 1 DTM-GT-FN is NP-hard

See Additional file 2 for the proof. Now consider the fol-
lowing variant of DTM-GT-FN, where we do not permit
blending:

Definition 3 Unblended DTM-GT-FN:

• Input: A set T = {T1, T2, . . . , Tk} of leaf-disjoint
unrooted binary trees and a guide tree T∗ on the full
set of species

• Output: A compatibility supertree T for T formed by
connecting the trees in T by edges and that
minimizes |C(T∗) \ C(T)| (i.e., the FN distance to
T∗) among all such compatibility supertrees.

Interestingly, Unblended-DTM-GT-FN can be solved in
polynomial time, as we show in the next section.

The GTM method
We begin with some terminology. First, we say that a
bipartition π = A|B “violates a constraint tree" t if t does
not contain any edge defining the bipartition π |L(t) =
A∩L(t)|B∩L(t), where π |L(t) denotes π restricted to L(t).
Next, we refer to the leaf sets of each constraint tree as
“constraint sets", and we partition the edges of the guide
tree T∗ into three sets, based on how many constraint sets
(0, 1, or at least 2) have leaves on both sides of the edge.

• The edges that have no constraint sets on both sides
are called “bridge edges", as they separate constraint
sets.

• The edges that have exactly one constraint set on the
two sides are said to “lie within that constraint set."

• The edges that have two or more constraint sets on
the two sides are said to “violate convexity" (where
convexity would assert that the nodes of the guide
tree can be labelled by the constraint sets, so that no
node has more than one label and every two leaves
with the same label are connected by a path with all
nodes given the same label).

GTM solves the Unblended DTM-GT-FN problem
recursively, in polynomial time, as described below.
Specifically, GTM uses the guide tree to determine which
pairs of constraint trees should be connected directly by
edges, and then uses bipartitions in the guide tree to deter-
mine how to connect the constraint trees together; this
depends on finding appropriate edges in each constraint
tree to subdivide (by adding internal nodes) and then
which pairs of constraint trees should be connected by
new edges (introduced between the newly created internal
nodes in the subdivided edges). The details of how these
edges are identified and how the specific pairs of con-
straint trees are merged are non-trivial, and are described
below:

The GTM algorithm has the following structure:

• Collapse all edges in T∗ that violate any Ti.
• Collapse all edges in T∗ that violate convexity.
• Return Rejoin(T∗).
Note that Rejoin(·) is run only after all edges that violate

convexity or a constraint tree have been collapsed. Hence,
every remaining edge is either a bridge edge (i.e., sepa-
rates constraint sets) or is on a path between two leaves
for exactly one constraint subset (i.e., “lies within" their

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 4 of 17

Fig. 2 GTM example with two constraint trees (or one recursive step). Green and blue edges lie inside different constraint sets. 1 We first collapse all
edges that violate convexity (red) or violate a constraint tree (yellow). 2 At the polytomy where green and blue edges meet, we separate the green
and blue edges with bridge e (pink). 3 We randomly select one edge (dashed) at each endpoint of the bridge. 4 We locate the edges in the
constraint trees that induce the same bipartition, when restricted to their respective constraint set (in this case - A1A2A3|A4A5A6A7 and B1|B2B3B4). 5
We join the constraint trees by subdividing the two identified edges (i.e., by adding a new internal node into each edge) and add the edge between
the newly created internal nodes

constraint sets). Furthermore, every edge e that lies within
constraint set L(Ti) satisfies b(e) := π(e)|L(Ti) ∈ C(Ti) (as
otherwise it would have violated the constraint tree and
would have been collapsed). Given this context, we now
describe the recursive function Rejoin(T) (Fig. 2):

Rejoin(T):

• If L(T) = L(Ti) for some i, Return Ti.• Pick an edge e in T as follows. Let v ∈ T be any
“border node”, i.e., a node that is either (1) an
endpoint of a bridge edge, or (2) a common endpoint
of two edges lying in different constraint sets L(Ti)
and L(Tj). Given v, we define edge e as follows: in
case (1), e is the bridge edge that v is incident with,
and in case (2), we refine at node v by adding a vertex
v′ and new edge (v, v′) to separate all the edges
incident with v that lie in L(Ti) from all the other
edges, and set e = (v, v′).

• Delete e from T to form two trees, S1 and S2.
/*Comment: The species in each constraint subset
are in exactly one subtree, S1 or S2. */

• Let edges e1 ∈ E(S1) and e2 ∈ E(S2) be any two edges
that are incident with e.

• Let S′
1 = Rejoin(S1) and S′

2 = Rejoin(S2).
/*Comment: Note that S′

1 and S′
2 are both unblended

compatibility supertrees of some of the constraint
trees, and each constraint tree appears within one of
these two trees. */

• Find “attachment edges” e′
i in trees S′

i (i = 1, 2), such
that ei and e′

i (i = 1, 2) define the same bipartitions in
their respective trees.

• Join S′
1 and S′

2 by “adding an edge between e′
1 and e′

2"
(i.e., by subdividing e′

1 and e′
2, thus creating new

nodes v1 and v2 and adding edge (v1, v2)) and return
the resulting tree.

In other words, for each pair of constraint trees
to be joined, we add an edge to connect them by
choosing one edge from each tree to bridge together.
This “attachment edge” is chosen by finding an edge
with the same bipartition, relative to the subtree, as
any of the edges at the attachment point of that
subtree in T∗.

Theorem 2 Given a guide tree T∗ and set T =
{T1, T2, . . . , Tk} of constraint trees over their respective leaf
sets L(Ti) of T∗

i , GTM optimally solves Unblended DTM-
GT-FN on (T , T∗), and has a worst case running time
complexity of O(N2), where N = |L(T∗)| is the total
number of species.

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 5 of 17

We sketch the proof here, and direct the reader to
Additional file 2 for full details. We note that another
way of describing GTM is that it collapses all edges in
the guide tree that violate convexity or violate a con-
straint tree, it adds edges to separate the constraint sets,
and then it refines the resultant tree to induce each of
the constraint trees. As a result, it is easy to see that
it maximizes the number of shared bipartitions, and so
equivalently it minimizes the number of missing branches
in T∗. Hence, it optimally solves Unblended DTM-GT-FN.
For the running time, we add that to achieve the O(N2)
time complexity, the algorithm uses hashing.

Divide-and-conquer pipelines for DTMs
Here we describe a generalization of the divide-and-
conquer pipelines that were previously used to evaluate
DTMs in [2–4, 6] in the context of multi-locus species tree
estimation and gene tree estimation.

• Construct a starting tree T0 using a fast but
statistically consistent method, X

• Divide the species set into disjoint sets by
decomposing the tree T0 (by deleting edges) until
each subset has at most k species

• Construct trees on each subset using the preferred
method, Y

• Combine the subset trees together using a DTM
method, Z

We will refer to a given pipeline for multi-locus species
tree estimation as the triple “X-Y -Z”; for example “NJst-
RAxML-TreeMerge” indicates that NJst [13] is used to
compute the starting tree, RAxML is used to construct
subset trees, and TreeMerge is used to combine the sub-
set trees into one tree. In our experiments, we repeatedly
delete edges from the starting tree until all the subsets
have at most 120 species.

In the experiments we report in this paper, we use
the centroid edge decomposition strategy to divide our
species sets into disjoint subsets; this is the same
decomposition strategy used in the NJMerge [2, 3] and
TreeMerge [4] studies. The centroid edge decomposi-
tion technique originated in SATé-II [14] and has also
been used in PASTA [15, 16] and DACTAL [17]. The
basic objective of this strategy is to produce a decompo-
sition where every subset is “local" within the input tree,
and does not exceed a specified maximum subset size.
The centroid edge decomposition is based on finding and
deleting centroid edges, which are edges whose removal
splits the leaf set into two sets where the difference in size
is minimized among all the edges in the tree; because there
can be more than one edge with this property, the centroid
edge may not be unique. In the centroid edge decompo-
sition strategy, a tree T is given as well as a bound B on
the size of the subsets to be computed. If T has at most B

leaves, then the set of leaves of T is returned (i.e., there is
no decomposition performed). Otherwise, a centroid edge
is found and removed, and then the algorithm recurses on
the two subtrees. At the end of this recursive strategy, the
set of leaves of T (i.e., taxa) is decomposed into disjoint
sets, each of which has size at most B.

A desirable property of a phylogeny estimation method
or pipeline is that it is statistically consistent, which
means that it provably converges to the true tree as the
amount of data increases. Pipelines using NJMerge and
TreeMerge were proven statistically consistent under the
MSC+GTR model [3, 4] where gene trees evolve within
the species tree under the multi-species coalescent (MSC)
model [18] and then sequences evolve down each gene
under the Generalized Time Reversible (GTR) model [19])
and a similar pipeline using constrained-INC was proven
to be statistically consistent under the GTR model [5].
The following theorem shows that appropriate divide-
and-conquer pipelines using GTM are also statistically
consistent; see Additional file 2 for the proof.

Theorem 3 Let � be a model of evolution. If the method
X used to construct the starting tree and the method Y
used to construct the subset trees are both statistically con-
sistent under �, then the DTM pipeline X-Y-GTM is also
statistically consistent under �.

Hence, NJst-ASTRAL-GTM is statistically consistent
under the MSC+GTR model, but RAxML, FastTree2 [20],
and any divide-and-conquer strategies based on these
methods will not be (because maximum likelihood is not
statistically consistent under the MSC+GTR model [21,
22]). Note that statistical consistency does not depend
on using the centroid edge decomposition, and instead
is guaranteed for any decomposition strategy that oper-
ates by removing a set of edges from the starting tree and
computing subset trees on the leaf sets of the resulting
components.

The terms “starting tree” and “guide tree” can have
somewhat different meanings in divide-and-conquer
pipelines. The starting tree is used to produce subsets,
while the guide tree is part of the input to the GTM algo-
rithm. Within our “X-Y -GTM” pipelines, the starting tree
(X) and the guide tree are always the same, permitting the
terms to be used interchangeably in this context. However,
other pipelines can be considered where the decomposi-
tion into subsets is based on a starting tree and then the
subset trees are merged using a guide tree that is different
from the starting tree.

Experimental study
We give an overview of the experimental study here;
see Additional file 1 for additional details and software
commands used in this study.

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 6 of 17

Overview
We compare GTM to NJMerge and TreeMerge with
respect to species tree error using previously published
multi-locus datasets with 1000 species and varying num-
bers of genes where gene trees can differ from the true
species tree due to incomplete lineage sorting. We used
multi-locus datasets and estimated gene trees (computed
using FastTree2) from [3].

We vary the starting tree and method to compute con-
straint trees, so as to explore the impact of these choices
on accuracy of the final tree. We compare each estimated
species tree to the true species tree, and report the nor-
malized Robinson-Foulds (RF) error rates [23], where the
RF error of tree T is the total number of bipartitions that
appear in T or the true tree but not both (RF distance),
divided by 2N − 6, where N is the number of leaves (note
that 2N − 6 is the total number of non-trivial biparti-
tions if both trees are binary). Thus, the RF error ranges
from 0 (perfect match) to 1 (nothing in common). We
also report the running time of the pipelines, and com-
pare them to the running time for standard species tree
estimation methods on the same datasets.

We explore GTM within the same divide-and-conquer
pipeline strategy used in [3, 4], as described above, using
the centroid edge decomposition and decomposing until
each subset has at most 120 species.

External methods
We compare the trees computed using the pipelines to
unpartitioned maximum likelihood using RAxML and
FastTree2; we also computed trees on the multi-locus
datasets using summary methods (i.e., methods that esti-
mate the species tree by combining the gene trees)
ASTRAL, NJst [13], and ASTRID [24]. NJst, ASTRID, and
ASTRAL are statistically consistent under the MSC+GTR
model, but FastTree2 and RAxML are not.

The divide-and-conquer pipelines require external
methods to compute starting trees and constraint trees:
we used FastTree2, NJst, and ASTRAL for the start-
ing trees, and ASTRAL and RAxML for the constraint
trees. We include ASTRAL and RAxML because these
are the current leading methods for species tree esti-
mation on large datasets. We include NJst and ASTRID
because they, like ASTRAL, are species tree estimation
methods that are polynomial time, statistically consis-
tent under the MSC model, and can run on 1000-species
datasets. Finally, we include FastTree2 (henceforth called
FastTree) because it is a very fast maximum likelihood
heuristic.

Datasets
Our study makes use of the 1000-taxon multi-locus sim-
ulated datasets from the NJMerge study [3], which are
available at [25]. Here we briefly describe the experimental

protocol used in [3], and how we used the datasets to test
GTM pipelines.

Each replicate dataset in [3] has a true species tree
and 1000 true gene trees. The gene trees were gener-
ated by evolving them down the species tree under the
MSC model, which has the consequence that the true gene
trees can differ from the true species tree due to incom-
plete lineage sorting (ILS). The sequence alignments in
[3] were produced by evolving sequences down the true
gene trees under the GTR model and gene trees were esti-
mated on these alignments using FastTree [26]. The study
in [3] includes model species trees with different levels of
ILS and two types of genes (exons and introns) that have
two different rates of evolution. Among the datasets avail-
able from [3], we selected 1000-taxon datasets from model
conditions with two levels of ILS (low and very high) and
both types of genes.

In order to stress test GTM, we explored conditions
where estimating a reasonably accurate starting tree might
be difficult. Since the number of genes impacts the accu-
racy of the starting tree (especially when ILS is high), we
achieved this by including analyses with only 10 and 25
genes, which we selected by picking the first such genes
from the data repository for the study.

We explored a range of fast methods for computing the
starting tree, including FastTree (which can only be used
when the number of genes is not too large), ASTRAL,
and NJst [13]. The result was a set of starting trees that
varied in accuracy, from very accurate to very inaccu-
rate. In general, all starting trees on low ILS conditions
were reasonably accurate, even with only 10 genes. How-
ever, with high ILS conditions and ten genes, all start-
ing trees had low accuracy: the best starting trees had
error rates in the 50–60% RF error range and the worst
starting trees (computed using ASTRAL) had error rates
between 64–66% (see Additional files 3 and 4). Thus, all
the starting trees for the 10-gene high ILS conditions
are poor, and they provide the stress test we need to
understand how GTM operates when given poor starting
trees.

Table 1 Dataset properties

Number of species 1000

Number of sites per gene 300-1500

Number of genes 10, 25, 1000

ILS levels Very High ILS (68-69% AD)

Low ILS (8-10% AD)

Gene types Exons (38-64% GTEE)

Introns (26-51% GTEE)

AD values of ILS levels are the average Robinson-Foulds distances between the true
species tree and the true gene trees. Gene Tree Estimation Error (GTEE) is the
average RF error of the estimated gene trees

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 7 of 17

Overall, we considered 12 model conditions (three num-
bers of genes, two types of genes, and two levels of ILS),
and each model condition has 20 replicates (see Table 1).

Experiments and computational resources
We performed three experiments. Experiment 1 deter-
mined the best way to compute starting trees and subset
trees for each DTM method (NJMerge, TreeMerge, and
GTM) within the divide-and-conquer pipeline, for each
model condition (i.e., ILS level and number/type of genes).
An important part of this experiment is that it allowed us
to evaluate the impact of the starting tree on GTM, which
is a matter of some interest to us. Experiment 2 com-
pared the three DTM methods to each other with respect
to accuracy and running time. Experiment 3 evaluates the
impact of divide-and-conquer pipelines using GTM on
RAxML and ASTRAL, the two leading species tree esti-
mation methods, with respect to accuracy and running
time.

All the analyses we performed were executed on the
Campus Cluster at UIUC, which limits analyses to 4
hours; hence, any analysis that failed to complete within
that time was discarded. However, for the 1000-gene anal-
yses involving NJMerge and RAxML (which could not
complete within 4 hours on the Campus Cluster), we
report results given in [3] that used the Blue Waters
supercomputer and allowed to run for 48 hours.

Results
Missing replicates in the figures typically reflect NJMerge
(and in some cases ASTRAL and RAxML) failures to com-
plete within the allowed running time (see Additional
file 4).

Experiment 1: designing the DTM pipelines
We consider the accuracy of pipelines for each DTM
method, selecting either RAxML or ASTRAL for con-
straint trees and NJst, ASTRAL, or FastTree for the start-
ing tree (where they can be run within the stated time
limits).

Results for TreeMerge and GTM on the high ILS
datasets with 10 introns are shown in Fig. 3; NJMerge
is not shown for these data, as it failed for all these
replicates (as well as for the analyses with 25 high ILS
introns). This experiment shows that the most accurate
results are obtained using NJst-ASTRAL-TreeMerge and
NJst-ASTRAL-GTM (which are tied), and all other com-
binations have distinctly higher error. Interestingly, the
next best analyses are obtained using FastTree-ASTRAL-
TreeMerge and FastTree-ASTRAL-GTM (which are tied),
but ASTRAL-ASTRAL-TreeMerge and ASTRAL-ASTRAL-
TM. have much higher error rates. Finally, the least
accurate results are obtained using ASTRAL-RAxML-
TreeMerge and ASTRAL-RAxML-GTM. Figure 3 also

shows that the starting trees obtained using ASTRAL and
constraint trees obtained using RAxML have very high
error on these data, which explains these negative results.
Results for other high ILS conditions show the same
trends; see Additional file 3. Overall, therefore, the most
accurate analyses on high ILS datasets are obtained using
NJst-ASTRAL-TreeMerge and NJst-ASTRAL-GTM.

Results for low ILS datasets with 10 introns show
different trends (Fig. 4). Here we see that the most
accurate results are obtained using FastTree-RAxML-
GTM, with FastTree-RAxML-NJMerge slightly less accu-
rate (followed by FastTree-RAxML-TreeMerge). The next
best results are obtained using other combinations with
RAxML to compute the constraint trees, which is
explained by noting that the RAxML constraint trees are
highly accurate. We also see that the FastTree starting
tree is highly accurate, which helps explain the good per-
formance of FastTree-RAxML-GTM. Results for other
low ILS conditions are shown in see Additional file 3,
and show the same trends. Overall, for low ILS datasets,
the best accuracy is obtained using FastTree-RAxML-
GTM. However, FastTree cannot run to completion on
1000-gene datasets, which limits its utility as a general
starting tree to only those datasets with not too many
genes. Therefore, for 1000-gene datasets, we recommend
NJst-RAxML-GTM.

In order for the pipeline to be provably statistically con-
sistent under the MSC+GTR model, both the starting tree
and the constraint trees must be computed using meth-
ods that are statistically consistent under the MSC+GTR
model, which means (for our study) either ASTRAL or
NJst for both steps. NJst is much faster than ASTRAL,
and can complete on all the datasets we explored within
the limited allowed time (which is not true for ASTRAL).
Therefore, when statistical consistency is required, NJst-
ASTRAL is the right pipeline for all DTM methods.

Experiment 2: comparing DTM methods
We compare the three DTM methods on 1000-species
datasets. We show results for the NJst-RAxML and NJst-
ASTRAL pipelines, but results for other pipelines show
similar trends.

Under the low ILS conditions, GTM and NJMerge have
very similar RF error rates, with TreeMerge slightly higher
in error (Fig. 5). For the high ILS conditions, the compar-
ison is made between GTM and TreeMerge, as NJMerge
failed to complete on many datasets (see Additional file
4). TreeMerge and GTM have very close accuracy under
most high ILS conditions, and neither dominates the other
method (Additional file 3).

Runtime performance is compared in Table 2 for high
ILS and Table 3 for low ILS. Under conditions where
NJMerge and TreeMerge both run, NJMerge is slower,
and each takes many minutes (up to 30 minutes for

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 8 of 17

Fig. 3 Experiment 1: Tree error rates for GTM and TreeMerge with different “starting tree-constraint tree” combinations over 10 high ILS intron genes
with 1000 species. (NJMerge is not shown, because it failed for all high-ILS 10- and 25-gene replicates; see Additional file 3 for high-ILS NJMerge
results on 1000 introns). Both DTM methods work best with ASTRAL constraint trees and show a distinct preference for the NJst-ASTRAL combination.
The value for n is the number of replicates being compared, where all methods ran. Error bars show standard error of the replicate average

Fig. 4 Experiment 1: Tree error rates for GTM, NJMerge, and TreeMerge with different “starting tree-constraint tree” combinations over 10 low-ILS
intron genes with 1000 species. All three DTM methods work best with FastTree starting trees and RAxML constraint trees. The value for n is the
number of replicates being compared, where all methods ran. Error bars show standard error of the replicate average

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 9 of 17

Fig. 5 Experiment 2: Relative accuracy of different DTMs (GTM, NJMerge, and TreeMerge) within divide-and-conquer pipelines on 1000 species
using NJst starting trees and RAxML constraint trees. GTM and NJMerge are about even, with a modest advantage over TreeMerge. The value for n
indicates the number of replicates being compared, where all three methods completed. (NJMerge failed or timed out for 6 of the 10-gene
replicates). Error bars show standard error of the replicate average

NJMerge, and up to 10 minutes for TreeMerge). How-
ever, GTM takes under a second for all model conditions,
which represents an enormous speedup over the other
two methods.

Experiment 3: evaluating GTM-boosting
One way of describing these GTM pipelines is that they
are designed to improve (or “boost") the accuracy, speed,
and/or scalability of a selected species tree estimation
method used to compute constraint trees (which we refer
to as the “base method"). Here, we explore the impact of
“GTM-boosting" on ASTRAL and RAxML, two leading
species tree estimation methods.

Table 2 Average runtime (seconds) on 1000-species datasets
with high ILS, using NJst starting trees and ASTRAL constraint
trees

GTM NJMerge TreeMerge

10 Exons (n=20) 0.47 X 655
10 Introns (n=20) 0.55 X 524

25 Exons (n=20) 0.46 X 504

25 Introns (n=20) 0.46 X 509

1000 Exons (n=20) 0.47 1950 N/A

1000 Introns (n=20) 0.47 1879 N/A

The value for n is the number of replicates being compared, where both GTM and
TreeMerge finished. NJMerge and TreeMerge timings were unavailable for 1000
genes. NJMerge failed on all 10 and 25-gene high ILS replicates

Impact of GTM-boosting on ASTRAL
ASTRAL is the leading method for species tree estima-
tion when gene tree heterogeneity is the result of ILS,
and it is statistically consistent under the MSC. Here we
compare the NJst-ASTRAL-GTM pipeline (which is sta-
tistically consistent under the MSC) to ASTRAL, and also
to ASTRID and NJst, two other summary methods that
are also statistically consistent under the MSC.

Results for the intron datasets with high ILS (Fig. 6)
show this pipeline has the best accuracy of all methods
for 10 and 25 genes (with a large improvement especially
for the 10-gene datasets), and then all four methods have
essentially the same error rates on 1000 genes (with a

Table 3 Average runtimes (in seconds) on 1000-species datasets
with low ILS, using NJst starting trees and RAxML constraint trees

GTM NJMerge TreeMerge

10 Exons (n=2) 0.43 946 477

10 Introns (n=8) 0.42 732 446

25 Exons (n=9) 0.41 728 583

25 Introns (n=10) 0.43 685 543

1000 Exons (n=20) 0.43 2055 N/A

1000 Introns (n=20) 0.43 2010 N/A

The value for n is the number of replicates being compared, where all three
methods finished; NJMerge failed or timed out on the missing 10 and 25-gene low
ILS replicates. TreeMerge timings were unavailable for 1000 genes

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 10 of 17

Fig. 6 Experiment 3: Comparison of NJst-ASTRAL-GTM to ASTRAL, ASTRID, and NJst on 1000 species with high ILS. RAxML is omitted, since it was
only available for a few replicates of high ILS introns. GTM is more accurate than the other methods on small numbers of genes, and roughly
matches ASTRAL and ASTRID on 1000 genes. The value for n indicates the number of replicates where ASTRAL trees are available. The 1000-gene
ASTRAL trees were taken from [3]. Error bars indicate standard error of the replicate average

Fig. 7 Experiment 3: Comparison of NJst-ASTRAL-GTM to ASTRAL, ASTRID, and NJst on 1000 species with low ILS. The value for n indicates the
number of replicates where ASTRAL trees are available. The 1000-gene ASTRAL trees were taken from [3]. Error bars indicate standard error of the
replicate average

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 11 of 17

slight advantage to NJst-ASTRAL-GTM and ASTRAL).
Analyses on the same datasets and including RAxML
(shown in Additional file 3) reveal that RAxML is less
accurate than the summary methods for these high ILS
conditions.

Comparing the same set of summary methods under
low ILS conditions (Fig. 7) shows ASTRAL and NJst-
ASTRAL-GTM are essentially indistinguishable for accu-
racy and dominate the next best method, ASTRID, for all
numbers of genes. The difference between NJst-ASTRAL-
GTM and ASTRID is large for 10 genes and decreases for
larger numbers of genes. Also, ASTRID clearly dominates
NJst, with a large gap between the two methods for all
numbers of genes.

Next, we compare the running time for NJst-ASTRAL-
GTM and ASTRAL. Under high ILS conditions (see
Table 4), ASTRAL took 2.4 hours on 10 introns whereas
NJst-ASTRAL-GTM completed in 98 seconds, so that
ASTRAL uses almost two orders of magnitude more time
than NJst-ASTRAL-GTM. The magnitude of the reduc-
tion in running time decreased as the number of genes
increased, but was still large for 1000 genes (42.5 hours,
for ASTRAL and 2.2 hours for NJst-ASTRAL-GTM).
These are dramatic savings in running time.

The difference is less dramatic under low ILS condi-
tions, since ASTRAL runs much faster. Nevertheless, the
pipeline runs a bit more than twice as fast on 10 genes, a
bit less than twice as fast on 25, and about twice as fast on
1000 (Table 5).

Table 4 Comparison of average runtime (seconds) of
NJst-ASTRAL-GTM and ASTRAL for high ILS conditions with
introns on 1000 species

NJst-ASTRAL-GTM ASTRAL

10 Genes (n=18)
-Pre-GTM 97.4 n.a.
-ASTRAL n.a. 8,617.0
-GTM 0.4 n.a.
-Total 97.8 8,656.0

25 Genes (n=20)

-Pre-GTM 174.7 n.a.

-ASTRAL n.a. 5,441.4

-GTM 0.4 n.a.

-Total 175.1 5,539.4

1000 Genes (n=16)

-Pre-GTM 7,948.9 n.a.

-ASTRAL n.a. 149,145.9

-GTM 0.4 n.a.

-Total 7,949.3 153,045.9

The value for n is the number of replicates being compared (i.e., where ASTRAL
trees are available). Pre-GTM covers computing gene trees using FastTree, the NJst
starting tree, and ASTRAL subset trees; the gap between “total" and “ASTRAL" for the
right hand column reflects the time to compute gene trees using FastTree, which is
3.9 seconds per gene. Results for the 1000-gene ASTRAL trees are taken from the
NJMerge study [3]

Table 5 Comparison of average runtime (seconds) of
NJst-ASTRAL-GTM and ASTRAL for low ILS conditions with introns
on 1000 species

NJst-ASTRAL-GTM ASTRAL

10 Genes (n=20)

-Pre-GTM 59.1 n.a.

-ASTRAL n.a. 114.4

-GTM 0.4 n.a.

-Total 59.5 153.4

25 Genes (n=20)

-Pre-GTM 120.9 n.a.

-ASTRAL n.a. 101.3

-GTM 0.4 n.a.

-Total 121.3 199.3

1000 Genes (n=19)

-Pre-GTM 4,308.4 n.a.

-ASTRAL n.a. 4,894.4

-GTM 0.4 n.a.

-Total 4,308.8 8,794.4

The value for n is the number of replicates being compared (i.e., where ASTRAL
trees are available). Pre-GTM covers computing gene trees using FastTree, the NJst
starting tree, and ASTRAL subset trees; the gap between “total" and “ASTRAL" for the
right hand column reflects the time to compute gene trees using FastTree, which is
3.9 seconds per gene. Results for the 1000-gene ASTRAL trees are taken from the
NJMerge study [3]

Impact of GTM-boosting on RAxML
Concatenated analysis using maximum likelihood is one
of the major approaches to species tree estimation.
RAxML is considered by many to be the leading ML
heuristic, and outperforms FastTree, a fast but less accu-
rate maximum likelihood heuristic, with respect to max-
imum likelihood scores. However, FastTree can run on
very large datasets, and can (in some conditions) match
the topological accuracy of RAxML [27].

Here we address the potential for scaling RAxML to
large datasets through the use of a divide-and-conquer
pipeline using GTM. As we noted earlier, FastTree-
RAxML-GTM has higher accuracy than NJst-RAxML-
GTM but cannot complete (within the 4 hour time limit)
on the 1000-gene datasets, and for this reason we also
include NJst-RAxML-GTM. We compare these two ver-
sions of GTM-boosting to RAxML and FastTree, under
both low and high ILS conditions.

When restricted to the datasets where FastTree
completes, we see the following trends. Under low
ILS, FastTree-RAxML-GTM provides substantially better
accuracy than NJst-RAxML-GTM and is nearly identi-
cal to RAxML, although it is slightly worse than FastTree
by itself (Fig. 8). Under high ILS, FastTree-RAxML-GTM
and NJst-RAxML-GTM are indistinguishable for accu-
racy, and both are somewhat more accurate than RAxML

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 12 of 17

Fig. 8 Experiment 3: Comparison of FastTree-RAxML-GTM and NJst-RAxML-GTM to RAxML and FastTree on 1000-species datasets with low ILS exons.
The value for n is the number of replicates on which RAxML completed; missing replicates indicate RAxML exceeding runtime limits on 10 and 25
genes (the 1000-gene RAxML trees are taken from [3]). FastTree was not used for 1000 genes. Error bars show standard error of the replicate average

and less accurate than FastTree (Fig. 9). The very good
accuracy of FastTree in comparison to RAxML is note-
worthy, especially since RAxML is established to be a
better maximum likelihood heuristic than FastTree. How-
ever, due to computational limitations in this study, we ran
RAxML with only one random starting condition, instead
of running it with a larger number (e.g., 10 or 20) of ran-
dom starting conditions and then selecting the tree with
the best ML score. This choice may have reduced the
accuracy of RAxML relative to FastTree.

We now discuss the running time comparisons between
RAxML and the two GTM pipelines that use RAxML to
compute constraint trees. RAxML often failed to com-
plete within the allowed time limit (4 hours) on many
10- and 25-gene datasets. Results reported on the 1000-
gene datasets were obtained in [3], where RAxML was
allowed to run for 48 hours, and the best found tree
was returned. However, even on the 10-gene and 25-
gene datasets there are noteworthy differences, which we
now discuss. FastTree-RAxML-GTM and NJst-RAxML-
GTM completed on all the 10- and 25-gene datasets but
RAxML completed on only 15/80 25-gene datasets and
55/80 10-gene datasets (Additional file 4).

When restricted to those datasets where RAxML com-
pleted within 4 hours, RAxML used (on average) between
2 and 3 hours, depending on the model condition (with
more time needed for the high ILS datasets with 25 genes).

In comparison, the average running time on these datasets
for the two GTM pipelines were much smaller: at most
27 minutes for NJst-RAxML-GTM and at most 36 min-
utes for FastTree-RAxML-GTM (e.g., see Table 6). Thus,
NJst-RAxML-GTM is the fastest, followed (fairly closely)
by FastTree-RAxML-GTM, and both are much faster than
RAxML. However, because FastTree cannot run on the
1000-gene datasets, NJst-RAxML-GTM is the only scal-
able GTM pipeline that uses RAxML on subsets.

Discussion
The datasets generated for this study each have 1000
species but otherwise vary in terms of number of genes
(10, 25, and 1000), ILS level (low and high), and type of
gene (exon or intron). Thus, the model conditions provide
a range of conditions that include many of the conditions
observed in species tree estimation for large numbers of
species. That said, the observations made in this study
are limited to these conditions, and other conditions may
show other trends.

The first overall observation we make is that GTM is
comparable in accuracy to TreeMerge and NJMerge (but
is much faster). We expected to see an improvement in
running time over NJMerge, which is not designed to
be very fast, but we did not expect to necessarily see
an improvement in running time over TreeMerge, and
the degree of improvement was larger than we might

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 13 of 17

Fig. 9 Experiment 3: Comparison of FastTree-RAxML-GTM and NJst-RAxML-GTM to RAxML and FastTree on 1000-species datasets with high ILS exons.
The value for n is the number of replicates on which RAxML completed; missing replicates indicate RAxML exceeding runtime limits on 10 and 25
genes (the 1000-gene RAxML trees are taken from [3]). FastTree was not used for 1000 genes. Error bars show standard error of the replicate average

have expected. The observation that GTM is typically
comparable in accuracy to TreeMerge and NJMerge is sur-
prising because GTM cannot blend, while TreeMerge and
NJMerge can.

We focus on the comparison between TreeMerge and
GTM, since NJMerge failed on many datasets in our
experiment. There are some conditions where GTM is
slightly more accurate than TreeMerge and some other
conditions where GTM is slightly less accurate than
TreeMerge, and these conditions have different proper-
ties. Specifically, there can be a small advantage to GTM
when the starting tree is not too poor (at most 60% RF
error) and a small advantage to TreeMerge when the start-
ing tree has very poor accuracy (i.e., on the 10-gene high
ILS datasets, where the ASTRAL starting trees had 64–
65% RF error rates, see Fig. 3 and Additional file 3). Thus,
the accuracy of the starting tree has an impact on the rel-
ative accuracy of GTM and TreeMerge. We expected to
see GTM degrade in accuracy with poor starting trees
(which is why we included conditions where poor starting
trees were computed), and so this part is not surpris-
ing. However, what is surprising is that GTM matches the
accuracy of TreeMerge even with fairly mediocre starting
trees, including ones where the starting tree has 50–60%
RF error. Overall, our study shows that the limitation of
not being able to blend subset trees was not a significant
problem for GTM, under the conditions we explored.

The next observations have to do with the impact of
“GTM-boosting" on the method used to compute con-
straint trees (i.e., the “base method"). Our study shows
that GTM-boosting provides substantial improvements in
speed for all tested model conditions and generally main-
tained (and sometimes even improved) accuracy over the
base method. The improvement in running time obtained
by GTM-boosting was expected, as previous divide-and-
conquer approaches have shown similar trends [28, 29].

The improvement in accuracy seen in NJst-ASTRAL-
GTM over ASTRAL and NJst-RAxML-GTM or FastTree-
RAxML-GTM over RAxML are surprising, and worth
trying to understand.

The conditions in which NJst-RAxML-GTM or
FastTree-RAxML-GTM were more accurate than
RAxML were cases with 25 genes, where they produced
very slightly better results; for other numbers of genes,
RAxML was more accurate. Somewhat similar trends
were observed in [3] when NJMerge was used with
RAxML in the same pipeline as we used here and found
to produce somewhat more accurate trees than RAxML.
The explanation offered in [3] was that NJmerge+RAxML
is a combination of a coalescent-based species tree esti-
mation method (the starting tree) and concatenation
analysis method (the constraint trees), and the combina-
tion allows it to be more accurate than a method that is
purely concatenation-based. In our study, this advantage

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 14 of 17

Table 6 Average runtime (seconds) of FastTree-RAxML-GTM
(GTM(RAxML)) and RAxML on 1000-species exon datasets

GTM(RAxML) RAxML

Low ILS 10 Genes (n=19)

-FastTree 279.6 n.a.

-RAxML subtrees 831.3 n.a.

-GTM 0.4 n.a.

-Total 1,111.3 7,313.7

Low ILS 25 Genes (n=10)

-FastTree 686.3 n.a.

-RAxML subtrees 1,460.6 n.a.

-GTM 0.4 n.a.

-Total 2,147.3 10,539.4

High ILS 10 Genes (n=12)

-FastTree 283.7 n.a.

-RAxML subtrees 637.5 n.a.

-GTM 0.4 n.a.

-Total 921.6 10,135.6

High ILS 25 Genes (n=20)

-FastTree 731.5 n.a.

-RAxML subtrees 1363.1 n.a.

-GTM 0.4 n.a.

-Total 2,095 n.a.

The value for n is the number of replicates being compared, i.e., where a RAxML tree
is available

does not hold for the smaller numbers of genes, where
NJst-RAxML-GTM is much less accurate than RAxML
for 10 genes under the low ILS condition. Our expla-
nation for why NJst-RAxML-GTM is substantially less
accurate than RAxML for 10-gene low ILS datasets is that
the NJst starting tree has high error (Additional file 3).
This is consistent with the observations that FastTree-
RAxML-GTM is close to RAxML for accuracy on low ILS
conditions, even with 10 genes, and the FastTree starting
tree also has high accuracy. Thus, as we have seen, the
starting tree has an impact on accuracy, and the choice of
starting tree should reflect the level of ILS.

The conditions in which NJst-ASTRAL-GTM was more
accurate than ASTRAL occur for the high ILS model
conditions with ten genes. Frankly, this improvement in
accuracy is surprising and was not expected. However,
Fig. 3 and Additional file 3) provide some insight. The dif-
ference in tree error for ASTRAL on the full dataset (i.e.,
as the starting tree) and on the subsets (i.e., as the con-
straint tree method) are dramatic for both introns and
exons. For example, ASTRAL had average 64% RF error
on 10 introns but the average ASTRAL constraint tree
error was only 39% error—a large drop in error rate. In
other words, ASTRAL was more accurate on the smaller

subsets (each with at most 120 species) than it was with
the full dataset (with 1000 species). One possible expla-
nation for this trend is that when the number of genes is
very small, the constrained search strategy employed by
ASTRAL works better with a smaller number of species.

GTM using appropriate constraint tree methods (i.e.,
ASTRAL for high ILS and RAxML for low ILS) nearly
always improved on the starting tree, often substantially.
The only exceptions to this rule are the low ILS condi-
tions with 10 or 25 genes where the best starting trees had
very low error (Fig. 4, and also figures in Additional file 3).
Even for these cases, using GTM matched the starting tree
accuracy except for one model condition (25 low ILS exon
datasets) where it produced a tree with 1% higher error
(Additional file 3). In contrast, the other DTMs reduced
accuracy compared to these highly accurate starting trees.

Our study also showed that GTM divide-and-conquer
pipelines reduce the running time and enable expen-
sive base methods (here, RAxML and ASTRAL) to be
applied to large datasets. The improvement in running
time is most noticeable for the high ILS conditions, where
ASTRAL and RAxML require more time. Furthermore,
for all numbers of genes and ILS conditions, the vast
majority of the time used within a GTM pipeline is the
pre-GTM component (which computes the gene trees, the
starting tree, and the subset trees); in contrast, the GTM
part used approximately half a second, even on 1000 genes
and 1000 species.

A basic question that is relevant to GTM divide-and-
conquer pipelines is the sensitivity of the approach to the
algorithmic parameters, including the starting tree (which
is also used as the guide tree), the method used to compute
constraint trees, and even the decomposition strategy.
Our study shows that the starting tree and the constraint
tree method both have an impact on the accuracy of the
final tree. For example, we noted that FastTree-RAxML-
GTM is more accurate than NJst-RAxML-GTM on low
ILS datasets (reflecting the improved accuracy of FastTree
for low ILS conditions), and that NJst-ASTRAL-GTM
is more accurate than NJst-RAxML-GTM on high ILS
datasets (reflecting the improved accuracy of ASTRAL as
a constraint tree method for high ILS conditions). How-
ever, we did not evaluate changes to the decomposition
strategy (e.g., changing the subset size or which edges
we delete) nor did we examine the potential impact of
allowing the guide tree to be different from the starting
tree.

One obvious case where the starting tree and guide tree
could be different is where GTM is used within an iterative
strategy, where each iteration uses the tree computed dur-
ing the previous iteration for the starting tree, divides into
subsets, constructs trees on the subsets, and then merges
the constraint trees using a fixed guide tree. In such a sce-
nario, the guide tree is fixed but the “starting tree" (which

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 15 of 17

is only used to compute the decomposition) can change in
each iteration. In this context the guide tree only impacts
the merger step and not also the decomposition strategy,
and the impact of the guide tree (when it is used with a
good starting tree) is an interesting question. For exam-
ple, if the decomposition is based on the true tree and the
constraint trees are the true tree on the subsets, then how
much can a bad guide tree impact the outcome? A sim-
ple thought experiment, based on only dividing into two
subsets, reveals that the impact may not be minor. For
example, consider the case where the true tree is a cater-
pillar tree with n leaves (i.e., a path of length n−3 with the
leaves hanging off the path) and the division is into two
subsets. Given a random guide tree, GTM would com-
bine the two trees by subdividing a random edge in each
of the two constraint trees (thus creating two nodes, v1
and v2), and attaching the two trees by adding a new edge
between v1 and v2. Note that such a randomly merged tree
would have high error, even though the constraint trees
and the starting tree are completely accurate. Thus, a ran-
dom guide tree can result in high error, though the degree
of error will depend on the topology of the true tree, the
decomposition strategy (and in particular the number of
subsets), and the error in the constraint trees.

Summary and conclusions
Divide-and-conquer phylogeny estimation using Disjoint
Tree Merger (DTM) is a recently developed approach
to large-scale tree estimation that has been shown
to improve speed while maintaining (and in some
cases improving) accuracy for large-scale phylogenomic
datasets, and maintaining statistical consistency under
the MSC+GTR model. Here, we proposed the DTM-GT
problem, which seeks a compatibility tree that is as close
as possible to an input “guide tree". We proved that DTM-
GT is NP-hard, and presented GTM, which solves the
problem exactly and in polynomial time if blending is not
allowed. Our experimental study showed that GTM gen-
erally matches or improves on the accuracy of two prior
DTM methods, TreeMerge and NJMerge, while being
much faster. Therefore, although GTM has the vulnera-
bility of being unable to blend (a limitation that neither
TreeMerge nor NJMerge have), this vulnerability had lim-
ited impact in this study.

Importantly, GTM-boosting improved the accuracy and
speed of ASTRAL, a leading method for species tree
estimation that addresses gene tree heterogeneity due to
incomplete lineage sorting. GTM-boosting also improved
the speed for RAxML, the leading heuristic for concate-
nated maximum likelihood, while coming very close to it
in accuracy (and sometimes being even more accurate)
when used with FastTree as the starting tree. Thus, GTM-
boosting provides substantial advances for multi-locus
species tree estimation on large numbers of species.

Our study reveals the surprising potential of unblended
DTM methods, and suggests many directions for future
research. For example, GTM is just the first unblended
DTM, and it seems likely that other unblended DTMs
might be more accurate. Since GTM is impacted by its
guide tree, unblended DTMs that are not based on guide
trees might be more accurate.

GTM itself could be modified to allow for blended
merging, with potential improvement in accuracy. For
example, the refinement step in GTM where the collapsed
tree is refined to separate the constraint sets is very sim-
ple, and is performed to ensure an unblended merger.
However, if blending were permitted, then other ways of
refining the tree could be considered (provided that they
do not produce trees that violate the constraint trees).
Polytomy refinement is a natural problem in phylogenetics
(e.g., [30]), and has also been specifically discussed in the
context of gene tree correction given a species tree; see, for
example, [31] (and references therein) for a discussion of
refinement techniques that address ILS and [32] (and ref-
erences therein) for polytomy refinement techniques that
address gene duplication and loss.

DTM methods (blended or unblended) can also be used
for other phylogeny estimation problems where the most
accurate base methods are computationally intensive. For
example, DTMs could also be used with Bayesian meth-
ods to co-estimate gene trees and species trees [33] or for
“genome rearrangement phylogeny", which takes chromo-
somal rearrangements, duplications, and other events that
change the chromosomal architecture into account.

Furthermore, a parallel implementation of the divide-
and-conquer pipeline could have high impact. As our
study showed, the most expensive part of these divide-
and-conquer pipelines is the computation of the con-
straint trees. With sufficient parallelism, these analyses
could become very fast, and each iteration could com-
plete quickly, leading potentially to the ability to compute
species trees on ultra-large datasets (with thousands of
genes and species) within a few hours.

Finally, we note that there are cases where an ade-
quately accurate starting tree cannot be estimated using
currently available fast methods. Examples of such sit-
uations include the challenge of estimating a tree from
ultra-large datasets of unaligned sequences where align-
ment estimation is difficult due to sequence heterogeneity
and size; this challenge is exacerbated when the datasets
include fragmentary sequences, which are not only dif-
ficult to align but can reduce accuracy for tree estima-
tion [34, 35]. For such data, standard two-phase meth-
ods that first compute an alignment and then compute
a tree do not have acceptable accuracy, while PASTA
[16], BAli-Phy [36], and other co-estimation methods
are not fast. It is possible that alignment-free methods
(see [37–39] for an entry into this topic) might provide

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 16 of 17

good starting trees, but these have not been tested on
ultra-large datasets (with thousands of species), and have
instead mainly been focused on genome-scale analyses of
tens of genomes. However, for any large dataset on which
the starting trees cannot be reasonably accurately esti-
mated quickly, blended DTM divide-and-conquer strate-
gies may provide the best accuracy. Thus, future work
into developing new DTMs, both blended or unblended, is
merited.

We close with some comments about the implications
of this study for large-scale phylogenomic analysis. As
shown in this study, the choice of method for species
tree estimation depends on the level of ILS and even
the number of genes. The results for low ILS datasets
suggest that maximum likelihood heuristics, such as Fast-
Tree and RAxML, or using GTM-boosting with fast
ML heuristics for the starting tree and more accurate
ML heuristics for constraint trees, may be advanta-
geous. Of interest is the relative performance of RAxML
and FastTree (which favored FastTree in our experi-
ments), but we note that RAxML was not run so as to
obtain the best accuracy, and so further study is needed.
Results for high ILS datasets are more definitive: GTM-
boosting, using NJst as the starting tree and ASTRAL
for constraint trees, matched or improved on ASTRAL
for all model conditions and numbers of genes, and
was always faster. Thus, for high ILS conditions, GTM-
boosting provides a distinct advantage for both accuracy
and time.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12864-020-6605-1.

Additional file 1: Codes used in the performance study. This document
provides the commands used to perform the simulation study.

Additional file 2: Additional proofs. This document provides proofs of
Theorems 1–3.

Additional file 3: Additional figures. This document provides additional
figures for the performance study.

Additional file 4: Additional tables. This document provides additional
tables for the performance study.

Acknowledgements
The authors thank Sarah Christensen, Erin Molloy, Pranjal Vachaspati, and Xilin
Yu for helpful comments.

About this supplement
This article has been published as part of BMC Genomics Volume 21 Supplement
2, 2020: Proceedings of the 17th Annual Research in Computational Molecular
Biology (RECOMB) Comparative Genomics Satellite Workshop: genomics. The full
contents of the supplement are available online at https://bmcgenomics.
biomedcentral.com/articles/supplements/volume-21-supplement-2

Authors’ contributions
TW directed the research. VL designed and implemented the algorithm,
performed the experimental study, and created the figures. VL and TW proved
the theorems and wrote the paper. All authors read and approved the final
manuscript.

Funding
This research was supported by NSF grants 1513629 and 1535977 to TW.
Publication costs are funded by NSF grant 1535977.

Availability of data and materials
Datasets used can be found at https://databank.illinois.edu/datasets/IDB-
3204101 and https://databank.illinois.edu/datasets/IDB-1424746. GTM
software available at https://github.com/vlasmirnov/GTM.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Published: 16 April 2020

References
1. Warnow T. Divide-and-conquer tree estimation: Opportunities and

challenges. In: Warnow T, editor. Bioinformatics and Phylogenetics:
Seminal Contributions of Bernard Moret. Cham: Springer; 2019. p. 121–50.

2. Molloy EK, Warnow T. NJMerge: A Generic Technique for Scaling
Phylogeny Estimation Methods and Its Application to Species Trees. In:
Blanchette M, Ouangraoua A, editors. Comparative Genomics.
RECOMB-CG 2018. Lecture Notes in Computer Science vol. 11183. Cham:
Springer; 2018. https://doi.org/10.1007/978-3-030-00834-5_15.

3. Molloy EK, Warnow T. Statistically consistent divide-and-conquer
pipelines for phylogeny estimation using NJMerge. Algoritm Mol Biol.
2019;14(1):14. https://doi.org/10.1186/s13015-019-0151-x.

4. Molloy EK, Warnow T. TreeMerge: A new method for improving the
scalability of species tree estimation methods. Bioinformatics. 2019.
Special issue for ISMB 2019, https://doi.org/10.1093/bioinformatics/
btz344.

5. Zhang Q, Rao S, Warnow T. Constrained incremental tree building: new
absolute fast converging phylogeny estimation methods with improved
scalability and accuracy. Algoritm Mol Biol. 2019;14(1):2.

6. Le T, Sy A, Molloy EK, Zhang QR, Rao S, Warnow T. Using inc within
divide-and-conquer phylogeny estimation. In: International Conference
on Algorithms for Computational Biology. Springer; 2019. p. 167–78.
https://doi.org/10.1007/978-3-030-18174-1_12.

7. Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T.
ASTRAL: genome-scale coalescent-based species tree estimation.
Bioinformatics. 2014;30(17):541–8. https://doi.org/10.1093/
bioinformatics/btu462.

8. Mirarab S, Warnow T. ASTRAL-II: coalescent-based species tree estimation
with many hundreds of taxa and thousands of genes. Bioinformatics.
2015;31(12):44–52. https://doi.org/10.1093/bioinformatics/btv234.

9. Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time
species tree reconstruction from partially resolved gene trees. BMC
Bioinformatics. 2018;19(6):153. https://doi.org/10.1186/s12859-018-2129-
y.

10. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic
analyses with thousands of taxa and mixed models,. Bioinformatics.
2006;22(21):2688–90.

11. Maddison WP. Gene trees in species trees. Syst Biol. 1997;46(3):523–36.
https://doi.org/10.1093/sysbio/46.3.523.

12. Saitou N, Nei M. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.
https://doi.org/10.1093/oxfordjournals.molbev.a040454.

13. Liu L, Yu L. Estimating Species Trees from Unrooted Gene Trees. Syst Biol.
2011;60(5):661–7. https://doi.org/10.1093/sysbio/syr027.

14. Liu K, Warnow TJ, Holder MT, Nelesen SM, Yu J, Stamatakis AP, Linder
CR. SATe-II: very fast and accurate simultaneous estimation of multiple
sequence alignments and phylogenetic trees. Syst Biol. 2011;61(1):90.

15. Mirarab S, Nguyen N, Warnow T. PASTA: ultra-large multiple sequence
alignment. In: International Conference on Research in Computational

https://doi.org/10.1186/s12864-020-6605-1
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-2
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-2
https://databank.illinois.edu/datasets/IDB-3204101
https://databank.illinois.edu/datasets/IDB-3204101
https://databank.illinois.edu/datasets/IDB-1424746
https://github.com/vlasmirnov/GTM
https://doi.org/10.1007/978-3-030-00834-5_15
https://doi.org/10.1186/s13015-019-0151-x
https://doi.org/10.1093/bioinformatics/btz344
https://doi.org/10.1093/bioinformatics/btz344
https://doi.org/10.1007/978-3-030-18174-1_12
https://doi.org/10.1093/bioinformatics/btu462
https://doi.org/10.1093/bioinformatics/btu462
https://doi.org/10.1093/bioinformatics/btv234
https://doi.org/10.1186/s12859-018-2129-y
https://doi.org/10.1186/s12859-018-2129-y
https://doi.org/10.1093/sysbio/46.3.523
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/sysbio/syr027

Smirnov and Warnow BMC Genomics 2020, 21(Suppl 2):235 Page 17 of 17

Molecular Biology (RECOMB). Springer; 2014. p. 177–91. https://doi.org/
10.1007/978-3-319-05269-4_15.

16. Mirarab S, Nguyen N, Guo S, Wang L-S, Kim J, Warnow T. PASTA:
ultra-large multiple sequence alignment for nucleotide and amino-acid
sequences. J Comput Biol. 2015;22(5):377–86.

17. Nelesen S, Liu K, Wang L-S, Linder CR, Warnow T. DACTAL:
divide-and-conquer trees (almost) without alignments. Bioinf.
2012;28(12):274–82. https://doi.org/10.1093/bioinformatics/bts218.

18. Maddison WP. Gene Trees in Species Trees. Syst Biol. 1997;46(3):523–36.
https://doi.org/10.1093/sysbio/46.3.523.

19. Tavaré S. Some probabilistic and statistical problems in the analysis of
DNA sequences. In: Lectures on Mathematics in the Life Sciences vol 17.
Providence, RI: American Mathematical Society; 1986. p. 57–86.

20. Price MN, Dehal PS, Arkin AP. FastTree 2 - Approximately
Maximum-Likelihood Trees for Large Alignments. PLOS ONE. 2010;5(3):
1–10. https://doi.org/10.1371/journal.pone.0009490.

21. Roch S, Steel MA. Likelihood-based tree reconstruction on a
concatenation of aligned sequence data sets can be statistically
inconsistent. Theor Popul Biol. 2015;100:56–62.

22. Roch S, Nute M, Warnow T. Long-Branch Attraction in Species Tree
Estimation: Inconsistency of Partitioned Likelihood and Topology-Based
Summary Methods. Syst Biol. 2018;68(2):281–97. https://doi.org/10.1093/
sysbio/syy061.

23. Robinson D, Foulds L. Comparison of phylogenetic trees. Math Biosci.
1981;53(1-2):131–47.

24. Vachaspati P, Warnow T. ASTRID: Accurate Species TRees from Internode
Distances. BMC Genomics. 2015;16(10):3. https://doi.org/10.1186/1471-
2164-16-S10-S3.

25. Warnow T, et al. Illinois Data Bank repository for the Warnow Laboratory
at the University of Illinois. 2019. https://databank.illinois.edu/datasets?
sort_by=sort_updated_desc&q=Warnow&per_page=25. Last Accessed
15 Aug 2019.

26. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately
maximum-likelihood trees for large alignments. PloS one. 2010;5(3):9490.

27. Liu K, Linder CR, Warnow T. RAxML and FastTree: comparing two
methods for large-scale maximum likelihood phylogeny estimation. PLoS
ONE. 2012;6(11):27731.

28. Bayzid MS, Hunt T, Warnow T. Disk-Covering Methods Improve
Phylogenomic Analyses. BMC Genomics. 2014;15(Suppl 6):7. Proceedings
of RECOMB-CG (Comparative Genomics).

29. Nelesen S, Liu K, Wang L-S, Linder CR, Warnow T. DACTAL:
divide-and-conquer trees (almost) without alignments. Bioinformatics.
2012;28(12):274–82.

30. Bonet M, Steel M, Warnow T, Yooseph S. Better methods for solving
parsimony and compatibility. J Comput Biol. 1998;5(3):391–407.

31. Nakhleh L. Computational approaches to species phylogeny inference
and gene tree reconciliation. Trends Ecol Evol. 2013;28(12):719–28.

32. Lafond M, Chauve C, Dondi R, El-Mabrouk N. Polytomy refinement for
the correction of dubious duplications in gene trees. Bioinformatics.
2014;30(17):519–26.

33. Boussau B, Szöllősi GJ, Duret L, Gouy M, Tannier E, Daubin V.
Genome-scale coestimation of species and gene trees. Genome Res.
2013;23(2):323–30.

34. Nguyen N, Mirarab S, Kumar K, Warnow T. Ultra-large alignments using
phylogeny-aware profiles. Genome Biol. 2015;16(1):124.

35. Sayyari E, Whitfield JB, Mirarab S. Fragmentary gene sequences
negatively impact gene tree and species tree reconstruction. Mol Biol
Evol. 2017;34(12):3279–91.

36. Suchard MA, Redelings BD. BAli-Phy: simultaneous Bayesian inference of
alignment and phylogeny. Bioinformatics. 2006;22(16):2047–8.

37. Criscuolo A. A fast alignment-free bioinformatics procedure to infer
accurate distance-based phylogenetic trees from genome assemblies.
Res Ideas Outcomes. 2019;5:36178.

38. Thankachan SV, Chockalingam SP, Liu Y, Krishnan A, Aluru S. A greedy
alignment-free distance estimator for phylogenetic inference.
BMC Bioinformatics. 2017;18(8):238. https://doi.org/10.1186/s12859-017-
1658-0.

39. Zielezinski A, Girgis HZ, Bernard G, Leimeister C-A, Tang K, Dencker T,
Lau AK, Röhling S, Choi J, Waterman MS, et al. Benchmarking of
alignment-free sequence comparison methods. BioRxiv. 2019611137.
https://doi.org/10.1101/611137.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1007/978-3-319-05269-4_15
https://doi.org/10.1007/978-3-319-05269-4_15
https://doi.org/10.1093/bioinformatics/bts218
https://doi.org/10.1093/sysbio/46.3.523
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1093/sysbio/syy061
https://doi.org/10.1093/sysbio/syy061
https://doi.org/10.1186/1471-2164-16-S10-S3
https://doi.org/10.1186/1471-2164-16-S10-S3
https://databank.illinois.edu/datasets?sort_by=sort_updated_desc&q=Warnow&per_page=25
https://databank.illinois.edu/datasets?sort_by=sort_updated_desc&q=Warnow&per_page=25
https://doi.org/10.1186/s12859-017-1658-0
https://doi.org/10.1186/s12859-017-1658-0
https://doi.org/10.1101/611137

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	The DTM-GT optimization problem
	The GTM method
	Divide-and-conquer pipelines for DTMs
	Experimental study
	Overview
	External methods
	Datasets
	Experiments and computational resources

	Results
	Experiment 1: designing the DTM pipelines
	Experiment 2: comparing DTM methods
	Experiment 3: evaluating GTM-boosting
	Impact of GTM-boosting on ASTRAL
	Impact of GTM-boosting on RAxML

	Discussion
	Summary and conclusions
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12864-020-6605-1.
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4

	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

