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Abstract

Background: To account for genome-wide discordance among gene trees, several widely-used methods seek to
find a species tree with the minimum distance to input gene trees. To efficiently explore the large space of species
trees, some of these methods, including ASTRAL, use dynamic programming (DP). The DP paradigm can restrict the
search space, and thus, ASTRAL and similar methods use heuristic methods to define a restricted search space.
However, arbitrary constraints provided by the user on the output tree cannot be trivially incorporated into such
restrictions. The ability to infer trees that honor user-defined constraints is needed for many phylogenetic analyses,
but no solution currently exists for constraining the output of ASTRAL.

Results: We introduce methods that enable the ASTRAL dynamic programming to infer constrained trees in an
effective and scalable manner. To do so, we adopt a recently developed tree completion algorithm and extend it to
allow multifurcating input and output trees. In simulation studies, we show that the approach for honoring
constraints is both effective and fast. On real data, we show that constrained searches can help interrogate branches
not recovered in the optimal ASTRAL tree to reveal support for alternative hypotheses.

Conclusions: The new algorithm is added ASTRAL to all user-provided constraints on the species tree.

Keywords: ASTRAL, Constrained tree search, Tree completion, RF distance

Background
Phylogeny inference requires solving an optimization
problem over the space of all trees. The super-exponential
growth of the tree topology space makes examining all
trees impossible, even for moderately large datasets. As
a result, tree inference algorithms have adopted sev-
eral heuristics strategies, including iterative search (e.g.,
hill-climbing), used by most maximum parsimony and
maximum likelihood methods.

An increasingly popular alternative is searching the
tree space using dynamic programming (DP). For an
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optimization score of interest, we need a recursion for-
mulating how the optimal tree on a subset of leaves (or
similar constructs) can be computed from the optimal
trees on smaller subsets. With a recursive equation, DP
can be used to compute the optimal solution in the classic
fashion, typically implemented using memoization. Since
the powerset grows exponentially with the set cardinal-
ity, this DP requires exponential running time. However, a
restricted version of DP can be designed where each set is
divided into only some of its subsets; the restricted DP can
have polynomial running time with respect to the number
of the leaves.

Phylogenetic inference using this particular DP
approach has been known at least as early as 1996 [1] and
has been used for many optimization criteria, including
duplication and loss [2–4], deep coalescence [5], Robinson
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Foulds (RF) distance [6], quartet score [7, 8], and others
[9]. Among these, ASTRAL [8], which estimates a species
tree from a set of gene trees by minimizing the quartet
distance, has found increasing popularity [10]. DP is
mostly used for problems where the input is a set of
trees, and the output is a tree with the minimum total
distance to the input trees. The popularity of DP for
these problems is because the input set of trees create
natural ways for restricting the space explored by DP. For
example, the set of bipartitions observed in input trees
can be used as the restriction set. In addition, ASTRAL
has introduced heuristics to enrich the set of allowable
bipartitions [11] while keeping the size of the search space
polynomial [12].

The restrictions imposed on DP are not to be confused
with the related concept of user-imposed constrained
inference (we use “restricted” DP instead of “constrained”
used in previous publications to avoid confusion). System-
atists often would like to infer the best possible tree among
trees that are compatible with a constraint tree of their
choice, thereby completing and resolving the constraint
tree. Constrained tree inference is needed for hypothesis-
driven analyses that aim to choose the best among a
set of hypotheses available by prior knowledge [13–16].
Constrained searches can help in model selection, test-
ing whether a polytomy [17] or the monophyly of a group
[18] can be rejected. Similarly, they can help gauge the
“hidden” support for branches not recovered in the main
analysis. Moreover, constrained searches have been suc-
cessfully used to combine the results of multiple methods
[19]. More recently, constrained trees were used in taxo-
nomic profiling [20]. Finally, constrained searches enable
updating existing trees without recomputing trees from
scratch. For these reasons, most phylogenetic inference
tools allow user-provided constraints.

To our knowledge, the DP paradigm has not been
adopted to perform tree search with user-defined con-
straints. Performing constrained searches in the DP
paradigm may appear easy: one needs to make sure
the restricted set of bipartitions explored by DP are
consistent with the constraints. As we show, there are
roadblocks when the user-provided input is allowed to
be arbitrary. The challenge is to find a large-enough
search space that satisfies the user-provided constraints.
Here, building on two recent advances [21, 22], we
propose a solution to this challenge. We implement
our solution inside the ASTRAL software for species
tree inference, thereby enabling it to perform con-
strained searches for the first time. In extensive tests,
we show that the constrained searches remain as accu-
rate as unconstrained searches while reducing the running
time, can improve accuracy in the presence of external
knowledge about individual relationships, and can reveal
hidden support.

Method
Our goal is to extend ASTRAL so that it can honor a user-
provided constraint tree. We start by reviewing ASTRAL
and the RF(+) algorithm that we will use.

Notations We are given a set of k potentially multifurcat-
ing input trees T on subsets of a leafset L of size n and a
potentially multifurcating constraint tree, T̄ on a subset of
L. Let l(t) or l(u) be the set of leaves of a tree t or leaves
below a node u. We use s(u) to denote sister(s) of u; i.e.,
the set of all nodes sharing a parent with u. Let L′ = L\{o}
where o ∈ L is a fixed arbitrarily chosen species. Denote
A ⊂ L′ as a cluster. Each edge in an unrooted tree cor-
responds to a bipartition of leaves, which corresponds to
a cluster (the side missing o). A cluster A (i.e. the biparti-
tion A|L \ A) is called compatible with a tree T iff a tree
exists that includes the bipartition and induces a resolu-
tion of T when restricted to same leaves as T. Two clusters
are compatible iff they can be in the same tree [23].

Background: tree completion
Completing a tree based on a reference tree is a well-
studied problem and is often formulated as minimizing
the distance to the reference tree while maintaining com-
patibility with the original tree [4, 21, 22, 24]. A natural
objective is to find a complete tree with the minimum
RF distance (i.e., the total number of bipartitions that
differ between the two trees) to the reference tree [25].
OCTAL was the first quadratic time solution to this RF
completion problem [21]. Bansal later introduced a lin-
ear time solution [22], which we call B-RF(+) algorithm.
Both methods take as input an incomplete backbone tree,
Tb, and a complete and binary reference tree, Tr , and
output a binary and complete tree compatible with Tb
such that the RF distance to Tr is minimized among all
allowable trees.

The B-RF(+) algorithm [22] achieves linear time using
constant time least-common-ancestor (LCA) lookups
made possible after a linear time preprocessing using the
Schieber–Vishkin technique [26]. Both trees are rooted on
an arbitrary shared leaf. For every fully-missing node u of
Tr (i.e., ∀u : l(u) ∩ l(Tb) = ∅), the subtree below u is
added intact as the sister to the LCA of l(s(u)) inside Tb
(Fig. 1). This placement of the subtree below u preserves
all its bipartitions, the bipartition above it, and potentially
the bipartition above the parent of u (we will come back
to this point). The order of additions to Tb is determined
by a pre-order traversal of Tr , adding each fully-missing
node u when we visit the parent node of u. Note that the
topology of the backbone tree will not change by the addi-
tion of new subtrees. Bansal proved that this algorithm
minimizes the RF distances between Tr and any possible
binary tree that is compatible with Tb.
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Fig. 1 Updates need for the tree completion algorithm. T 1
b and T 2

b are both completed based on Tr , generating either a binary tree or a
multifurcating tree. In case 1 (T 1

b ), subtree under u should be added as sister to sb to minimize RF; the highlighted green branch matches Tr , but
creating a polytomy would result in a FN. In case 2 (T 2

b ), the subtree under u should be added as a polytomy under sb ; otherwise, the highlighted
orange branch will be a FP. In the second case, restricting the output to be binary (as in the B-RF(+) algorithm) leads to suboptimal RF distances

Background: DP algorithm implemented in ASTRAL
ASTRAL estimates an unrooted (species) tree given a
set of unrooted (gene) trees T and is statistically con-
sistent under the multi-species coalescent model [27] of
incomplete lineage sorting (ILS) given a sample of true
gene trees. ASTRAL seeks the tree T with the maximum
quartet score to T defined as

∑
t∈T |Q(T) ∩ Q(t)|, where

Q(.) is the set of quartet topologies of a tree. Let S(A) be
the score for an optimal subtree on the cluster A. Defining
S({x}) = 0 for x ∈ L, the recursion is:

S(A)= max
A′∈X,A\A′∈X

S(A′)+S(A\A′)+wT (A′|A\A′|L\A) (1)

where X is a set of clusters and wT is a function assign-
ing weights to tripartitions of L such that the sum of all
weights for any tree gives its quartet score. If X is set to
2L′ , the recursion tests all ways of dividing A into two
smaller clusters and under this condition, S(L′) (Eq. 1)
gives the optimal quartet score [8] for T in time grow-
ing exponentially with n (expected, as the problem is
NP-Hard [28]).

Forming set X: heuristics and restrictions
To handle large datasets, we need X to have a manage-
able size, preferably growing polynomially with n and k.
At the same time, we ideally want X to have all clus-
ters of the optimal tree. An obvious way of building X
is to set it to all clusters in all trees in T , hoping that
all clusters in the optimal tree appear in at least one
input. However, two difficulties emerge. Firstly, simula-
tions under very high levels of gene tree discordance
have shown this heuristic to be insufficient as biparti-

tions in the optimal tree can frequently be absent from
gene trees [11]. To deal with this issue, starting from
ASTRAL-II, set X is enhanced using a set of heuristic
methods, and since ASTRAL-III, the size of X is restricted
to grow linearly with n and k [12, 29]. These heuris-
tics (among other techniques) build consensus trees from
input trees and add resolutions of polytomies of consensus
trees to X.

The second difficulty is having full resolutions.
Equation 1 is well-defined only if for every non-singleton
A ∈ X, there is A′ ⊂ A such that A′ ∈ X and A \ A′ ∈ X.
More generally, a cluster A in X is useful only if there
exists a fully binary tree on L′ that includes A and all
of its clusters are in X. Including any other cluster in
X is a waste of computation. Thus, set X (which needs
to be non-empty) needs to satisfy this property (recall
o /∈ A ⊂ L′ and 2n − 3 is the number of clusters in a fully
resolved tree):

P1: ∀A1 ∈ X, ∃{A1, A2, . . . , A2n−3} ⊂ X s.t.∀(i, j) :
Ai is compatible with Aj.

Building X using bipartitions of input trees T can fail
to satisfy this property unless all trees are complete and
binary. Thus, starting from ASTRAL-II, three steps are
taken. i) Before adding bipartitions from T to X, it first
completes each tree with respect to other trees using a dis-
tance matrix computed from quartet frequencies in T and
an algorithm based on the four-point condition [30]. ii)
Polytomies in input trees are resolved once [11] or more
[12] using heuristic methods that sample leaves around
polytomies and use the distance matrix mentioned ear-
lier. iii) Heuristic enhancements of set X employed in
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ASTRAL-II and ASTRAL-III are all explicitly designed
such that P1 is automatically satisfied, a feat that has
been particularly challenging for multi-individual datasets
[29]. Thus, in effect, the set X includes all clusters from
each tree in a set of binary and complete trees; the set
includes modified input trees and others that ASTRAL
heuristically selects.

Enabling input constraints in ASTRAL
Given a constraint tree T̄ and a set of gene trees, T , our
goal is to find the tree among all trees compatible with T̄
that has the maximum quartet score with respect to T .
Compatibility with T̄ is achieved if we enforce a second
property on X.

P2: ∀A ∈ X : A is compatible with T̄ .

Existing methods for forming X are not guaranteed to
satisfy P2. One may think that we can follow standard
methods of forming X and simply refuse to add clus-
ters when they violate P2. Unfortunately, that approach,
in addition to being slow, can violate property P1 and is
not viable. Thus, the main challenge in building set X is
maintaining P1 and P2 simultaneously and doing so in a
scalable fashion.

Forming set X using tree completion
Our solution relies on completing and resolving the tree
T̄ using every tree in X. We require a tree comple-
tion method Comp(Tb, Tr) that adds to Tb leaves that
are present in Tr but are absent from Tb. The algo-
rithm should only add missing leaves to Tb and can also
resolve (some of) its polytomies. In other words, the out-
put restricted to leaves of Tb is a resolution of Tr ; thus,
Comp(T̄ , t) will be compatible with T̄ .

Tree completion/resolution methods were traditionally
proposed for completing a gene tree using the species tree
[4, 21, 22]. However, in our algorithm, we turn the prob-
lem on its head and complete the constraint species tree
T̄ using individual gene trees and use these mixed trees
to build the set X. This uncommon use of the completion
method is the main algorithmic idea that enables us to
satisfy P1 and P2.

Given a Comp(Tb, Tr) method, we propose Algorithm
1 for forming set X. The first step is the primary new
step and forces gene trees to be compatible with T̄
(by definition of Comp(Tb, Tr)). Step 2 is identical to
ASTRAL-III, where, compatible gene trees are completed
in a reference-free fashion with respect to each other; any
completion method such as the distance-based method
used by ASTRAL [30] is valid here. Step 3, like ASTRAL-
III, creates a set of multifurcating consensus trees C from
the compatible gene trees T̄ ′. Then, in Step 4, like Step 2,
we force consensus trees to be compatible with T̄ . Thus,
all trees in T̄ ′ and C̄ are compatible with T̄ and any

Algorithm 1 FormX(T , T̄) algorithm for computing set
X from input gene trees T such that every cluster in X is
compatible with T̄ .
1. T ′ = {Completed t with reference to T |t ∈ T }

(any completion method is valid)
2. T̄ ′ = {Comp(T̄ , t)|t ∈ T ′}
3. C = {consensus trees computed from completed trees

T̄ ′}
(these trees should only include bipartitions found in

T̄ ′)
4. C̄ = {Comp(T̄ , t)|t ∈ C}
5. T X = ⋃

t̄∈(T̄ ′∪C̄){ one or more binary resolutions of t̄ }
(any method of resolving polytomies is valid)

6. Root every trees of T X at o and add all of its clusters to
X.

resolution of these trees is also compatible with T̄ . Step 5
uses sampling methods of ASTRAL-III to resolve these
trees heuristically and adds their bipartitions to X. Thus,

Claim 1 All bipartitions of X created by Algorithm 1
are part of a fully binary and complete tree (P1) and are
compatible with the constraint tree T̄ (P2).

After forming X (Algorithm 1), DP proceeds as before,
computing wT using the original gene trees T . Since all
bipartitions in X are compatible with T̄ , any tree formed
by DP will be compatible with 
T̄ ; thus, no other changes
are needed.

Tree completion with non-binary input/output
We now describe our choice for the Comp(Tb, Tr)
method. We base our solution on the B-RF(+) algorithm
[22] described earlier, which we re-implemented inside
ASTRAL. However, several changes to the algorithm were
necessary.

Multifurcating output. The B-RF(+) algorithm and
OCTAL force the output to be binary. As a result, the
output can include arbitrary branches that increase false
positive (FP) edges (branches in the output missing from
Tr) without reducing false negative (FN) edges (branches
in Tr missing from the output) (Fig. 1). Thus, if the
output tree is allowed to be multifurcating, neither algo-
rithm is optimal (shown by a counter-example; Fig. 1).
As mentioned earlier, ASTRAL has several heuristics to
resolve polytomies in the input trees (Step 5 of Algo-
rithm 1), and these heuristics are preferable to an arbitrary
resolution. Thus, we changed the B-RF(+) algorithm so
that Comp(Tb, Tr) avoids adding arbitrary resolutions in
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Steps 2 and 4, leaving resolving polytomies to heuris-
tics of Step 5. Our experiments show that this change
substantially reduced the RF of completed trees (Fig. S1).

Recall that the B-RF(+) algorithm adds each fully-
missing node u in Tr as sister to the LCA of l(s(u)) in Tb;
denote this LCA node as sb. Let Lm = l(Tr) \ l(Tb) be the
set of leaves missing from Tb and let Ls = l(Tr) ∩ l(Tb) be
shared leaves. Two cases arise.

Case 1. l(s(u)) \ Lm = l(sb). In this case, the optimal
placement of the subtree below u in Tb is as sister to
sb, creating a new node above sb. The reason is that this
placement leads to the bipartition identified by s(u) to
be identical between Tr and the completed tree, thereby
avoiding a FN edge.

Case 2. l(s(u)) \ Lm �= l(sb). Here, no placement of the
subtree below u onto Tb can avoid the FN penalty asso-
ciated with missing the bipartition associated with s(u) in
Tb. However, placing the subtree as sister to sb by creating
a new internal node does lead to an unnecessary FP edge
in the completed tree, separating l(sb) from other leaves
(Fig. 1). To avoid these FP edges, we can simply create a
polytomy in the completed tree by putting the new subtree
as another child of sb.

Our new algorithm (called B-RF(*) here) is a straight-
forward change of the B-RF(+) algorithm. We compute the
LCA mapping both ways. When inserting the u subtree
into Tb at sb, we check if the LCA of sb in Tr matches s(u).
If it does, we create a new internal node above sb; other-
wise, we create a polytomy in Tb by adding the subtree as a
child of sb. Let T∗ be the output of our updated algorithm
and T+ be the output of the original B-RF(+) algorithm.
By construction, every branch in T∗ is also present in T+,
and thus, T∗ is a contraction of T+.

Claim 2 The output of B-RF(*) has the minimum RF
distance to the binary tree Tr among all (potentially mul-
tifurcating) trees compatible with Tb.

We prove Claim 2 by showing that T∗ has the minimum
possible number of FN and FP branches; the optimality of
RF follows. We rely on the result that T+ is optimal among
all binary trees [22]. By optimality of T+, it has the mini-
mum possible FN that any tree (binary or multifurcating)
can achieve (a multifurcating tree cannot have a lower FN
than T+ because binary resolution of that tree would also
have a lower FN than T+). Also, T∗ is a contraction of T+,
where, a branch is contracted only if it is a FP branch due
to Case 2. Thus, the number of FN branches in T∗ equals
those of T+ and hence is the minimum possible.

Now, let the number of FP branches in the Tb com-
pared to Tr�Ls be f. Since adding Lm to Tb cannot reduce
its FP branches, f is a lower bound on the number of FP

branches in the optimal tree. We claim that the number of
FP branches in T∗ is also f. Starting with Tb, every addition
of a subtree u to the current tree (Ti) keeps the number of
FP branches fixed. To see this, first, consider a branch b of
Ti that matches Tr (restricted to common leaves) before
u is added and assume u is not placed on b; then, b can-
not become a FP because u is placed on the correct side
of b by the proof of the B-RF(+) algorithm. Next, consider
the branch b where u is placed. If b matches Tr before the
addition, u is placed here only if l(s(u)) matches leaves
below b, as in Case 1, where two true positive branches are
created. If b does not matches Tr before the addition, Case
2 ensures that we create a polytomy and avoid adding a
new FP branch. Thus, every step keeps the number of FP
branches fixed.

Multifurcating backbone. We defined B-RF(*) for
binary Tb, but we can have multifurcating Tb (here, T̄).
To adopt B-RF(*) to multifurcating backbones, prior to
completion, we need to add to Tb those bipartitions in Tr
that are compatible with Tb (or else we will have unnec-
essary FN branches). This can be done using the same
LCA mapping of the B-RF(*) algorithm. In a post-order
traversal of Tr , for every node u that maps to a polytomy
v in Tb, we check whether all children of u have a LCA
mapping to a child of v. If they do, we create a new node
below v and move mapped children under v to be children
of the new node. It is easy to see that this method adds all
missing bipartitions from Tr to Tb.

Multifurcating reference. Changing B-RF(*) to handle
multifurcating Tr is straightforward. In the pre-order
traversal, for any polytomy node u encountered in Tr ,
when there are multiple fully-missing nodes under u, we
add them as a group to the same position (as a polytomy)
in Tb. Other cases are naturally handled by the LCA map-
ping used by the B-RF(*) algorithm (note that we defined
“sister” as the set of nodes sharing a parent with a node).

Results: simulations
We first test constrained ASTRAL on an existing [11] sim-
ulated dataset with 201 species. This SimPhy [31] dataset
has three model conditions with moderate, high, or very
high levels of ILS, controlled by setting the maximum
species tree height to 107, 2 × 106, or 5 × 105 gener-
ations; mean RF distance (normalized by total number
of branches in both trees) between the true species tree
and true gene trees are 15%, 34%, and 69%, respectively.
We use gene trees inferred using FastTree-II [32] from
sequence data in our analysis. The estimated gene trees
have relatively high levels of gene tree error (the average
RF distance between estimated and true gene trees are
25%, 31%, and 47% for the three model conditions). Fol-
lowing previous publications [11], three replicates of high
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ILS dataset are removed due to a extreme lack of gene tree
resolution.

We compare both constrained and unconstrained
ASTRAL to the true tree. We measure the topological
error using the normalized RF distance, and also report
the change in quartet score and running time between
constrained and unconstrained ASTRAL. Note that quar-
tet score of the constrained tree can be higher than uncon-
strained ASTRAL, as the default version of ASTRAL has a
heuristic definition of X and is not guaranteed to find the
optimal solution. We ask whether our method of form-
ing the constrained and restricted set X is effective in
providing the same level of accuracy as unconstrained
(but restricted) searches while improving the running
time. We then ask if the use of constraints can benefit
accuracy.

Is set X restricted to a constraint tree sufficiently large?
Constraint tree T̄ with missing leaves
We built constraint trees that include 1

4 , 1
2 , or 3

4 of
species by taking the ASTRAL-III tree on the full
dataset and pruning leaves uniformly at random. Since
the unconstrained tree induces the constraint tree, the
relative accuracy of constrained and unconstrained search
is entirely a function of the completeness of X.

The accuracy of the constrained ASTRAL in most con-
dition matches that of the unconstrained ASTRAL (Fig. 2).
For moderate (107) and high (2 × 106) levels of ILS, the
drop in average accuracy for different numbers of genes
never exceeds 0.4%. Only with very high ILS (5 × 105)
and constraint trees with 50 species do we start to see
small but noticeable drops in the accuracy of constrained
ASTRAL. For example, with 50 genes and very high ILS,
the error goes up from 20% with no constraints to 26%
with a T̄ that has 50 leaves. Consistent with this, the
quartet score of the ASTRAL tree also remains largely
unchanged in most cases, except, again, for the case of
very high ILS and backbone trees that include only 50
leaves (Fig. S2).

Constrained searches also impact the running time and
the search space X (Fig. 3). With very high ILS and
T̄ including 150 of leaves (pruning 50), we get from
4 to 8x improvement in running times and substantial
reduction in the size of the search space. This reduction
explains the small reduction in the accuracy of ASTRAL-
III with constrained searches under these conditions. As
backbone size becomes smaller, the running time con-
verges to unconstrained ASTRAL; however, even when
T̄ includes a quarter of the leaves, we still have 1.2 to
3x improvement in the running time. With moderate and
high levels of ILS, improvements are less pronounced but
still substantial. Running time improvements mirror the
change in the search space size, which is dramatically
reduced (Fig. 3).

We also study a scenario where missing leaves in the
constraint tree form clades instead of being uniformly dis-
tributed. Results of the clade-based removal did not sub-
stantially differ from the random removal (Fig. S3). With
moderate or high ILS, random and clade-based removal
were indistinguishable, and for very high ILS, only small
differences were observed.

To summarize, our method of forming X for constraints
with missing leaves retains accuracy and reduces running
time, with only small reductions in the accuracy in the
most extreme conditions, namely very high ILS and small
constraint trees.

Constraint tree T̄ with multifurcation
We next collapse randomly chosen branches from the
unconstrained ASTRAL-III tree to create a complete
but unresolved constraint tree. With these multifurcating
constraint trees, constrained ASTRAL search is as accu-
rate as the unconstrained ASTRAL even for very high
levels of ILS (Fig. 4). Differences in mean accuracy are
no more than 0.1% in any of the 27 conditions we tested.
Remarkably, in the case of very high ILS, we even see a
small but noticeable improvement in quartet score (but
not accuracy) when the constraint tree includes only 50
branches (Fig. S4). Once again, the running time and
the size of the search space both reduce dramatically in
the constrained searches (Figure S5). Thus, our method
of forming X is effective in the face of multifurcating
constraint trees.

Can a constrained search help accuracy?
Constrained searches have the power to improve accuracy
if prior knowledge of parts of the tree is available. To test
this proposition in simulations, we study the accuracy of
constrained ASTRAL when the constraint tree T̄ is a sub-
set or a contraction of the true species tree. In both cases
(Figs. 2 and 4), the accuracy of the ASTRAL tree improves,
and changes are dramatic when the constraint tree is miss-
ing only 50 leaves or branches. The improvements are
especially strong for the case of complete but multifur-
cating true species trees (Fig. 4) where a constraint tree
with only 50/198 branches can reduce the error from 19%
to 13% with 50 genes with very high ILS. If T̄ includes
150/198 branches, the error reduces down to 4%.

The dramatic improvements in accuracy are perhaps
not surprising given the fact that parts of the tree are fixed
to match the true tree. More interesting is whether adding
constraints to some part of the tree improves the accuracy
of the remaining parts of the tree. We thus evaluated the
accuracy of trees only restricted to the leaves that are not
part of the constraint tree. We observe that the accuracy
of the remaining leaves has also increased dramatically
as a result of having constraints (Fig. 5). For example, in
the very high ILS case with 50 genes, when 50 species
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are missing from the correct constraint tree, the error for
the placement of these 50 species has reduced from 21%
with no constraints to only 7% with constraints. Similarly
strong levels of improvement are observed across all con-
ditions, except when the constraint tree includes only 50
leaves. To summarize, the result demonstrates that given
correct prior knowledge about parts of the phylogeny, a
constraint ASTRAL search can improve the accuracy of
the remaining parts.

Results: biological dataset
We reanalyze the avian phylogenomic dataset [33] with
48 bird species and more than 14,000 loci. The statistical
binning method has been proposed to enable coalescent-
based analyses of this dataset despite the low phylo-
genetic signal [34]. The main novel result found using
this dataset is the division to Passerea and Columbea at
the base of Neoaves, a relationship that was recovered
in most analyses of the dataset, including concatenation

Fig. 2 Effectiveness of constrained ASTRAL with constraint trees that have randomly distributed missing leaves. ASTRAL-III species trees are
compared with and without constraints using the Normalized RF distance between inferred species tree and true species tree. Boxplots show
distribution (over 100 replicates) and triangles show the mean. Panels correspond to three different levels of ILS (500K, 1M and 2M generations,
corresponding to very high, high, and moderate ILS, respectively) and varying number of genes (50, 200, and 1000). The constraint trees are
obtained by pruning 50, 100, or 150 (x-axis) randomly chosen leaves from the unconstrained ASTRAL tree or the true species tree



Rabiee and Mirarab BMC Genomics 2020, 21(Suppl 2):218 Page 8 of 13

(TENT), MP-EST [35] run on binned gene trees (MP-
EST*), and ASTRAL run on unbinned gene trees with
low support branches contracted [12]. However, running
ASTRAL on 2022 binned gene trees failed to recover
Passerea and Columbea and placed Otidimorphae (a clade
within Passerea) within Columbea (Fig. 6). Nevertheless,
the localPP support [36] for this alternative relationship
is low. Thus, using constrained searches, we now ask
whether there is support for Columbea/Passerea in the
binned gene trees.

Constraining the ASTRAL tree to include Passerea
results in recovering Columbea and placing Otidimor-
phae as sister to other Passerea. The Columbea clade,
absent from unconstrained ASTRAL, has high support
(0.97 localPP) in the constrained tree. Moreover, the sup-
port of the Columbimorphae, a clade universally sup-
ported in modern analyses, increases from 0.9 in the
unconstrained tree to 1.0. On the other hand, the localPP
support for Passerea is only 0.37, which is barely above
the expected support of a random resolution (0.33),

Fig. 3 Impact of constrained search on the running time and search space. The running time (top) and search space size |X| (bottom) are compared
between constrained and unconstrained ASTRAL-III. Other settings of the figure are identical to Fig. 2
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and the total quartet score of the tree is reduced by
37230 quartets (0.015%). We then performed another
constrained analysis forcing Otidimorphae to be with
Caprimulgimorphae (as in TENT). This constraint leads
to Passerea and Columbea both becoming monophyletic
with 0.99 and 0.97 localPP (Fig. 6b). However, the Otidi-
morphae+Caprimulgimorphae clade itself has low localPP
(0.13) and total quartet score reduces by 0.045%. Overall,
while the unconstrained ASTRAL tree does not recover
Columbea and Passerea, gene trees strongly support
Columbea (if not Passerea).

We next tested four other clades recovered in TENT
but absent from the unconstrained ASTRAL (Fig. 6b).
Several patterns were observed. Forcing Afroaves to be
monophyletic reveals a total lack of support for the mono-
phyly of that clade (localPP= 0 and 0.07% reduction
in quartet score). Forcing Cuckoo to be sister to Bus-
tard or Hoatzin to be sister to Cursorimorphae shows
a case where neither the constrained nor the uncon-
strained tree have strong support, and thus, results are
inconclusive. Most interestingly, owl fits quite well with
Coraciimorphae (localPP 0.99 in constrained analyses) as

Fig. 4 Effectiveness of constrained ASTRAL with constraint trees that have randomly distributed contracted branches. Settings are similar to Fig. 2.
The constraint trees are obtained by collapsing 50, 100, or 150 (x-axis) randomly chosen branches from the unconstrained ASTRAL tree or the true
species tree. Note that the set of branches contracted from the true and estimated species trees are not identical
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well as its unconstrained position as sister to birds of prey
(localPP 1.0); this observation creates a suspicion of gene
tree discordance due to processes other than ILS such
as hybridization.

Discussion
The method we introduced for honoring user-provided
constraints relies on an extension of a tree completion
algorithm by Bansal [22]. Our choice of the RF-based
tree completion was driven by the availability of the fast
B-RF(+) algorithm, which we adopted. Note that our
method of forming X is heuristic and the appropriate-
ness of a criterion (such as RF) is an empirical question.
However, there is no reason to think that other tree com-
pletion/resolution criteria could not have worked equally
well or better.

From an algorithmic perspective, constrained search
can be considered an extension of the phylogenetic place-
ment problem [37–40]. Unlike placement, constrained
search also infers the relationship between query genomes
and hence is more informative. Like placement, con-
strained searches can be used to grow existing trees in
an automated fashion and regular basis, without the need
to redo the analysis from scratch each time. Taking this
idea one step further, constrained ASTRAL can perhaps
help develop new divide-and-conquer meta-methods that
allow ASTRAL to scale to much larger datasets than what
it can currently handle.

By completing and resolving the constrained
species tree using input gene trees, we produce a
“hybrid” between individual gene trees and the incom-
plete/unresolved species tree. We showed these hybrid
trees are effective in defining search space but we also
wondered about accuracy of these trees. Recall that our
estimated gene trees have high estimation error (25% to
47% mean RF). Inspired by tree fixing methods [41], we
ask if the hybrid gene trees (which, by construction, have
reduced RF to the species tree) are better estimates of the
true gene trees than the original gene trees. To answer
this question, we estimated unconstrained ASTRAL-III
trees, collapsed branches with ≤ 0.99 support, and used
the resulting tree as Tb and each gene tree as Tr as input
to the tree completion algorithm. The resulting hybrid
trees had mixed accuracy (Fig. 7). With moderate ILS,
hybrid gene trees have reduced error compared to origi-
nal estimated gene trees; here, true gene trees are similar
to the species tree (15% mean RF), and reducing distance
to the (collapsed) species tree reduces the error. However,
with higher ILS, original gene trees are more accurate
perhaps because true gene trees are dissimilar to the
species tree (69% mean RF) and making gene trees similar
to the species tree is not beneficial. Using the hybrid gene
trees as input to ASTRAL increases the species tree error
in all cases (from 4.3%, 5.6%, 10.2% mean RF to 4.9%,
8.3%, 20.5%, respectively, for moderate, high, and very
high ILS and 200 genes).

Fig. 5 Impact of correct constraints on some branches on the remaining branches. We show the distribution of the RF distance between
(constrained or unconstrained) ASTRAL trees and the true species tree when both trees are restricted to the set of leaves that are not present in the
constraint tree. As in Fig. 2, constraint trees are defined by pruning 50, 100, or 150 leaves from the true tree
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Fig. 6 Constrained analyses reveal support for alternative clades. a On the avian genomics dataset [33], we estimated ASTRAL-III trees with no
constraints (right) using 2022 binned (super)gene trees. The tree did not include the Passerea vs. Columbea division that most other analyses of this
dataset reveal. Constraining the ASTRAL tree to include Passerea as a clade resulted in a tree (left) with two new branches and 0.97 localPP support
for Columbea. LocalPP support values below 1.0 are shown on branches (red: change in support across the two trees). b Similar to (a), constrained
analyses are performed to find support for five other clades found in the TENT (†) and (in some cases) in MP-EST* (‡) but not found in the
unconstrained analyses. For each clade, we show localPP support for branches that differ between the constrained and unconstrained trees (one to
three branches change in constrained searches). We also show the reduction in the quartet score in the constrained analyses as an abosulte
number and percentage

Fig. 7 Accuracy of hybrid gene trees. We resolve the ASTRAL-III tree with branches that have support ≤ 0.99 contracted (as Tb) with respect to each
gene tree (as Tr ) using our extended tree completion algorithm and call the resulting tree a hybrid gene tree. Density plots show the error of all
1000 hybrid (Constrained) and original (Unconstrained) gene trees, measured using RF distance to true gene trees (out of 396)
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The constrained ASTRAL search opens the door for
several downstream biological analyses. As shown in our
reanalyses of the avian dataset, we can now perform
hypothesis-driven analyses, as attempted often by system-
atists. These analyses have the potential to reveal support
for some branches that are not recovered in the main
ASTRAL tree. The presence of alternative support can
also be visualized using tools such as DiscoVista [42].
Moreover, with constrained searches, we can now test if
fixing parts of the tree can impact the resolution or sup-
port for the other parts. These analyses can help users
understand how robust their estimated species trees are.
Finally, methods of interrogating the impact of individ-
ual genes, such as Partitioned Coalescent Support (PCS)
[43] can also benefit from constrained search. Currently,
these methods limit themselves to scoring hand-curated
trees but they can instead use automatically generated
constrained ASTRAL trees.

Conclusions
We described an algorithm for genome-wide inference
of species trees from gene trees while honoring user-
provided constraint tree. We have implemented and
tested this approach for ASTRAL; however, the same
strategy should work for other similar DP methods.
Our results showed that the constrained ASTRAL is
effective in searching the tree topology space. More
interestingly, we showed that constrained search using
ASTRAL can help biologists obtain a better under-
standing of the complexities of genome-wide evolution
by revealing support for conflicting resolutions in the
species tree.
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