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Abstract

Background: Gene interaction patterns, including modules and motifs, can be used to identify cancer specific
biomarkers and to reveal the mechanism of tumorigenesis. Most of the existing module network inferencing methods
focus on gene independent functional patterns, while the studies of overlapping characteristics between modules are
lacking. The objective of this study was to reveal the functional overlapping patterns in gene modules, helping
elucidate the regulatory relationship between overlapping genes and communities, as well as to explore cancer
formation and progression.

Results: We analyzed six cancer datasets from The Cancer Genome Atlas and obtained three kinds of gene functional
modules for each cancer, including Independent-Community, Dependent-Community and Merged-Community. In
the six cancers, 59(3.5%) Independent-Communities were identified, while 1631(96.5%) Dependent-Communities
were acquired. Compared with Lemon-Tree and K-Means, the gene communities identified by our method were
enriched in more known GO categories with lower p-values. Meanwhile, those identified distinguishing communities
can significantly distinguish the survival prognostic of patients by Kaplan-Meier analysis. Furthermore, identified driver
genes in the gene communities can be considered as biomarkers which can accurately distinguish the tumour or
normal samples for each cancer type.

Conclusions: In all identified communities, Dependent-Communities are the majority. Our method is more effective
than the other two methods which do not consider the overlapping characteristics of modules. This indicates that
overlapping genes are located in different specific functional groups, and a communication bridge is established
between the communities to construct a comprehensive carcinogenesis.
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Background
Cancer is a complex disease that threatens human health,
and it is mainly driven by the accumulation of a series
of genetic changes that can be detected by various
high -throughput sequencing technologies [1, 2]. With
the development of high- throughput next generation
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sequencing (NGS) [3] technology, many large genomics
projects have produced and accumulated a large amount
of genomics data, such as The Cancer Genome Atlas
(TCGA) [4] and the Catalogue Of Somatic Mutations In
Cancer (COSMIC) [5]. The rapid accumulation of massive
multi-type data provide an unprecedented opportunity to
capture cancer formation and progression [6, 7]. Accord-
ing to the tumorigenesis, the alterations of pathological
gene expression and the progression of cancer involve
many factors [8, 9], such as metastasis development, inva-
sion, proliferation, angiogenesis and other contributing
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factors [10]. If we can accurately understand the patho-
genesis and process of tumors, the corresponding treat-
mentmethods can be adopted to avoid the serious damage
caused by tumors.
Due to the high dimensionality and heterogeneity of

cancer data, researchers address an enormous challenge
to obtain mutant biomarkers that promote the process
of tumorigenesis proliferation from these massive high-
throughput data [11–13]. Recent studies have shown that
the detecting modular network brings new prospects for
the development of biological mechanisms and tumors
[14, 15]. Many module network approaches have been
proposed for gene module identification in the past
decades. These methods can be divided into three cat-
egories, including heuristic clustering module identifi-
cation method, model-based clustering method and the
module network inference method based on gene-based
network reconstruction, which depend on different bio-
logical assumptions and intuitions. The original module
network learning algorithm relies on greedy heuristic
algorithm, which was inspired by this viewpoint that
co-expressed genes are likely to have similar regulatory
patterns and may have the same driver or regulatory
genes. For example, Eisen et al. applied a pairwise average-
linkage cluster analysis approach which is a form of hier-
archical clustering to gene expression data verified that
Clusters of coexpressed genes tend to be enriched for spe-
cific functional categories [16]. Although these methods
have had an enormous influence, their statistical prop-
erties are generally not well understood and important
parameters such as the number of clusters are not deter-
mined automatically [17]. Therefore, the attention has
subsequently shifted to model-based clustering methods,
Dahl et.al proposed a approach to obtain a point esti-
mate of the clustering based on the least squares distances
from posterior probabilities of two gene clusters [18]. The
method groups genes with equal potential variables that
control expression, and combines the least squares dis-
tances to automatically estimates the number of clusters.
Anagha joshi et al. proposed a model clustering method
based on Gibbs sampler [17]. This method uses Bayesian
method and Gibbs sampling process to iteratively update
the cluster assignment of each gene and condition. These
methods assumes that the data is generated by a mix-
ture of probability distributions (one for each cluster) and
explicitly considers the noise of gene expression data. It
allows for a statistical estimate of the generated clusters
and gives a formal assessment of the expected number of
clusters [17].
In recent years, it has been discovered that module net-

work inference can be combined with gene-based network
reconstruction approachs [19, 20]. This methodological
work complements research that focuses only on applying
module network mehods to provide new biomedical and

biological insights. For instance, Eric Bonnet et al. pro-
posed a multi-omics module network reasoning method
called Lemon-Tree [21], which uses one or more Gibbs
samples to infer the initial module from gene expres-
sion data, and then use a spectrum edge clustering algo-
rithm to establish a consensus module of genes. Although
these methods have achieved good results, these pro-
posed methods of module network recognition based on
gene network reconstruction all insist that gene modules
are independent and unrelated with each other. Contrary
to this point of view, in real biological networks, gene
modules may have overlapping characteristics [22]. For
example, overlapping characteristics for gene GATA3 and
TP53 in different functional pathways in breast cancer in
which GATA3, TP53 and PIK3CA regulate the process of
neuron apoptotic while gene GATA3, TP53 and BRCA2
response to gamma radiation [23]. This reveals that these
genes with overlapping features have different functional
roles in different communities. By obtaining the effects of
overlapping factors in different gene communities, addi-
tional biomarkers may be identified which provide an
effective complement to understand cancer progression.
Therefore, we import the concept of overlapping commu-
nity detection to module networks inference. The method
is remarkably superior in deducing functional units and
overlapping genes which can play different roles in the cell
by taking part in several processes.
Here we propose a method to identify cancer function

modules based on the concept of overlapping community
detection (Fig. 1). The aim of this study was to reveal the
overlapping characteristics of gene modules and explore
the regulatory relationship between overlapping genes
and modules by integrating comprehensive genomic data
including gene expression data, copy number data (CNV)
and protein-protein interaction (PPI) network data. We
first used the Gibbs sampling model to generate initial
clusters by clustering gene expression data, and then com-
bined the PPI network with the initial clustering results
to construct an interaction network. Finally, functional
overlapping modules were detected from the network
by overlapping community detection method. Consider-
ing overlapping scores, the gene community could be
divided into three types: Independent-Community (IC),
Dependent-Community (DC) and Merged-Community
(MC). Experimental results indicate that ICs identified
by our method have independent functions. Overlap-
ping genes in DCs have diverse functions and bridge
dependency among communities. The effect of MCs
merge is found not only in the network structure but
also in the corresponding known pathway function. In
Go enrichment analysis, our method can identify more
GO categories with lower p-values than other tools. In
addition, the driver genes generated can accurately dis-
tinguish the tumor and normal samples. The identified
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Fig. 1 Schematic of our method. a Illustration of the relationship of two gene with protein-protein interaction (PPI) network and gene expression.
Genes in gene expression matrix are pre-processed by gene differential expression analysis to select candidate gene subset. The generation of
adjacency matrices is by running one or more instance of initial community procedure. Then, the PPI network is combined to the association
between genes. bThe gene community is captured by these three models including Independent-Community, Dependent-Community and
Merged-Community

communities can distinguish survival and prognosis of
patients by Kaplan-Meier analysis.

Results
ICs identified for characterizing breast subtypes
We applied our method to each gene expression profile
of six cancer datasets (see Table 1) from TCGA for com-
munity detection. The community was obtained based
on the threshold of overlap score (ω) with 0.8 and the
change of belonging factor of each node aiS in eachmodel.
The number of Independent-Community andDependent-
Community is shown in Table 2. In Bladder Urothelial
Carcinoma, we captured 193 communities that contain 12
ICs and 181 DCs. And 11 ICs and 208 DCs were found in
Breast invasive carcinoma cancer, 12 ICs and 449 DCs in
Colon adenocarcinoma, 7 ICs and 145 DCs in Esophageal
carcinoma, 7 ICs and 294 DCs in Head and Neck squa-
mous cell carcinoma. In addition, the total number of
community in Kidney Chromophobe is 364 communities,
including 10 ICs and 354 DCs. The Merge-Community
was not uncovered here since the pair communities were
merged into one community. The result shows that DCs
were the majority of all communities, further illustrating
the strong communication between communities.
To clarify the results of the three models, we only

analyzed breast cancer. Firstly, we validated the sig-
nificance of functional interactions within IC commu-
nities with the Gene Ontology (GO) biology process
(BP), cellular component (CC)and molecular functions
(MF) with R package GOplot [24]. We captured 11
Independent-Communities for breast cancer. Figure 2a

shows one Independent-Community network. The rest of
Independent-Communities networks are shown in Addi-
tional file 1: Figure S1. The Independent-Community
(Community NO.141) GO enrichment analysis is pre-
sented in the Fig. 2b. In terms of cellular component,
the majority of genes are mainly enriched in plasma
membrane process (GO:0005886, p-value = 1.536E-06),
desmosome process (GO:0030057, p-value = 2.195E-23),
extracellular exosome process (GO:0030057, p-value =
5.567E-5). In terms of biology process, bundle of His
cell-Purkinje myocyte adhesion involved in cell com-
munication process (GO:0086073, p-value = 2.128E-09),

Table 1 Cancer types and number of samples for tumor and
normal tissues from TCGA database

Cancer Type TCGA ID Data No. Tumor
samples

No. Normal
samples

Bladder
Urothelial
Carcinoma

BLCA 407 19

Breast invasive
carcinoma cancer

BRCA 485 8

Colon
adenocarcinoma

COAD 288 41

Esophageal
carcinoma

ESCA 185 11

Head and Neck
squamous cell
carcinoma

HNSC 522 44

Kidney
Chromophobe

KICH 66 25
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Table 2 The number of communities in different cancer

Cancer
Type

Independent-
Community

Dependent-
Community

All Communities

BLCA 12 181 193

BRCA 11 208 219

COAD 12 449 461

ESCA 7 145 152

HNSC 7 294 301

KICH 10 354 364

homophilic cell adhesion via plasma membrane adhesion
molecules process and regulation of ventricular cardiac
muscle cell action potential process (GO:0007156, p-value
= 8.461E-9) are significantly enriched the genes in this
community. In molecular functions category, genes are

enriched in calcium ion binding process (GO:0005509,
p-value = 1.490E-5) and integral component of mem-
brane process (GO:0016021, p-value = 0.0189). It eluci-
dated that the identified ICs are independently functional.
Then, we validated the association of the communities
with breast cancer subtypes (Luminal A (LumA) \ B
(LumB), Her2 and Basal) (Fig. 2C and Additional file 1:
Table S1)as well as their association with mutagenic pro-
cesses independent of the subtyping through the muta-
tion behaviour of the core genes with top degrees. We
found that the EYA1/EYA2/EYA3 (Community NO.165),
PROX1, PRKD3, PHLDA1 (Community NO.20) and
ING1, HSD11B1 (Community NO.112) are significantly
associated with the LumB subtype (p <0.01, Fisher’s exact
test). The TP53INP1/STARD10 (Community NO.4) is sig-
nificantly associated with the Basal subtype and Her2
subtype (p <0.01). The FAM129B/MON1B (Community

Fig. 2 Independent-Community for TCGA Breast Cancer Dataset. a the network of IC141. b The GO enrichment result of Community NO.141. c the
prediction of ICs in cancer subtypes
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NO.10) is prominently related to the LumA subtype (p
<0.01). The PKP2/KRT1 (Community NO.141) is obvi-
ously enriched in the Basal subtype (p <0.01).

Overlappying genes in DCs bridge dependency between
communities
In this model, we captured 208 Dependent-Communities
which are completely shown in Additional file 2. The

structure and property of overlapping characteristics
of communities for Community NO.121, NO.126 and
NO.172 are shown in Fig. 3. Cytoscape (version 3.5.1)
[25] was used to analyze the overlapping structure among
the communities. From Fig. 3a, we can see that the
overlapping gene subset including COG7, NAPA and
NAPG (yellow circle) bridged the Community NO.121
(deongaree circle), Community NO.126 (green circle) and

Fig. 3 Dependent-Community for TCGA Breast Cancer Dataset. a The network of comunity 121,126 and 172. The green circle is DC126,the
deongaree circle is DC 121 and the light blue circle is DC 172. The yellow circle is the overlap genes. b The analysis of the pathway in three
communities.The large nodes represent pathways, small nodes represent genes, and edges represent gene express in pathway



Lu et al. BMC Genomics          (2021) 22:436 Page 6 of 15

Community NO.172 (light blue circle). Biologically, genes
in the same community, such as Community NO.121,
Community NO.126 and Community NO.172, often coin-
cides with known functional modules and/or protein
complexes [26]. The Reactome pathway analysis was per-
formed to detect the specific function for these three
communities respectively and the results are shown in
Fig. 3b. Genes RAB1A, RAB34, RAB6B, RAB9B in Com-
munity NO.126 express in RAB geranylgeranylation path-
way. CNIH3, F5, F8 etc genes in Community NO.172
locate in Cargo concentration in the ER pathway and
so on. Since the overlapping genes are located in dif-
ferent communities with specific function, it indicates
overlapping genes possess diverse functions. A gene can
be relevant with more than one functional community (or
cluster) [27, 28] in cancer patients and bridge dependency
between communities. In Fig. 3b, the overlapping gene
NAPA is in the Asparagine N-linked glycosylation path-
way which corresponds to the Community 172 function.
Meanwhile, NAPA is a link in Intra-Golgi traffic path-
way which associates with the Community 121 function.
In addition, NAPA plays a function in COPI-dependent
Golgi-to-ER retrograde traffic pathway which binds with
the community 126. And the overlapping genes COG7
and NAPG enriched in the pathway associated with these
three DCs too (Fig. 3b and Additional file 1: Figure S2).
The ratio of genes in each pathway and the genes con-
tained in each pathway are shown in Additional file 1:
Figure S2 and Additional file 3.

MCs worked as a functional unit for communication
In order to further understand the integration mecha-
nism of community, overlap score (ω) was set as 0.8
and 0.9 respectively. We captured 219 gene communi-
ties at the threshold of 0.8. While the threshold of 0.9,
we obtained 237 gene communities. The MC model will
merge the community with overlap score over 0.8, result-
ing in a reduction of 18 communities (Table 3). Sub-
sequently, we calculated the overlap score for each pair
of communities in 237 communities. We found that 33
communities out of these 237 communities were merged
into 15 communities. The result of community merging
is shown in Table 3. The detailed materials for commu-
nity integration are shown in Additional file 4. Interest-
ingly, these resulted communities are DCs due to the high
frequency of interaction with other communities. For dis-
playing an intelligible MCs result, we decipher a concrete
case in Fig. 4. The overlap scores between Community
NO.22 and Community NO.23, Community NO.22 and
Community NO.29, Community NO.23 and Community
NO.29, Community NO.23 and Community NO.34 are
0.89, 0.89, 0.85 and 0.82 (Fig. 4a), respectively, which are
all higher than threshold (0.8). We merged them into one
community which can perform as a common functional

Table 3 The information of community merging

Types of
community
merging

The
number of
before
merging
community

The number of
after merging
community

The number of
reduction
community

Type 1 20 10 10

Type 2 6 2 1

Type 3 3 2 4

Type4 4 1 3

Total 33 15 18

unit to action together (Fig. 4b). Jointly, the effect of merg-
ing can be seen not only in the network structure, but
also in the corresponding known pathway function. The
gene CST1 in Community NO.23 and Community NO.34
is significantly enriched in Salivary secretion pathway
(ω=0.9) which is omitted from Community NO.22 and
Community NO.29. Furthermore, the merged functional
unit possesses the complementary function together in
the result of merging gene CST1.

Prognostic predictor for cancer patients with survival
analysis
Gene and modules are associated with patient survival
time in cancer [29]. In order to assess the biological
relevance of community network, we analyzed the prog-
nosis value of total communities by Kaplan-Meier survival
analysis (see Methods). For each community, we pre-
dicted the patient survival time, using the clinical data and
gene expression data. We found that both the Indepen-
dent and Dependent Community divide the patients into
two groups whose survival time is significantly different
(p-value <= 0.01). Figure 5 shows the most significant
survival associated community in six cancers. In BLCA,
patients were significantly divided into two classes by the
identified functional community (p = 0.0001). The com-
munity obtained from BRCA also reveals a significantly
different survival time (p-value = 0.01). In COAD, we
found the patients in the given community were divided
into two groups and the survival time is significantly
different (p-value = 0.005). In ESCA, the detected com-
munity is significantly associated with the survival time
of patients (p-value = 0.003). In HNSC, the community
can significantly classify patients according to the average
expression values (p-value = 0.002). The most significant
survival-related community was obtained from KICH (p-
value = 1.825E-08). The analysis demonstrates that the six
cancer communities could distinguish likely patient prog-
nostic survival time according to their mean expression
values of genes, with the statistical significance (p <=
0.01).
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Fig. 4Merged-Community for TCGA Breast Cancer Dataset. a Four modules uncovered before fusion by Merged-Community for TCGA breast
cancer dataset. b Four modules merged to one module

Comparison for Lemon-tree,K-Means and our method
We compared ourmethodwith Lemon-Tree and K-Means
over the same large-scale real cancer data set to evalu-
ate the performance based on the Gene Ontology (GO)
enrichment. To compare the Gene Ontology (GO) cat-
egories among the three approaches, we first obtained
all common categories for each cancer by a given p-
value threshold. Then, the highest score for each GO

category was selected, and the number of GO categories
with higher scores for K-Means, Lemon-Tree and our
method was calculated. Finally, the sum of the scores for
each GO category in each method is calculated (Fig. 6).
This result indicates that the gene communities identified
by our approach were enriched in more known GO
categories with lower p-values than other methods, and
our approach has a lower p-value in the global scope.

Fig. 5 Kaplan-Meier survival analysis for patients based on the detected modules in each cancer
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Overall, our approach performs better than Lemon-tree
and K-Means in terms of analyzing the GO enrichment.

In silico validation
To verify the performance of our method in the classifi-
cation of cancer versus normal samples for each cancer
type, we captured the candidate driver genes by mutation
frequency from TCGA data. Then the cancer driver genes
were identified from the candidate driver genes. In our
method, we selected the genes as candidate driver genes
with mutation frequency fre >0.6. In the six cancers of
BLCA, BRCA, COAD, ESCA, HNSC and KICH, the can-
didate regulator lists were comprised of 2077, 1100, 1910,
7312, 2230 and 9369 genes respectively. As the regulatory
mechanism of communities or modules, the top 1% high-
est scoring genes of each community were selected as
the final driver genes list. Finally, we obtained 745 cancer
driver genes.
For each cancer dataset, 80% of cancer versus nor-

mal samples were selested for training classifier, and the
remaining datasets were used to test the classification per-
formance. The results in The Cancer Genome Atlas data
using 10-fold cross-validation are shown in Fig. 7. ROC
curves and AUC values are shown for the top five can-
cer driver genes with the highest AUC performance for
each cancer type. The genes PEX19 and SCAMP3 achieve
the best AUC performance in BRCA (AUC = 0.969 and
AUC = 0.954), ASXL1 and PLCG1 are the best predic-
tors in COAD (AUC = 0.929 and AUC = 0.903), SLC4A4
and GPR87 in ESCA (AUC = 0.932 and AUC = 0.919),
ATP6V0D2 andMED30 in HNSC (AUC = 0.958 and AUC
= 0.957), MRAP2 and EDARADD in KICH (AUC = 0.984
and AUC = 0.954). The best performance was obtained
in BLCA dataset. The top five drivers of cancer always
obtained AUC>0.9, and the AUC for gene FGFR1 reaches
1 (Fig. 7).
The top-10 driver genes’ regulation scores in each can-

cer are shown is demonstrated in Additional file 1: Table
S2. It proves that the low regulatory score of the driver
genes can also accurately distinct tumor and normal sam-
ples.
MRAP2 is known to play a role in cancer [30]. the

expression of MRAP2 is restricted to the adrenal gland
and brain tissue, MRAP2 overexpression caused suppres-
sion of MC2R activation, and positive effects on signal-
ing have been detected only at supraphysiological lev-
els of ACTH. RBPMS has been reported as a part of
the metastatic 79 gene characteristics observed in solid
tumors [31]. Many studies implicated the RBPMS fam-
ily of proteins in oocyte, retinal ganglion cell, heart,
and gastrointestinal smooth muscle development. While
SCAMP3, which is overexpression in the hepatocellu-
lar carcinoma [32], has been found that its modification
with ubiquitin and its interaction with ESCRT coordinate

the regulation of endosome pathway and affect the effi-
ciency of receptor down-regulation [33]. SCAMP3 is a
component of post-Golgi membranes, functions as a pro-
tein carrier and is critical for subcellular protein trans-
portation. ASXL1 is widely expressed at low level in
heart, brain, skeletal muscle, placenta, pancreas, spleen,
prostate, small intestine, colon, peripheral blood, leuko-
cytes, bone marrow and fetal liver. ASXL1 mutation
is associated with some human cancer types such as
leukemias and Bohring–Opitz syndrome [34]. GPR87 was
suggested to contribute to the viability of human tumor
cells and overexpression of GPR87 mRNA was detected
in a number of malignant tumors, including lung can-
cer [35]. In addition, the high expression of TMEM40 is
related to malignant behavior and tumorigenesis, which
plays a key role in cell proliferation and apoptosis [36].
TMEM40 gene encodes a protein of 233 amino acids and
is located on chromosome 3p25.2. TMEM40 silencing
could dramatically suppressed cell proliferation, inhibited
cell migration and decreased tumor growth. In invasive
tumors, the overexpressed and amplified of ATAD2 has
been reported [37], ATAD2 is mapped to chromosome
8q24.13, a genomic region frequently amplified in mul-
tiple cancer types,which is highly expressed in several
different types of human tumors. while FSCN1, which
is up-regulated by SNAI2 and promotes epithelial to
mesenchymal transition in HNSC SNAI2 is key compo-
nents for protein synthesis, which promotes epithelial to
mesenchymal transition in HNSC [38], SNAI2 is usu-
ally upregulated and its high expression is associated
with decreased cell-cell adhesion, increased motility and
aggressive phenotype.

Discussion
A large number of applications on high throughput data
are applied for cancer diagnosis, clinical treatment and
prognosis prediction [39]. In many cases, the biological
networks are applied to study intertwined signaling cas-
cades, such as gene co-expression network, metabolic net-
works and protein-protein interaction networks, which
are helpful to explain the tumorigenesis [40]. Particularly,
it is a matter of common experience that such networks
seem to have community and motifs in them: subsets
of vertices within which vertex-vertex connections are
dense, but between which connections are less dense.
Recent insights emerged from the clustering modules, a
comprehensive understanding in many biological mech-
anisms has been revealed through probabilistic graphical
models which considered regulated genes and their reg-
ulatory processes [14]. Although many functional inde-
pendent modules are identified and the module inference
is effective in some methods, they are unable to exploit
the dependent relation between modules. However, in
the real biological network, gene modules may pose the
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characteristic of overlap, i.e. some genes may belong to
multiple groups, where a node might have more than one
function.
Hence, we introduce the concept of overlapping com-

munity detection into modular network reasoning. Based
on the concept of overlapping community detection
in social networks, we develop a novel co-expressed
network analysis framework that can efficiently con-
struct and analyze the large biology networks. Three
network inference models were constructed, including
Independent-Community, Dependent-Community and
Merged-Community, for representing the relationship
between diverse gene communities. By utilizing these
three models, our approach is proposed to obtain the
gene community with functional overlapping character-
istics through integrating gene expression data and PPI
data. We applied the method in six cancer data to obtain
the diverse composition of gene communities, the results
of identified communities are shown in Table 2. Accord-
ing to Table 2 we can found that DCs are the majority
of all communities, this illustrating the strong commu-
nication between communities. In order to clarify the
results of the three models, breast cancer was analyzed
in detail. First, for the Independent-Community, it can be
seen from the results (Fig. 2b) that the identified inte-
grated circuits have independent functions. Moreover, we
also validated the association of the communities with
breast cancer subtypes (Fig. 2c) as well as their association
with mutagenic processes independent of the subtyping
through the mutation behavior of the core genes with top
degrees. we can find that for a given community, each
mutation event across all the samples would markedly

enriched in specific subtypes to effectually categorize
patients. In addition, mutations in core genes do correlate
with the progression of cancer subtypes. Remarkable rela-
tion among EYA1, EYA2 and EYA3 genes with the LumB
subtype are in accordance with the previous finding that
EYA genes play an important role in breast cancer growth
and metastasis as well as directing cells to the repair
pathway upon DNA damage [41, 42]. The community
containing TP53INP1 is strongly mutated in the Her2 and
LumB subtypes (p <0.01) mainly because of mutations in
TP53INP1. Next, for the Dependent-Community, we find
Biologically, genes in the same community often coincide
with known functional modules and/or protein complexes
[43]. And our result (Fig. 3b) shows that overlapping genes
possess diverse functions and bridge dependency among
communities. Moreover, overlapping characteristics for
gene TP53 and GATA3 are illustrated in [23] in which
TP53, BRCA2 and GATA3 can response to gamma radi-
ation while gene TP53, PIK3CA and GATA3 can regulate
the process of neuron apoptotic. Finally, for the Merged-
Community, the effect of merge is found not only in the
network structure but also in the corresponding known
pathway function.
Several methods have been described, but few approa-

ches have considered the overlapping characteristic in
modules. We compared our method with a classical
clustering method K-means and an advanced method
Lemon-tree (Fig. 6). Through GO enrichment analysis,
the identified communities perform better than other
methods not only the number of GO categories with
lower p-values but also globally the p-values are lower.
Two possible reasons are presented to explain why our

Fig. 6 Gene Ontology (GO) enrichment of the co-expressed gene clusters,shows by counting the number of GO categories having a lower p-value
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Fig. 7 ROC Curves and AUC values for the top ten driver cancer-specific genes

approach has better performance. The first reason is that
our method adds the functional interaction to the rela-
tionship between genes which can enhance the interaction
between the low-linked and highly functional gene pairs.
The second reason is that we construct our framework by
considering the overlapping genes among communities.
These overlapping genes can play different functions from
the combinations of different communities. In addition,
the driver genes generated by our approach can accurately
distinguish the tumor and normal samples. Furthermore,
the prognostic prediction of patients with Kaplan-Meier
survival analysis was performed. We found that the signif-
icant different survival time is acquired on the identified
distinguishing communities.
As a next step, we plan to extend the approach using

complementary algorithms developed by other groups,
including algorithms that enhance the performance of
themodule network approach, combining proteomics and
metabolomics information as a complement to commu-
nity construction.

Conclusion
In summary, it is critical to consider the overlapping
characteristic in modules and their communication when
analyzing cancer mechanism and process. In order to

understand this module features more clearly, we develop
a novel coexpressed network analysis framework, which
employing the concept of overlapping community to con-
struct and analyze the large biology networks effectively
and efficiently. The result shows that our method bridges
the gap between communities to find the overlapping
genes that provide common functions in different com-
munities. The validity of thismethod providesmore useful
information for tumorigenesis mechanism and complex
biological network inference, and complements the exist-
ing approaches of detecting gene communities.

Methods
Datasets and pre-processing
The gene expression and copy number data for six can-
cer datasets were obtained from The Cancer Genome
Atlas (TCGA) [4]. The gene expression values were mea-
sured with Illumina HiSeqv2 platform and 2101 tumour
vs normal samples were obtained (see Table 1). The copy
number data were derived from Affmetrix SNP 6.0 arrays
and processed with GISTIC. The clinical data were also
obtained from TCGA. Protein-protein interaction (PPI)
information from the online database Search Tool for the
Retrieval of Interacting Genes (STRING) [44]. Interac-
tions in STRING are uniquely comprehensive coverage
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and ease of access to both experimental as well as pre-
dicted interaction information. From STRING, the known
interactions, proved by biological experiments, with a
combined score > 0.4 were retrieved as significant pairs
for further analysis. Due to the high heterogeneous data
for the six cancers, the Earth mover’s distance [45] was
applied to measure the overall diversity between the dis-
tributions of a gene’s expression in two classes of samples,
normal vs tumor. In our approach, for gene expression
and copy number data, the difference between two classes
(tumour/normal) in six cancers was analyzed. In gene
expression data, we chose the genes with q − values <

0.1 which represents the gene is differentially expressed
between class. And for the copy number data, the genes
with their q − values < 0.1 were selected. Finally, we
combined the filtered gene subsets.

The initial community clusters
Gibbs sampling can obtain samples from the probabil-
ity distribution without having to explicitly calculate the
value for their narginalizing integeals. It has a good per-
formance to eliminate the non transmission relationship
between genes, thus, we applied the Gibbs sampling [46]
to infer initial community clusters from a gene expression
data matrix. Therefore, due to the approximate distribu-
tion of large-scale data sets is multimodal, the mixture of
traditional Gibbs sampler may be very poor, the conver-
gence rate will be very slow, and it is difficult to consider
the full posterior distribution. the Ganesh can converge
the Gibbs sampler on large data sets. It performs non-
heuristic reconstruction of gene clusters based on the
posterior distribution of the statistical model. we used
the “ganesh” software to perform Gibbs sampling [21].
For each cancer, in an expression matrix with N genes
and M samples, iteratively updating the cluster assign-
ment of each gene and samples was performed in 5 times
with “ganesh” software (default parameters), which yields
5 partitions. For the kth Gibbs sampling, we can get a
cluster assignment matrix C(k), i.e. C(k) is an N × Sk
matrix where N is the number of genes and Sk is the
number of clusters from kth Gibbs sampling. In cluster
assignment matrix C(k), if gene i in cluster S, Ck

iS=1,
otherwise, Ck

iS=0.

Interaction network construction
Edge-weighted bipartite graph network
In this study, the gene-gene interaction network can be
regarded as an edge-weighted bipartite graph G = (N ,E)

for each cluster, whereN consists of vertices of genes (VL)
and genes (VR), E denotes the weighted edges between
gene. If the constraints between the two genes are met,
there is an edge between the two genes. Let i be the ver-
tex subscript in VL and j be the vertex subscript in VR, Eij

is an edge connecting betweenNi andNj, An example of a
gene-gene bipartite graph is shown in Fig. 8.

Edgeweight calculation
Wequantified the connections or weighted edges between
gene and gene vertices based on the initial clustering
results and STRING database, the algorithm of edge
weight calculation is described in Algorithm 1. First, we
defined an co-clustering matrix M(k) for the kth Gibbs
sampler run. In matrix M(k), Mk

ij = 1, if gene i and gene
j in a same cluster, and Mk

ij = 0, otherwise. Then, the co-
occurrence frequency matrix M was obtained from the
mean of M(k) over all K runs. In matrix M, if Mij >

0.4, which means that there is an edge between gene i
and gene j, and the edge weight Eij was equal to Mij.
Finally, the protein-protein interaction information from
the STRING database [44] was used to strengthen the cor-
relation between vertices of genes (VL) and genes (VR).
Let Pij be the weight between gene i and gene j from the
STRING database. If the weight between gene i(i ∈ VL)
and genes j(j ∈ VR) was less than Pij, the weight Eij
between gene i and gene j was updated to Pij.

Algorithm 1: The algorithm of edge weight calcula-
tion
Input: the cluster assignment matrix C(k), the

number of Gibbs samples K , the correlation
coefficient matrix P from PPI information;

Output: the edge weight matrix E;
1 for each C(k) do
2 for each gene pair g

(
i, j

)
do

3 if gene i ∈ S ,gene j ∈ S and cluster S ∈ C(k)

then
4 Mk

ij ← 1;
5 else
6 Mk

ij ← 0;
7 end
8 end
9 end

10 M ← 1
K

∑K
k=1M(k);

11 for each gene pair g
(
i, j

)
do

12 ifMij > 0.4 and Mij ≥ Pij then
13 Eij ← Mij;
14 else ifMij > 0.4 and Mij < Pij then
15 Eij ← Mij;
16 else
17 Eij ← 0;
18 end
19 end
20 return the edge weight matrix E;
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Fig. 8 An example of a gene-gene bipartite graph. The gene pairs are represented by an edge-weighted bipartite graph

Identifying high cohesive community
Cohesiveness score (CS) is defined to measure the likeli-
hood of the genes to form a gene community. A greedy
growth process were used to construct overlapping gene
communities in the gene-gene bipartite graph network G
(N, E). The algorithm consists of five steps. First of all,
the gene with the maximal degree (largest amount of con-
nections) was chosen as the initial node, and a cohesive
community was constructed by the greedy procedure. At
the end of each growth process, the algorithm considered
all genes that have not been included in any gene commu-
nity to date, and select the genes with the largest number
of connections as the next seed again. When there are
no genes remaining to be considered, the whole process
ends. The step-by-step description of the greedy growth
procedure starting from the seed node s0 is as follows:
Step 1: let S0 = {s0} and set the greedy step t = 0. Step
2: calculate the cohesiveness value CS(St) of St and let
St+1 = St . Step 3: for every external gene s incident on
at least one boundary edge with St , calculate the cohe-
siveness value CS(St

⋃{s}). If CS(St ⋃{s}) > CS(St+1), let
St+1 = St

⋃{s}. Step 4: for every internal gene s incident
on at least one boundary edge, calculate the cohesiveness
value CS(St \ {s}). If CS(St \ {s}) > CS(St+1), let St+1 =
St \ {s}. Step 5: if St �= St+1, increase t and return to step2.
Otherwise, St is regarded as a locally optimal cohesive
community. The algorithm for identifying high cohesive
community is described in Additional file 1: Algorithm S1.
The cohesiveness score is defined as follows,

CS(S) =
∑

i∈S

∑
i∈S

∑i�=j
j∈S Eij

∑
i∈S

∑i�=j
j∈S Eij +

∑
i∈S

∑
j/∈S Eij + p |S|

(1)

Where i is the gene in cluster S, Eij represents the weight
between the gene i and gene j, p|S| is a penalty term to take
into account undetected interactions in genetic networks.
The default setting of p|S| is 0.2.

Identification of community inference models
As we consider the value of overlapping score among
the gene communities, we propose three models in our
framework. Independent-Community (IC) model detects
communities that act independently on cancer. Depen-
dent community (DC)model can communicate with other
communities by searching for such gene community pos-
sessing certain gene with multiple biological functions.
Merged-Community (MC) model contains most com-
mon genes in two modules to play co-function in one
module, which is necessary to community detection for
community structure stabilization and community diver-
sity elimination. The overview of three models from our
approach is shown in Fig. 9.
The overlap score is defined to measure the proportion

of common genes in two communities (S1 and S2). The
overlap score ω between two communities is calculated as
follows,

ω(S1, S2) = |S1 ∩ S2|2
|S1| |S2| (2)

Given a threshold ω, community S1 and community S2
with high cohesiveness score (CS). If the overlap score is 0,
we call it an independent community model. The commu-
nity is called a dependent community when ω(S1, S2) <

ω, and community S1 and community S2 are reserved
as two dependent communities. Otherwise, it is called
a Merged-Community module, and community S1 and
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Fig. 9 Overview of three overlap situations for which our method was processed. In this network, the same letter represents the same node, and
different letters represent different nodes. a Independent-Community model: the overlap score of two gene communities S1 and S2, ω(S1, S2) = 0.
b Dependent-Community model: ω(S1, S2) < ω and ω(S1, S2) > 0. ω is a positive thereshold. cMerged-Community model: ω(S1, S2) ≥ ω. ω is a
positive thereshold

community S2 are merged into one community (S). This
threshold ω can be determined based on the results of
Gene Ontology (GO) enrichment. In this study, we set ω

= 0.8.

Survival analysis
The association of gene expression level with the patient
survival in each community was analyzed by Cox propor-
tional hazard model [47], and it was performed using the
function coxph (R package survival). Only patients with
fully characterized tumors and with at least 30 days of
overall survival (OS) were included in this study. Cancer
samples were divided into high-expression group and low-
expression group based on the average expression value
of each community. The difference between these two
classes of patients was acquired by using the Kaplan-Meier
estimator and log-rank method.

Comparison benchmark for Lemon-Tree, K-Means and our
method
Gene Ontology (GO) enrichment was performed using
the BiNGO Java library [48]. The comparison of the
K-Means [49], Lemon-Tree [21] and our approach was
conducted by computing the p-value and corrected
p-value. Enriched ontological terms with the corrected
p-value <0.05 were selected. For these three methods,
the K-Means method ignores that there is often a lot
of noise in biological data and cannot automatically
determine clustering parameters. Lemon-Tree combines
multiple omics data to use the idea of gene network
reconstruction to infer the initial modules, but only
considers independent modules. However, in real bio-
logical networks, gene modules may have overlapping
characteristics. Our method takes this characteristics into
account.

In silico validation
For each cancer, we selected the regulating genes. Clas-
sification of normal tumor samples using the SVM
model (https://cran.r-project.org/web/packages/kernlab/
index.html) [50–52]. The area under curve (AUC) and
Receiver Operating Characteristic (ROC) curves were

employed to measure the performance by a cross-
validation method (k-fold cross-validation, k = 10). We
adopted the following parameters: type="C-bsvc", C (cost
of constraints violation)=10.
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