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Abstract

Background: The identification of differentially expressed genes (DEGs) is an important task in many biological
studies. The currently widely used methods often calculate a score for each gene by estimating the significance level
in terms of the differential expression. However, biological experiments often have only three duplications, plus plenty
of noises contain in gene expression datasets, which brings a great challenge to statistical analysis methods.
Moreover, the abundance of gene expression levels are not evenly distributed. Thus, those low expressed genes are
more easily to be detected by fold-change based methods, which may results in high false positives among the DEG
list. Since phenotypical changes result from DEGs should be strongly related to several distinct cellular functions, a
more robust method should be designed to increase the true positive rate of the functional related DEGs.

Results: In this study, we propose a two-way rectification method for identifying DEGs by maximizing the
co-function relationships between genes and their enriched cellular pathways. An iteration strategy is employed to
sequentially narrow down the group of identified DEGs and their associated biological functions. Functional analyses
reveal that the identified DEGs are well organized in the form of functional modules, and the enriched pathways are
very significant with lower p-value and larger gene count.

Conclusions: An integrative rectification method was proposed to identify key DEGs and their related functions
simultaneously. The experimental validations demonstrate that the method has high interpretability and feasibility. It
performs very well in terms of the identification of remarkable functional related genes.
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Background
High-throughput experiments make it possible to evalu-
ate the expression levels for thousands of genes in bio-
logical samples [1]. Gene expression data can reflect the
gene expression level of the sample to be analyzed under
different experimental conditions. Detecting differentially
expressed genes (DEGs) across different experiments con-
ditions is an essential step and sometimes the major goal
in the statistical analysis of expression data [2]. It helps to
understand the function of genes when cells respond to
different conditions [3]. In addition, detecting DEGs can
be a pre-step for clustering gene expression profiles or
testing gene set enrichments [4, 5].
Numerous methods have been developed for identify-

ing DEGs. A typical approach based on fold change (FC)
[6, 7] calculates a ratio of the average expression values
between control and test samples, where the threshold of
2-fold are usually employed to select genes under or above
the threshold as DEGs [8]. Since the biological experi-
ments often have limited number of duplications, plus
plenty of noises contained in gene expression datasets,
which makes the detection of FC based methods a lit-
tle bit arbitrary [9]. To overcome this, many statistical
approaches such as t-test, significance analysis of microar-
rays (SAM), etc, then become popular by modeling the
distributional properties of gene expression levels. The
SAM [10] method imposes a restriction on the variabil-
ity of the genes by adding a value to the denominator of
the t-statistic, excluding the genes that do not change or
with high p-value. Another popularly used method called
Moderated t-statistic (ModT) [9, 11] uses a t-distribution
with augmented degrees of freedom. It is the integration
of linear model with empirical Bayes, aiming to obtain a
p-value for each gene and choose a feasible false discovery
rate (FDR). These methods can calculate a score for each
gene, and each of them can result in a ranked list of genes
in order of their estimated significance level [12]. The per-
formance of the statistics based algorithms depends on
the number of available duplications. If there are less num-
ber of duplications in biological experiments, it is difficult
to assume the distribution of data from a statistical point
of view. Although the above methods combine mean and
sample variance with the availability of p-values in cope
with the high level of noise of dataset, they ignore the
interactions between genes and obtain a set of isolated
genes in a biomolecular network that are easily enriched
in many unrelated biological functions, which is hard to
analyze those genes’ functions from a system biology point
of view and may become less efficiency to detect DEGs.
There are also methods that attempt to take into

account the interactions between genes to reduce the
effects of uneven distribution of the dataset. An influen-
tial approach called Characteristic Direction (ChDir) [12]
towards the resolution of relationships between genes to

increase statistical power. It incorporates a regularization
scheme to maximize the use of dimensional information
in expression data. Besides, the method provides an intu-
itive visualization of differential expression in terms of one
single direction, which facilitates our subsequent analy-
sis. The Min-Edge [13] method proposed in our previous
study takes the interactions between genes into consid-
eration, and detects DEGs based on the evaluation of
differentially expressed edges, which is very useful for
finding key genes related to disease.
We believe that giving two experimental conditions,

DEGs should be involved in a certain biological function
and may lead to a certain disease or phenotypic changes.
Besides, they should be enriched in several distinct func-
tions, such as functional related cellular pathways, GO
terms or some common cellular functions [14]. More-
over, these pathways or functions should strongly related
to each other under the biological experiment conditions.
Thus, in this study, we propose a novel two-way rectifica-
tion method to narrow down a set of potential genes and
their associated cellular functions iteratively. The method
starts from a set of high-confidence genes detected by any
existed method, then one-way rectification is performed
to search for the enriched cellular functions by conducting
the genes into pathway enrichment analysis. Thirdly, an
opposite direction of rectification is performed to rectify
the DEG list by adding the meaningful genes that strongly
related to target functions and removing the useless genes
that related to only isolated functions. After conducting
several rounds of this two-way rectification process, a set
of closely related DEGs and pathways could be narrowed
down by maximizing their co-function relationships.
The overall framework of the proposed two-way recti-

fication method is illustrated in Fig. 1, where the cycle
nodes represent a set of DEGs, and the diamond nodes
represent the enriched pathways. Edge connects between
a gene and a pathway means the gene is one of the
annotated genes in that pathway.

Results
The performance of the proposed method for finding
DEGs from microarray datasets is evaluated using “Plat-
inum Spike” and GSE41089 dataset. “Platinum Spike”
dataset with ground truth information is used for the
comparison of performance of proposed method with
other gene selection methods. The microarray dataset
with accession GSE41089 is used to validate the ability of
designed method through biology point of view. The per-
formance of the proposed method is further applied and
compared with various gene detection algorithms, such as
the ModT and Min-Edge.
The data of four groups (ModT, Two-way rectifica-

tion using ModT, Min-Edge, Two-way rectification using
Min-Edge) are divided into two comparisons (ModT vs
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Fig. 1 The principle of this two-way rectification. The color of expression data represent the different expression values of genes in control and test
samples. The solid dot nodes represent a set of DEGs, and the diamond nodes with blue color represent those enriched pathways. The color of circle
node depicts the differential expression level of the gene, the more significant the differential expression level of the gene, the closer the color of
the node to red. Edge connects between a gene and a pathway means the gene is one of the annotated genes in that pathway. The thicker the
edge, the closer the relationship between the gene and the pathway

Two-way rectification usingModT,Min-Edge vs Two-way
rectification using Min-Edge), where Two-way rectifica-
tion using ModT means the initial genes of Two-way
rectification is selected from ModT. Similarly, the Two-
way rectification using Min-Edge means the initial genes
of Two-way rectification is selected fromMin-Edge.

The “Platinum Spike” dataset
Sensitivity verification of the parameters
In this section, we construct PPI networks based on the
detected DEGs under different parameters of n, m and i.
The ratio of the number of genes contained in the largest
connected component in the PPI network to the num-
ber of DEGs detected at the ith round of rectification is
used as the connectivity of the network. The connectivity
of the network reflects whether these detected genes are
contribute to the necessary biological processes.
We execute the algorithm with n from 1 to 100,m from

0.01 to 0.1. Because of each values of parameters corre-
spond to a sub-figure, so we give part of the results in
this paper, results ofm = 0.05 andm = 0.1 under different
values of n. Figure 2 shows the changes of the connec-
tivity of the PPI network constructed by DEGs found by
each method under the corresponding parameters. From
Fig. 2a, for the first (i = 1) round of rectification with
m = 0.05, we can see that when select the a smaller
number of candidate genes from initial gene list, even no
genes have PPI correlations of each method. For the sec-
ond (i = 2) round of rectification, we can conclude that
the connectivity of network obtained by Two-way recti-

fication using Min-Edge is higher than Min-Edge first,
but the connectivity of the network decreased with the
increasing number of DEGs, which is due to the genes
detected by Two-way rectification using Min-Edge con-
tribute to some functional pathways but the centrality of
genes in PPI network is small. Besides, it depicts the algo-
rithm is not stable enough with smaller n. Moreover, the
connectivity of the network is well performed when n ∈
(20, 100), which reflects the genes obtained by Two-way
rectification based method are strongly interact with each
other. When the number of initial genes n ∈ (80, 100),
the algorithm obtained a lot of genes, these genes may
co-expressed in the biological mechanisms because of the
good influence on the connectivity of network. Consid-
ering the sensitivity of this convergence algorithm, we
suggest that the values of n should be in (20, 80).
Figure 2b shows the connectivity of network with m =

0.1. Similarly, we can find that at the ith round of rectifica-
tion, the Two-way rectification using Min-Edge performs
well than Min-Edge, the Two-way rectification using
ModT performs well than ModT. Comparing the Fig. 2a
with b, more interacted genes can be detected when the
values ofm is 0.1 than 0.05.

Accuracy validation of themethods
The gene selection methods are employed for finding the
DEGs based on differential expression between two exper-
imental groups. And these two experimental groups are
compared in terms of the AUC (area under the receiver
operating characteristic (ROC) curve) scores. Algorithm
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Fig. 2 The connectivity of PPI networks constructed by DEGs at the ith round of rectification under different parameters. The PPI connectivity is the
ratio of the number of nodes in the largest connected component of the PPI network to the number of DEGs generated at the ith round of
rectification. The x-axis represents the number of initial gene list of the Two-way rectification, while the y-axis represents the connnectivity of PPI
network constructed by DEGs obtained at the ith round of rectification. a shows the connectivity results of each method whenm = 0.05, n ∈ (1,
100). b depicts the connectivity results of each method whenm = 0.1 and n ∈ (1, 100)

with the highest AUC score performs the best. We com-
puted true positive rate (TPR) as the number of true
DEGs, true positive over the 1690 ground-truth DEGs,
and the number of false positive gene (FPR) over the 11234
genes that are not differentially expressed, over all of the
12924 genes.
Figure 3 shows the results of the ROC curves and

the corresponding AUC scores of Two-way rectification
using Min-Edge, Min-Edge, Two-way rectification using
ModT and ModT, respectively. According to the figure,
these four algorithms achieved AUC scores of 0.943028,
0.842122, 0.839329 and 0.801652, respectively, among
which the AUC score of Two-way rectification using Min-
Edge is higher than Min-Edge, and the AUC score of
Two-way rectification using ModT is higher than the
competing algorithmModT.

The dataset of mice infected with T. cruzi
The number of identified DEGs
By conducting the ModT and Min-Edge algorithm on
8088 genes, 1565 and 1864 ranked DEGs are detected as
the candidate genes, respectively. Based on these data, we
select the top n DEGs from each method and regard them
as the start gene list of the two-way rectification method.
We execute the algorithm on the dataset with different
values ofm and n. As is illustrated in previous section, we
choose the result of middle value with n = 20, n = 50,
m = 0.05, m = 0.1, i ∈ (1, 9) as display in Table 1. When
we select the top 20 ranked genes detected by ModT
method as the initial gene set of two-way rectification, we
obtain 38 DEGs after the first (i = 1) round of rectifica-
tion by using m = 0.05 while 84 genes are obtained after
the second (i = 2) round of rectification. We can con-
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Fig. 3 ROC curves of the four gene selection methods on the dataset of Platinum Spike. The red, orange, blue and purple lines depict the ROC
curves of Two-way rectification using Min-Edge, Min-Edge, Two-way rectification using ModT and ModT, respectively. The AUC value of Two-way
rectification using Min-Edge is 0.943028, which is higher than that of the other three algorithms

clude that the number of DEGs be larger as the algorithm
iterates more rounds.
As is clearly shown in Table 1, the number of DEGs is

proportional to the selection of n, and m at the ith round
of rectification. The larger the value of n andm we set, the
larger the number of final DEG set will be obtained under
the same conditions. When taking the same number of
n genes from Min-Edge and ModT method, respectively,
it is found that two-way rectification will get more genes
from Min-Edge than from ModT after the ith round of
rectification, since two-way rectification approach based
on the pathway which takes the interactions between
genes into consideration and provides the ranked genes
correlated with functions while ModT only provides the
isolated ranked genes.

Connectivity of PPI networks constructed by DEGs
PPI networks based on the detected DEGs under the dif-
ferent parameters are constructed for systematically view
of connectivity. The number of DEGs in each largest con-
nected network reflects whether these remarkable genes
are involved in necessary biological mechanisms [15].
According to the results shown in Table 1, we compare

ModT (Min-Edge) with two-way rectification in terms of
the same number of DEGs obtained at the ith round of
rectification. To be more specific, we select the top n =
20 ranked genes from ModT method as the initial gene
set of two-way rectification and obtain 38 DEGs after the
first round of rectification of the proposed approach with
m = 0.05. Then select the same number of 38 DEGs
from ranked genes identified by ModT method for the

Table 1 DEGs detected by two-way rectification method through ModT and Min-Edge, respectively

Method n m
Two-way rectification

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

ModT 20 0.05 38 84 146 221 297 384 469 549

0.1 69 167 316 487 650 802 944 1068

50
0.05 68 119 195 272 353 441 522 603

0.1 113 264 427 582 733 873 1003 1122

Min-Edge 20 0.05 54 129 215 305 393 469 554 637

0.1 96 255 427 600 760 907 1043 1167

50 0.05 91 174 266 355 435 522 598 676

0.1 154 335 507 668 820 961 1091 1213
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comparison of the two methods. PPI network then be
constructed based on these two 38 DEG lists, respec-
tively. After removing the genes with smaller degree in the
network, we extract the number of nodes in the largest
connected component. As a result, 16 nodes among 38
DEGs are detected by the ModT method are involved
in the largest connected component, whereas 34 nodes
are found by two-way rectification. Similarly, we give the
comparison of Min-Edge vs two-way rectification using
Min-Edge in terms of the connectivity of the PPI networks
at each round of rectification.
Figure 4a-d shows the comparison of connectivity of the

largest component constructed by DEGs at each round
of rectification between methods. Node in line means
the number of genes in the largest connected network
constructed by DEGs obtained at the ith (i=1, 2, ..., 8)
round of rectification. When it comes to the samem visu-
alized in Fig. 4c and d, at each round of rectification,
the number of genes contained in the largest connected

network when n = 50 is larger than n = 20 in each
comparison. To be more specific, when m = 0.05,
i = 1, n = 20 shown in Fig. 4c, 16 nodes among
38 DEGs detected by the ModT method are involved
in the largest connected component, whereas 34 nodes
are found by two-way rectification. When m = 0.05,
i = 1, n = 50 shown in Fig. 4d, 32 genes among 68
DEGs detected by ModT are contained in the largest
connected component, whereas 61 nodes are found by
two-way rectification. Similarly as Fig. 4a and b in the case
ofm = 0.1.
When taking the same n = 20 genes as the start gene

list of two-way rectification as Fig. 4a and c depict, the
number of genes contained in the largest connected com-
ponent obtained by each comparison at each round of
rectification with m = 0.05 is smaller than with m = 0.1,
which means the scale of the final genes list depends on
the expansion factorm. Experiments show that the results
ofm = 0.1 contain the most results ofm = 0.05.

Fig. 4 The connectivity of PPI networks constructed by DEGs at the ith round of rectification. The data of four groups (ModT, Two-way rectification
using ModT, Min-Edge, Two-way rectification using Min-Edge) are divided into two comparisons (ModT vs Two-way rectification using ModT,
Min-Edge vs Two-way rectification using Min-Edge). The x-axis represents the number of DEGs generated at the ith round (i=1, 2, ..., 8) of rectification,
while the y-axis represents the number of genes in the giant connected component of the PPI network constructed by these DEGs obtained
through each round of rectification. The value of n represents the number of initial value of start genes of the two-way rectification method, while
them represents the ratio of DEGs that can be extended by the two-way rectification method at each round of rectification. a depicts the results at
m = 0.1 and n = 20 between these methods. b depicts the results atm = 0.1 and n = 50 between these methods. c depicts the results at
m = 0.05 and n = 20 of two comparisons. d depicts the results atm = 0.05 and n = 50 of two comparisons. Purple line: the result of the ModT
method. Blue line: the result of the two-way rectification of which the start gene list is selected from ModT method. Red line: the result of the
two-way rectification of which its initial gene list is selected from Min-Edge method. Yellow line: the result of the Min-Edge method
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When m = 0.1, n = 20 shown in Fig. 4a, we found
that at each round of rectification, there are more genes in
the largest component obtained by two-way rectification
using ModT than by ModT, which depicts the PPI net-
work obtained by two-way rectification is more connected
than by ModT. Similarly, the PPI network is significantly
connected in two-way rectification using Min-Edge com-
pared to that inMin-Edge. The other three figures in Fig. 4
have same efficiency about this.
These results suggest that almost all the genes detected

by two-way rectification method involve in the largest
connected components of network, and reveal that these
genes with closely correlationsmay play important roles in
the activation of functional characteristics inmechanisms.

KEGG pathway enrichment analysis
Previous discussion confirms that the number of differ-
entially expressed genes is proportional to the value of n

and m in our method. In order to ensure the credibility
and functional sensitivity of the differentially expressed
genes, we give the results of taking different values for
each parameter. In this section, we select the results when
i = 6, n = 50 and m = 0.1 as an example for subsequent
analysis.
When i = 6, n = 50 and m = 0.1, we obtain 873 DEGs

by performing two-way rectification using ModT, while
961 DEGs are obtained by two-way rectification method
when using the initial set of top 50 genes from the Min-
Edge method. KEGG pathway analyses for the 873 (961)
known DEGs from the two comparisons are performed,
taking out the top 5 significant pathways of the ModT
(Min-Edge) method and the two-way rectification using
ModT (Min-Edge) respectively, and get 8 pathways after
taking the combination for each comparison, as Fig. 5
shows. Figure 5a illustrates that for each enriched path-
way, the p-value of which is smaller and it can annotate

Fig. 5 KEGG pathway enrichment analyses of DEGs. The dark color squares represent the number of annotated DEGs found in each pathway, while
the light color squares represent the p-value of the pathway. a shows the comparison between the ModT method and the two-way rectification
method using its DEGs. b depicts the comparison of the Min-Edge method and the two-way rectification method using Min-Edge
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more DEGs by using the two-way rectification method,
compared to that by using the ModT method. Figure 5b
gives the comparison of DEGs between Min-Edge and
two-way rectification method of which the start genes get
from Min-Edge. For cytokine-cytokine receptor interac-
tion pathway, there are more genes annotated and the
pathway is more significant with smaller p-value enriched
by two-way rectification than by ModT or Min-Edge. The
results demonstrate that the pathways obtained by the
two-way rectification method tend to be more significant
with lower p-value and a large number of genes, among
which are mainly likely to play important roles in the
development of organisms.

Discussions
Strong associations between pathways and T. cruzi infection
The gene expression dataset [16] we used in current study
is generated to study the Trypanosoma cruzi infection on
mice, with which the Chagas disease related pathways is
strongly associated.We reviewed the literature and cated a
catalog of some significant pathways including chemokine
signaling pathway, cytokine-cytokine receptor interaction
pathway, Toll-like receptor signaling pathway, NOD-like
receptor signaling pathway and Chagas disease pathway,
etc [16–19], whichmay contribute to pathogenesis of Cha-
gas disease through the stimulation of proinflammatory
cytokines and chemokines, leading to systemic alterations
during the infection with T. cruzi parasites.
The DEGs detected by each method can enrich into

the Chagas disease related pathways mentioned above.
Table 2 shows the p-value corresponding to the pathway
enriched by each method and the number of DEGs it
annotates. We can see from the table that each method
can enrich these pathways, among which the two-way
rectification is more significant than the others, which
demonstrate the genes we obtained by two-way rectifica-
tion have high confidence in disease infection. Moreover,
by using the two-way rectification, one can tend to enrich
in a list of significant pathways with very low p-value and

a large number of genes, such as cytokine-cytokine recep-
tor interaction and Chagas disease pathway, which are
strongly responsible to their real experiment conditions.
We thus extract the well-known Chagas disease path-

way at each round of rectification for further observation.
Figure 6 depicts that the two-way rectification of which
initial gene list from ModT with lower p-value and more
Chagas disease related genes compared with ModT at
each round of rectification. When the initial gene list
selected from Min-Edge, the two-way rectification also
performs better than Min-Edge, which indicates that the
genes obtained at the ith (i=1, 2, ..., 8) round of rectification
are more concerntrated in Chagas disease. Besides, the
two-way rectification method result in a significant level
increase in the susceptibility to T. cruzi infection after the
ith round of rectification, revealing useful roles of DEGs
detected by this way in againsting Chagas disease.

Identification of guilted DEGs for pathways
The number of DEGs obtained by two-way rectification
using Min-Edge after the sixth rectification is 961 when
n = 50, m = 0.1, among which 173 significant path-
ways are enriched. The interaction network between these
pathways and DEGs is constructed to unravel the asso-
ciations between key genes and functions by two-way
rectification method of which the initial genes is obtained
fromMin-Edge. Edges in the network represent the genes
contained in the corresponding pathways. The size of the
node corresponds to the number of links, which reveals
whether it is a significant pathway or functional related
gene. After removing the genes with smaller degree, we
obtained a network with 33 hub DEGs, 33 pathways and
497 edges.
Figure 7 presents the associations between key pathways

and DEGs detected by the proposed two-way rectification
method. Each gene in the network has strong interac-
tions with multiple cellular pathways, which indicates its
potential probability as a driver gene of diseases due to its
key role in the interaction network [20]. Previous studies

Table 2 Chagas disease related pathways

Pathways

ModT Two-way rectification
using ModT

Min-Edge Two-way rectification
using Min-Edge

p-value count p-value count p-value count p-value count

Chagas disease (American trypanosomiasis) 1.88E-09 23 8.90E-14 38 1.16E-14 35 1.37E-36 64

Chemokine signaling pathway 9.88E-09 32 2.46E-19 65 5.01E-13 48 1.75E-31 85

TNF signaling pathway 3.02E-09 24 1.42E-13 40 7.69E-19 42 9.91E-31 62

T cell receptor signaling pathway 2.31E-09 23 1.83E-09 32 1.99E-11 31 1.10E-30 59

Cytokine-cytokine receptor interaction 5.17E-15 52 2.02E-24 91 4.91E-21 75 4.15E-28 102

Toll-like receptor signaling pathway 1.01E-09 23 5.94E-10 32 4.05E-15 35 9.82E-25 52

NOD-like receptor signaling pathway 4.22E-06 28 2.16E-06 43 8.53E-11 46 2.95E-16 66
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Fig. 6 Chagas Disease pathway. The y-axis represents the times of execution of algorithm. Node represents the Chagas disease pathway acquired by
each method at the ith (i=1, 2, ... , 8) round rectification, the size of which is proportional to the number of DEGs bearing it. The color of node denotes
-log10(p-value) of the pathway enriched by each method, where red represent the most significant the pathway is

have identified the significant genes of T. cruzi infection
related pathways, such as TLR-2, TLR-4, TLR-7, IL-1β ,
NAIP5, MYD88 and NOD1, and the genes of NLRs such
as NLRP3, etc [16–19, 21], which have been recognized
as the crucial for host resistance against T. cruzi infection
by mechanisms. According to these known information,
DEGs (CASP2, CASP8, NOD1, MYD88, TLRs, IL-1s,
NAIPs) involved in Chagas disease here are screened,

which have been proven to be correlated with the acti-
vation or inhibition of multiple Chagas disease related
pathways [22].
As expected, these genes are well mapped into the Cha-

gas disease related pathways, which reveals these iden-
tified genes have emerged as important components of
these signaling pathways that account for detection of
intracellular microbial infection. AndDEGs obtained after

Fig. 7 The association network between pathways and DEGs. Cycle nodes in the middle represents the detected DEGs, size of which corresponds to
the number of links. Square nodes besides the genes are enriched pathways, the color of which denotes the p-value of the enriched pathway, the
larger the square node, the more genes are annotated in this pathway
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the sixth rectification by two-way rectification method
provides a list of significant genes which may competent
at producing cytokines for the inflammasome in the host
protection against T. cruzi.

Conclusions
We have described a novel idea to identify DEGs by max-
imizing the co-functions between genes and pathways
simultaneously. The method starts with known candi-
date genes and integrates pathway enrichment to obtain
functional related genes. The basic assumption of the
algorithm is the top ranked genes involved in pathways
should play important roles in cellular functions.
To validate the feasibility of the proposed method, we

use “Platinum Spike” dataset with ground truth informa-
tion to compare the performance of proposed method
with other gene selection methods, and the microarray
dataset with accession GSE41089 is used to validate the
ability and interpretability of designed method through
biology piont of view. We identified the candidate genes
and pathways related to Chagas disease for resisting T.
cruzi, it is found that CASP2, CASP8, NOD1, MYD88,
TLRs, IL-1s, NAIPs, etc, would be responsible for the T.
cruzi infection. In addition, T. cruzi infection is regulated
and mediated by genes related to chemokine signaling
pathway, cytokine-cytokine receptor interaction pathway,
Toll-like receptor signaling pathway, NOD-like recep-
tor signaling pathway and Chagas disease pathway, etc.
These findings establish the groundwork and imply that
although the procedure relies on the genes that identified
by existed methods, the proposed method outperforms
other approaches in selecting functional related DEGs
from microarray data, and it has high performance in
either the number of DEGs enriched in pathways or the
functionality of DEGs.
Given its excellent performance, we believe that the pro-

posed method may shed new light on relevant biological
mechanisms that would have remained undiscovered by
the current methods. Further experiments will be focused
on powerful larger samples with biological interpretation
in identifying differentially expressed genes.

Methods
Data sources
The “Platinum Spike” dataset is downloaded from
the National Center for Biotechnology Information
Gene Expression Omnibus (GEO) website (accession
GSE21344) [23] that consists of 18 spike-in samples (9
controls versus 9 tests). The designated FC associated
file [24] contains 18952 probes, among which 1940 are
known as differentially expressed probes. The robust
multi-array average (RMA) method is used to normal-
ize the probes. After data cleaning steps, we obtained
12924 genes, among which 1690 genes are known DEGs.

The dataset can help us to validate the sensitivity of the
proposed method and to evaluate the performance of
different methods.
The second dataset is downloaded from the GEO

website under the accession number GSE41089 [16].
This dataset contains 22,690 probe sets, 3 samples from
uninfected mice (control), and 3 samples from infected
mice (test). The probe-level data is analyzed using the
MAS 5.0 [25] algorithm for the determination of the
chip quality, including intensity value background cor-
rection, log2 transformation, and quantile normaliza-
tion [26, 27], etc. The results of interest are confirmed
through the robust R language affy Bioconductor pack-
age (https://www.bioconductor.org/). After these prepro-
cessed steps, 8088 genes are retained for further analysis.
The pathway dataset of mouse and drosophila

melanogaster is obtained from the database of KEGG.
There are 317 pathways of mouse, and the total number of
genes consisting of those pathways is 8578. Among them,
3492 genes are overlapped with the above 8088 genes.
For drosophila melanogaster, there are 137 pathways and
5659 genes are involved in those pathways. Among them,
2383 genes are overlapped with the above 12924 genes.
The protein-protein interactions (PPIs) [28] dataset of

the mouse and drosophila melanogaster is derived from
the database of STRING [29] with a much larger num-
ber of associations. In this study, only PPIs between those
8088 genes and 12924 genes are selected to construct a
PPI network and the score criterion is 0.4. After deleting
the duplicated edges between the same pair of nodes and
the edges connecting to itself, there are 7028 genes with
220817 edges for mouse and 11052 genes with 375793
edges left in this study.

The two-way rectification method
Algorithm 1 gives the details of the presented DEGs iden-
tification method.
Giving two sets of control and test samples. Let DEGs-

ik and Pathway-i represent different versions of the set
of DEGs and pathways at the ith round of rectification,
respectively, where k = 1, 2. The gene expression of higher
species is not only tissue-specific and development-stage
specific, but also affected by environmental factors. The
genes expressed in a single cell account for only 15%
of the total number of genes. These expressed genes
include the expression of newly emerging genes and the
expression value of genes with different expression lev-
els. That means the number of truth DEGs is less than
15% or even less. Thus, we suppose the number of
DEGs should less than the 15 percent of the research-
ing data, or even less. We proposed Ng as the 15 per-
centile of the number of the genes consist in research-
ing data, which could more than the number of real
DEGs.



Chen et al. BMC Genomics          (2021) 22:471 Page 11 of 13

Algorithm 1: Two-way rectification
Input:m: expansion factor;

L: the ranked gene list;
n: the number of genes that is firstly chosen;
i: the number of the rounds with the
rectification, initialize i = 1;
Ng : the maximum number of DEGs as the
termination condition.

Output: Updated functional related genes setDEGs-i2.
1 select top n ranked genes as DEGs-i1;
2 while NDEGs−i1 ≤ Ng do
3 conduct DEGs-i1 into KEGG pathway;
4 select the siginificant enriched pathways as

Pathways-i;
5 calculate U and C according to Pathways-i;
6 calculate DEGs-i2 by C, U ;
7 regard DEGs-i2 as DEGs-i1, DEGs-i1 = DEGs-i2;
8 i = i + 1;
9 return DEGs-i2, Pathways-i, i;

The two-way rectificationmethod is designed to narrow
down a set of DEGs and their related cellular functions,
the algorithm is summarized as follows and the Fig. 8
shows the details.

1. The initial DEG list. Since the proposed method
relies on an existing DEGs identification approach,
firstly we need to use an existing method (such as
SAM) to calculate a differential score for each gene,
and order these genes according to these differential
scores and denote these ranked genes as L. For the
input of the algorithm, the top n genes are selected as
the initial candidate genes DEGs-i1, where i
represents the number of rounds with rectification, n
represents the number of DEGs that is firstly selected
from all candidate genes.

2. One-way rectification. This step aims to obtain a
set of high-confidence pathways accroding to the
genes. As is shown in Fig. 8, for the ith round of
rectification, we use DEGs-i1 to conduct a KEGG
pathway [30, 31] enrichment analysis and obtain a
list of significant pathways Pathways-i. We found a
subset of DEGs-i1 are annotated in Pathways-i, we
select and order these genes as the set U. However,

Fig. 8 The details of the two-way rectification. The cycle nodes with color corresponding to the ranked genes that sorted according to the
differential score, where the larger the differential score, the redder the color. Pi1 or Pi2 in a is a subset of P

′
i1 or P

′
i2 in b, cause only part of related

genes will be found when conduct a gene list (such as DEGs-i1) into KEGG pathway enrichment, whereas P
′
i1 or P

′
i2 has more genes itself
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for each pathway in KEGG database, it includes but
not only the genes in the set DEGs-i1, but also
contains many annotated genes that are not shown in
Pi1 or Pi2, so we rank these genes as set C.

3. An opposite direction of rectification. Once the
Pathways-i is obtained, the DEGs-i1 list is updated
by adding high confidence genes through the
equation defined below,

D = m ∗ (|C|\|U|). (1)

Then the isolated functional related genes contained
in DEGs-i1 and U are removed. The DEGs of D are
obtained through the equation (1), where |C| and |U|
represent the number of genes in C and U ,
respectively. The parameter m is a factor that
controls the scale of expansion of DEGs-i1, which
can help to reduce the noise arising from some weak
functional related genes. It should be noticed that we
aim to find genes that are strongly related to target
functions. Hence, the value of m is usually very small.
By doing this, the set of candidate functional hub
genes is:

DEGs-i2 = U ∪ D (2)

Thus, genes in the set of DEGs-i2 are regarded as
new candidate function-related DEGs.

4. Output. Let NDEGs-i2 be the number of genes in the
set of DEGs-i2. Let DEGs-i1 = DEGs-i2, i = i + 1,
repeat the step 2, 3, until NDEGs-i1 ≤ Ng . Through
the above steps, we finally get an updated set
DEGs-i2 and Pathways-i, where DEGs-i2 are
strongly related to functions in Pathways-i.
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