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Abstract 

Background: Gene expression is regulated by transcription factors, cofactors, and epigenetic mechanisms. Coex-
pressed genes indicate similar functional categories and gene networks. Detecting gene-gene coexpression is impor-
tant for understanding the underlying mechanisms of cellular function and human diseases. A common practice of 
identifying coexpressed genes is to test the correlation of expression in a set of genes. In single-cell RNA-seq data, an 
important challenge is the abundance of zero values, so-called “dropout”, which results in biased estimation of gene-
gene correlations for downstream analyses. In recent years, efforts have been made to recover coexpressed genes in 
scRNA-seq data. Here, our goal is to detect coexpressed gene pairs to reduce the “dropout” effect in scRNA-seq data 
using a novel graph-based k-partitioning method by merging transcriptomically similar cells.

Results: We observed that the number of zero values was reduced among the merged transcriptomically similar cell 
clusters. Motivated by this observation, we leveraged a graph-based algorithm and develop an R package, scCorr, to 
recover the missing gene-gene correlation in scRNA-seq data that enables the reliable acquisition of cluster-based 
gene-gene correlations in three independent scRNA-seq datasets. The graphically partitioned cell clusters did not 
change the local cell community. For example, in scRNA-seq data from peripheral blood mononuclear cells (PBMCs), 
the gene-gene correlation estimated by scCorr outperformed the correlation estimated by the nonclustering 
method. Among 85 correlated gene pairs in a set of 100 clusters, scCorr detected 71 gene pairs, while the nonclus-
tering method detected only 4 pairs of a dataset from PBMCs. The performance of scCorr was comparable to those 
of three previously published methods. As an example of downstream analysis using scCorr, we show that scCorr 
accurately identified a known cell type (i.e., CD4+ T cells) in PBMCs with a receiver operating characteristic area under 
the curve of 0.96.

Conclusions: Our results demonstrate that scCorr is a robust and reliable graph-based method for identifying cor-
related gene pairs, which is fundamental to network construction, gene-gene interaction, and cellular omic analyses. 
scCorr can be quickly and easily implemented to minimize zero values in scRNA-seq analysis and is freely available at 
https:// github. com/ CBIIT- CGBB/ scCorr.
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Background
Single-cell RNA sequencing (scRNA-seq) enables tran-
scriptome profiling at high cell resolution and provides 
unprecedented precision in identifying the molecu-
lar mechanisms underlying disease [1, 2]. Advances in 
scRNA-seq have promise for uncovering novel or rare 
cell types [2, 3], tracking the trajectories of cell lineages 
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during cell development [4], and identifying cell type-
specific genes for diseases [5, 6] and for cancer treatment 
responses [7]. However, computational scRNA-seq anal-
ysis remains challenging, which limits the applications of 
scRNA-seq for biological discovery.

A central challenge to cell type identification and 
downstream analysis is the abundance of zero values, 
known as “dropout”, in single cells due to either low tran-
script copy number [8] and/or ineffective capture capac-
ity of scRNA-seq technology [9, 10]. scRNA-seq typically 
captures only 5–15% of the transcriptome of each cell 
[11]. Dropout causes significant zero inflation, increas-
ing background noise, which leads to loss of detection of 
gene-gene correlations crucial to gene network construc-
tion and determination of lineage relationships among 
cells.

Considerable computational effort has been expended 
to address scRNA-seq dropout [12–17]. One approach 
is to aggregate cells using small proportions of highly 
variable genes that are heavily weighted in analysis [18]. 
Another approach is to impute zero values [13, 14, 19]. 
For example, DeepImpute employs a deep neural net-
work imputation algorithm that uses dropout layers to 
identify patterns in scRNA-seq data to impute zero val-
ues [12]. Markov affinity-based graph imputation of 
cells imputes likely missing expression data to detect the 
underlying biological structure via data diffusion [20]. A 
newly developed algorithm embraces zero values based 
on binary zero/nonzero patterns into the analysis to 
improve gene-gene correlation and gene network analysis 
[21]. Leveraging bulk RNA-seq data as a constraint, the 
SCRABBLE method reduces the bias toward expressed 
genes in the imputation process and enables the capture 
of cell-cell and gene-gene relations [22]. A network-based 
imputation model has been recently proposed to handle 
noisy data and to improve cell type identification [23]. 
While these methods reduce dropout, recovering gene-
gene relationships from zero abundant data remains 
challenging due to the noise introduced by imputation of 
a large number of zero values or loss of information by 
simplifying the complexity of data.

A common practice in examining gene-gene corre-
lations is estimating the correlation coefficient among 
gene pairs using Pearson, Spearman, or Cosin analy-
sis. Excessive zero values in scRNA-seq data result in 
a biased estimation for gene-gene correlation. Several 
methods have been reported to recover coexpressed 
genes to reduce dropout noise. The scImpute method 
allows us to simultaneously determine which values are 
affected by dropout while imputing zero values only on 
dropout entries [24]. This method estimates a dropout 

probability in each cell and imputes the high probable 
dropout values in a cell by referring to information 
of the same gene in transcriptomically similar cells. 
Bageritz et  al. selected genes with only a number of 
unique molecular identifiers greater than 2000 to per-
form gene-gene correlation [25]. This method excluded 
cells contributing to the strongest gene-gene correla-
tion coefficient to avoid outlier bias. One limitation of 
the filtering method is that it may filter out biologically 
expressed genes with low expression. In addition to 
using Pearson correlation, permutation-based estima-
tion is also reported to identify coexpressed gene pairs 
such as correlatePair [26]. These methods have been 
applied to different datasets for gene-gene expression 
analysis. Nevertheless, little effort has been devoted to 
accurately identifying coexpressed genes. More tools 
are needed to address this challenge.

Here, we present “scCorr” (single-cell gene-gene cor-
relation), a novel graph-based k-partitioning approach 
to address dropout and to recover missing gene-gene 
correlations. The motivation of scCorr is based on an 
observation that zero values are markedly reduced by 
merging cells with similar transcriptome profiles. Our 
goal is to limit dropout effects and to recover gene-
gene correlations without imputing zero values. Spe-
cifically, the scCorr algorithm includes 1) generating 
a graph or topological structure of cells in scRNA-seq 
data; 2) partitioning the graph into k multiple min-
clusters employing the Louvain algorithm, with cells 
in each cluster being approximately homologous (with 
similar transcriptional profiles); 3) visualizing the 
series of k-partition results to determine the number 
of clusters; 4) averaging the expression values, includ-
ing zero values, for each gene within a cluster; and 5) 
estimating gene-gene correlations within a partitioned 
cluster.

In this study, we demonstrate that the graph k-par-
titioning approach enables the reliable acquisition of 
cluster-based gene-gene correlations in two independ-
ent peripheral blood mononuclear cell (PMBC) scRNA-
seq datasets: one from healthy participants (dataset 1) 
and another dataset including wild-type control cells 
and knockout cells from a patient with T cell defi-
ciency (dataset 2). In addition, we applied scCorr in a 
scRNA-seq dataset from relatively homogenous cells 
derived from the central nervous system  (dataset 3). 
We applied scCorr to estimate gene-gene correlations 
in these datasets and compared the performance of 
gene pair identification between scCorr and the non-
clustering single-cell gene correlation method in each 
dataset. To validate the scCorr method, we compare the 
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performance of scCorr and three published methods 
mentioned above: scImpute, filtering method, and cor-
relatePair. Finally, we show that scCorr can accurately 
identify a known cell type (i.e., CD4+ T cell) from a 
PBMC scRNA-seq dataset.

Results
Reduction of zero value abundance in merged cells
A total of 21,430 genes were annotated from 15,973 
PBMCs from two healthy subjects in dataset 1 [27]; we 
observed that 21,428 out of the 21,430 genes had zero val-
ues in a cell (Fig. 1A), and 95% of the 15,973 cells showed 
at least one undetected gene with zero values (Fig.  1B), 
suggesting that scRNA-seq captures only 5% of gene 
expression at the single-cell level. For example, among 
the 347 genes in 1532 biologically related gene pairs on 
3 Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways (i.e., hsa04010, hsa04115, and hsa04662) (Table 
S1), over 70% exhibited zero expression (Fig.  1C, D), 
resulting in poor gene-gene correlation among these 
known gene pairs. These data underscore the importance 

of developing a method to minimize zero value inflation 
to recover gene-gene correlations.

Interestingly, we observed that merging cells with simi-
lar transcriptomic profiles dramatically reduced the pro-
portion of zero values. In a set of 50 merged cells that 
were randomly selected from the 15,973 PBMCs, the 
percentage of zero values from the same set of 21,430 
genes was reduced from 90% in two cells to 57.4% (95% 
confidence interval [CI), 57.3, 57.4%] in the 50 merged 
cells (Fig. 1E). Revisiting the same 347 genes from the 3 
KEGG pathways, the reduction in zero values increased 
further, from 90% in two cells to 37.6% (95% CI: 37.5, 
37.8%) in the same 50 merged cells (Fig. 1F). Examining 
the impact of the number of merged cells on zero value 
frequency, focusing on six cell populations of 1000 to 
15,973 cells, the reduction of zero value proportion stabi-
lized when the merged cells exceeded 100 in a set of 1000 
cells (Fig. 1G). Simulation analysis of four separate sets of 
cells and genes further supported the reduction of zero 
values in merged cells (Supplementary Fig.  1A and B). 
This property motivated the development of the scCorr 

Fig. 1 Study principles and workflow. Data are from single-cell RNA-seq of peripheral blood monocyte cells in healthy participants from dataset 
1. A-D present the distribution of zero values by individual genes and by single cells. A total of 21,42830 genes had zero values in at least one cell 
(A), and more than 95% of 15,973 cells showed zero values in at least one gene  (B). Among a set of 347 genes from 3 KEGG pathways, all genes 
had zero values in at least one cell (C), and 95% of 15,973 cells contained zero values in at least one gene (D). E-G show reductions of zero values in 
merged cells. The percentage of zero values of 21,430 genes was markedly reduced in merged cells. The zero-value reduction was approximately 
50% among 50 merged cells (E). Similarly, zero values of the 347 genes were reduced in merged cells (F) and were consistently observed in 6 
different cell sets (G)
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package to improve the detection of gene-gene relation-
ships by clustering cells with similar profiles.

Graph‑based cell clustering
scCorr is based on local optimal modularity (i.e., the 
Louvain algorithm) to partition a graph into k clusters. 
Louvain, an unsupervised algorithm, includes greedy 
optimization and community aggregation steps [28]. 
Figure  2 presents the analysis strategy of scCorr on the 
scRNA-seq data of 21,430 genes in 15,973 cells from the 
healthy PBMC samples, dataset 1. Figure  2A shows a 
conventional tSNE plot of the cell clusters and cell type 
identification. Using our scCorr package, the graph edges 
were weighted by the distances and distance matrix, 
which was converted to a weighted graph determined 
by a cutoff of three as the default (any edge weight > 3 
is removed from the graph), and an initial number of N 
clusters was generated with N greater than k. Next, the 
center of each cluster was calculated, and adjacent clus-
ters with the smallest distance were merged one by one 
until N equaled k. As presented in Fig. 2B (k = 100) and 
2C (k = 1000), scCorr-partitioned clusters did not change 
the local structure of transcriptomically defined cell pop-
ulations. A series partitioning process was carried out to 
determine the desired number of clusters (Supplemen-
tary Fig. 2).

Similarly, we applied scCorr to partition cell clusters in 
the second dataset, which contains 8189 wild-type cells 
from healthy subjects and 8334 knockout cells from a 
patient with inherited human T cell deficiency [29]. tSNE 
plots show different cell types between wild-type and 
knockout cells. Figure 2D-F presents scCorr partitioned 
into different numbers of cell clusters (k = 50 ~ 500) in 
wild-type cells, and Fig.  2G-I presents scCorr parti-
tioned cell clusters in knockout cells (k = 50 ~ 500). One 
of the utilities included in the scCorr package is able to 
trace how a cluster evolves during k graph partitioning 
in multiple cluster sets, displaying ladder and circle plots 
to visualize the evolutionary process of each cell cluster 
in a variety of cluster sizes (Supplementary Fig. 3). As an 
example, Fig. 2J depicts the evolutionary process for each 
cluster during graph partitioning.

We next evaluated the number of cells contained in a 
set of scCorr partitioned clusters. Figure  3 displays cell 
number distributions for each cluster set in dataset 1 
(Fig. 3A and B) and dataset 2 (Fig. 3C and D, wild type; 
Fig.  3E and F, knockout cells). For each box plot, the 
observed number of cells for each cluster (median) was 
close to an expected number of cells per cluster, which 
was estimated by the number of cells/number of clusters 
in a given set of clusters. As shown in Fig. 3, the observed 

number of cells in a set of clusters generated by scCorr 
was similar to the expected number of cells in a set of 
clusters. There were only a few outliners with too many 
or too few cells in each cluster. For example, among a set 
of 100 clusters in two datasets, we observed that only 1 
cluster was exceedingly large across the three panels 
of Fig.  3B, D, and F, suggesting that scCorr partitions 
cell clusters in an unbiased manner. For those clusters 
with fewer than 10 cells/cluster, we recommend remov-
ing or combining the clusters with other cluster sets. 
The rationale is that a proportion of zero values can be 
reduced from 95 to 75% by merging 9 cells, as shown in 
Fig.  1E. Thus, the cluster number in an analysis can be 
determined based on a total number of cells and a desired 
number of cells per cluster.

Gene‑gene correlation by scCorr
We estimated gene-gene correlations in the  CD4+ 
T cell population in two datasets separately. scCorr 
estimates the gene-gene correlation coefficient using 
Pearson correlation analysis by averaging the expres-
sion level of a gene within a k-partitioned cluster. Con-
ventional nonclustering single-cell-based methods 
estimate gene correlation simply using Pearson corre-
lation in the expression of a gene in individuals with-
out considering dropout. To validate the efficiency of 
scCorr, we focused on the same 347 genes and 1532 
gene pairs defined by the 3 KEGG pathways. In dataset 
1, we present the results of scCorr-partitioned cluster 
sizes from 40 to 1000, which shows greater gene-gene 
correlation coefficients and identifies more gene pairs 
than the conventional nonclustering single-cell-based 
method. For example, in a set of 100 clusters, scCorr 
and the nonclustering method identified a combined 
total of 85 of 11,242 possible gene pairs (71 solely 
by scCorr, 10 solely by the nonclustering single-cell 
method), with only 4 detected by both methods [false 
discovery rate (FDR) < 0.05]. Gene-gene correlations 
were stronger among the pairs detected by scCorr than 
by the nonclustering single-cell method (62 of 85 [73%] 
of the gene pairs with r > 0.5 were detected by scCorr, 
while 4 of 85 [5%] had r > 0.1 using the nonclustering 
single-cell-based method). Among significant gene 
pairs detected by both methods, approximately 50% of 
gene-gene correlations were in agreement (blue dot), 
and the other 50% were in disagreement (red dot) in 
the direction of the correlations (Fig. 4). As an example, 
Fig. 4A and B presents the p and r values of the top 45 
gene pairs selected by p value (scCorr: 40, noncluster-
ing single cell-based method: 14, overlapping: 9). For 
example, ATF4 and MAPKAPK2 are a well-established 
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Fig. 2 Workflow and features of the scCorr method. Data dimensional reduction and cell classification by tSNE and cell type identification using 
the marker gene approach in dataset 1 (A). Cell partitioning is based on a tSNE plot using scCorr with different numbers of clusters in dataset 1 
(B: k = 100; C: k = 1000). scCorr partitioned different numbers of clusters for wild-type cells in dataset 2 (D: k = 50; E: k = 100; F: k = 500) and for 
knockout cells in dataset 2 (G: k = 50; H: k = 100; I: k = 500). J: tracing of the evolution of each partitioned cluster
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pair of coexpressed genes. The nonclustering gene-
gene correlation method showed no significant corre-
lation between the two genes (r = 0.043; p = 6.48E-02) 
(Fig.  4C). However, scCorr significantly increased 
the coexpression of ATF4 and MAPKAPK2 (r = 0.82; 
p = 7.44E-09) (Fig.  4D). Similarly, scCorr outper-
formed the correlation of another coexpressed gene 
pair, MAPK1 and DUSP2 (scCorr: r = 0.586, nonclus-
ter single cell-based method: r = 0.007) (Supplementary 
Fig. 4). Of note, scCorr detected no significant correla‑
tions for randomly selected genes. These results suggest 
that scCorr shows robust detection of correlated gene 
pairs by minimizing zero-value effects in merged cell 
clusters.

Consistent with the findings from dataset 1, scCorr 
identified more significantly correlated gene pairs in 
both wild-type and knockout cells than the noncluster-
ing method in dataset 2. For instance, in wild-type T 
cells, we found no significant correlation in expression 
between MAP7D1 and MAN2A1 using the noncluster-
ing single-cell method (r < 0.001, p = 0.624) (Fig.  5A). 
However, the expression of these two genes was highly 
correlated by scCorr (r = 0.785, p = 1.80E-34) (Fig. 5B). 
In knockout T cells, a nonclustering single-cell-based 
method revealed no significant correlation between the 
LASP1 and KLF13 genes (r = 0.002; p = 0.100) (Fig. 5C). 
scCorr detected a significant correlation of this gene 
pair (r = 0.722, p = 5.36E-29) (Fig. 5D).

Fig. 3 Distribution of cell numbers per cluster in different sets of cluster sizes. The red dot is the expected number of cells in a cluster, estimated 
by the number of cells/number of clusters in a given set of clusters. The red line is the observed median number of cells in a given set of clusters, 
which is close to the expected value. A and B: Healthy PBMCs from dataset 1. C and D: Wild-type T cells from dataset 2. E and F: Knockout T cells 
from dataset 2
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Validation of performance by scCorr in an additional 
dataset from the human central nervous system
In addition to two PBMC scRNA-seq datasets, which 
are highly heterogeneous, we partitioned cell clusters in 
scRNA-seq from relatively homogenous T cells derived 
from the human central nervous system, dataset 3 [30]. 
After quality control (QC), the dataset contained 37,377 
cells and 19,711 genes. scCorr partitioned 800 mini clus-
ters in the data (Supplementary Fig. 5). The average num-
ber of cells in each cluster was 374 across 100 clusters. 
We compared the performance of gene-gene coexpres-
sion between scCorr and the conventional nonclustering 
single-cell method. We focused on the same gene sets 
from three KEGG pathways as we described earlier (i.e., 
hsa04010, hsa04115, hsa04662). A total of 360 genes and 
1781 possible pairs were mapped to three pathways in 
this dataset (Table S2). scCorr identified 626 significant 
pairs of correlated genes, while the nonclustering single-
cell method identified 612 significant pairs of correlated 
genes. The correlation coefficients of paired genes by 

scCorr were greater than those of gene pairs by the non-
clustering method (Supplementary Fig. 6). These results 
show that scCorr is a robust tool to identify coexpressed 
genes in homogenous cell types and can be generalized to 
other scRNA-seq beyond PBMCs.

Comparisons of scCorr with three published methods
We compared the performance of gene-gene correlation 
analysis between scCorr and three other methods: scIm-
pute [24], filtering method [25], and correlatePair [26] in 
the same scRNA-seq dataset [30] (Fig. 6). We performed 
gene-gene correlation analysis on three KEGG pathways 
as we described, which contained a total of 360 unique 
genes and 1781 gene pairs. The total number of gene 
pairs and significant gene pairs varied among the four 
methods (scCorr, scImpute, filtering method, and cor-
relatePair). scCorr identified 1769 gene pairs, and 35% 
of them were significant. scImpute identified 30% signifi-
cant pairs among 1781 gene pairs. The filtering method 
identified 32% significant pairs in a set of only 152 gene 

Fig. 4 Evaluations of scCorr performance in gene-gene correlations among CD4+ T cells in dataset 1. Gene-gene relationships were quantified 
by Pearson correlation. In A and B, gene-gene correlation was separately performed in nonclustering single cells (X-axis) and in scCorr-partitioned 
cell clusters (K = 100) (Y-axis). Only the top 100 significantly correlated gene pairs are shown. Blue dots indicate agreement, and red dots indicate 
opposite directions of gene-gene correlation between the two methods. Correlated genes are shown as –log10 P- (A) and R- (B) values. scCorr 
detected a significant correlation between MAPKAPK2 and ATF4 genes (C), while the conventional noncluster single-cell-based method showed no 
significant correlation between the two genes (D). Gene-gene correlation varied in different numbers of clusters
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pairs, missing the majority of gene pairs. The Correlate-
Pair method identified only 9% of significant pairs in a set 
of 1757 gene pairs. Thus, scCorr recovered more signifi-
cant gene pairs than the three methods.

Evaluation the efficiency of scCorr
One key step in scCorr is to establish a cutoff for a rea-
sonable cluster size. We recommend performing a series 
of correlation analyses with different cluster sizes to 
identify the cluster size at which stable p and r values in 
the cluster sets are achieved (Supplementary Fig. 7). For 

example, in a set of the top 10 most significant gene pairs 
in cluster sizes from 40 to 1000 in  CD4+ T cells from 
dataset 1, the -log10 p and r values were relatively stable 
in cluster sizes from 40 to 100 (Fig. 7A and B). However, 
gene-gene correlations changed dramatically when the 
cluster size exceeded 100. As a result, a size of 100 clus-
ters containing 125 cells per cluster showed the greatest 
correlation coefficients and smallest p values in dataset 1, 
indicating that a cluster size of 100 is a reasonable cutoff 
to achieve consistent gene-gene correlations.

Fig. 5 Evaluations of scCorr performance in gene-gene correlations in wild-type and knockout cells in dataset 2. In wild-type cells, the 
nonclustering single-cell correlation method showed no significant correlation between MAP7D1 and MAN2A1 (r < 0.001; p = 0.624) (A), while 
cluster-based scCorr showed a significant correlation between the two genes (r = 0.785; p = 1.80E-34) (B). In knockout cells, the nonclustering 
single-cell correlation method showed no significant correlation between LASP1 and KLF13 (r < 0.001; p = 0.100) (C), while cluster-based scCorr 
showed a significant correlation between the two genes (r = 0.722; p = 5.36E-29) (D)

Fig. 6 Gene-gene correlation detected by scCorr and three published methods in a single-cell RNA-seq dataset 3 (Transcriptomic and clonal 
characterization of T cells in the human central nervous system): scImpute, filtering method, and correlatePair. Blue dots indicate agreement, and 
red dots indicate opposite directions of gene-gene correlation between the compared two methods
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scCorr requires a reasonable amount of computational 
time. Users are able to adjust the computational time by 
estimating a range of scales and k partitioning clusters 
(Supplementary Fig. 8A). In a set of 5967 cells, the esti-
mated computation time for a scale of 200 is approxi-
mately 10 min (Supplementary Fig. 8B). The computation 
time for a scale of 400 is estimated to be 20 min for a set 
of 15,973 cells (Supplementary Fig. 8C). The efficiency of 
scCorr expands the applications of the package.

Applying scCorr for cell type identification
Finally, we tested the efficiency of scCorr in predicting 
cell type classification. We performed 10-fold cross-
validation to predict  CD4+ T cells in dataset 1. We 
tested the accuracy of cell type identification by scCorr 

in a variety of cluster sizes. The receiver operating 
characteristic area under the curve (AUC) was used 
to evaluate the prediction accuracy. Figure  8A shows 
the AUC of the 100 classification results of cell type 
identifications using scCorr partitioned clusters from 
10 clusters to 1000 clusters incremental by 10 clusters. 
Similarly, Fig.  8B shows the AUC of 10 classification 
results using scCorr partitioned clusters from 100 to 
1000 clusters incremental by 100 clusters. The average 
AUC was 0.96 across the cell type identification tests, 
suggesting that scCorr accurately predicted CD4+ T 
cells. In contrast, the performance of nonclustering 
single-cell-based prediction in the same numbers of 
nonclustering single cells was poor (i.e., AUC = 0.55), 
suggesting that scCorr-based cell type identification is 

Fig. 7 Top 10 correlated genes in different cluster sizes partitioned by scCorr among CD4+ T cells in dataset 1 evaluated by –log10 p- (A) and rr- (B) 
values

Fig. 8 Identification of CD4+ T cells from peripheral blood mononuclear cells using single-cell RNA-sequencing data by the receiver operating 
characteristic area under the curve (AUC) in dataset 1. Both of the average AUCs by the scCorr method for both k = 10–1000 clusters (A) and for 
k = 100–1000 clusters (B) were 0.96; the AUC for the nonclustering single-cell method was 0.55
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reliable and accurate and outperforms the noncluster 
single-cell-based approach.

Discussion
Built on the observation that merging cells can decrease 
the number of zero values in each given cell type, scCorr 
is developed based on a graphic structure in cells with 
similar transcriptomic profiles to estimate gene expres-
sion values, including zero values, in a local cell com-
munity. Unlike imputation methods, which infer missing 
gene expression, possibly introducing noise into the data, 
scCorr maintains local community data organization in 
single cells by k-partitioning a graph into mini-clusters 
in a similar cell-cell matrix based on transcriptomic simi-
larities within the cell type. Thus, the merged cells in a 
partitioned cluster increase the power to recover corre-
lated gene pairs.

Leveraging two independent scRNA-seq data-
sets, we show that cluster-based analysis by scCorr 
k-partitioning can detect more significant gene pairs 
than nonclustering single-cell-based analysis, sug-
gesting that scCorr is a robust approach to address 
gene expression correlations in dropout scRNA-seq. 
scCorr is simple and fast in the R environment. We 
have shown that scCorr outperforms nonclustering 
gene-gene correlation in individual cells from a rel-
atively homogenous dataset. The difference sets of 
detected significant gene pairs between scCorr and 
the nonclustering correlation method were greater 
in PBMCs than in T cells only, suggesting that scCorr 
may have a greater advantage in highly heterogeneous 
cells than in relatively homogenous datasets. How-
ever, more datasets are needed to draw a conclusion. 
These findings suggest that scCorr can be broadly 
applied to single-cell genomic analysis and is particu-
larly useful for downstream analyses, such as differ-
ential gene expression analysis, gene-set enrichment 
analysis, and network construction at single-cell 
resolution.

Comparing robustness and efficacy among different 
methods is challenging due to the lack of a gold stand-
ard. In the same set of genes on three KEGG pathways, 
scCorr identified a greater number of correlated gene 
pairs than the other three published methods. The 
numbers of significant pairs detected by scCorr and 
scImpute were close to each other (612 versus 544 
pairs). Both methods incorporate local information of 
a gene in cells with similar transcription profiles. The 
filtering method detected a smaller number of gene 
pairs (50 pairs), partially because the filtering method 
considers only highly expressed genes in the data-
set. The correlatePair method also includes a step of 

filtering out low copy expressed genes and detected a 
moderate number of significant gene pairs (162 pairs) 
in the gene set.

One of the limitations is that we did not apply 
scCorr to network analysis, such as weighted gene 
co-expression  network analysis (WGCNA) and other 
downstream analyses. Considering that scCorr ena-
bles the recovery of gene pair correlations in drop-
out datasets, it is reasonable to believe that scCorr 
improves the performance of downstream analysis. 
Future studies combining scCorr and other existing 
tools, such as WGCNA, are needed. Compared to 
imputation methods, one unique feature of graphic-
based methods is that scCorr allows users to make 
analytical decisions based on data visualizations. 
Easy and fast implementation is another advantage of 
scCorr. We believe that scCorr can be used indepen-
dently or as a complementary tool to address dropout 
effects.

Conclusions
To address the challenge of dropout in scRNA-seq data 
analysis, we developed a graph-based method to clus-
ter cells without the need to impute zero values. The 
scCorr package was tested in two independent data-
sets from healthy subjects and from a patient with T 
cell deficiency. Our results show that scCorr is supe-
rior to the conventional nonclustering single-cell-based 
method in detecting correlated gene pairs and improves 
the efficiency of cell type identification, which is critical 
for downstream analyses in scRNA-seq data.

Methods
Single‑cell RNA‑seq datasets
Dataset 1. Peripheral blood mononuclear cells from healthy 
subjects
Single-cell data were downloaded from the NCBI Gene 
Expression Omnibus (GEO) https:// www. ncbi. nlm. nih. 
gov/ geo/ query/ acc. cgi? acc= GSE13 0228. The dataset 
was generated using the 10x Genomics platform and 
contains 15,973 single cells, 21,430 genes and seven cell 
types. Single-cell data quality control, normalization, 
and cell type identification were described previously 
[27].

Dataset 2. Ex vivo scRNA‑Seq of CD4+ cells in T‑bet‑deficient 
and wild‑type mice
PBMCs were obtained from healthy controls (wild type) 
and a patient with inherited human T-bet deficiency 
[29]. Single-cell RNA sequencing was conducted using 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130228
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130228
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the 10X Genomics Chromium Single Cell platform (3′ 
Reagent kit v2) with Illumina NextSeq 500. Single-cell 
data were downloaded from the NCBI GEO database 
(https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= 
GSE17 4804). The dataset contains a total of 18,931 cells 
and 33,538 genes. Cells with mitochondrial reads greater 
than > 6% were removed, and 271 duplicated cells were 
also removed from the analysis. After data normaliza-
tion and QC, a total of 17,623 cells and 20,849 genes 
remained.

Dataset 3. Transcriptomic and clonal characterization of T 
cells in the human central nervous system from the single cell 
expression atlas
Single-cell RNA-seq using 10X Genomics was used to 
profile T cells from the human cerebrospinal fluid of 
healthy donors (https:// www. ebi. ac. uk/ gxa/ sc/ exper 
iments/ E- HCAD- 30/ resul ts/ tsne). In the raw data, a 
total of 37,586 cells and 22,509 genes were identified. 
We excluded 2568 cells with high expression of mito-
chondrial reads, 209 doublets, and 1305 cells with gene 
number per cell < 400. After QC, 37,377 cells and 19,711 
genes remained for analysis.

Correlated genes in KEGG pathways A total of 1532 
gene-gene interactions from 347 unique genes were 
selected from the B cell receptor, p53, and MAPK sign-
aling pathways in the KEGG database (https:// www. 
genome. jp/ kegg/ pathw ay. html) (Supplementary Table  1). 
The 1532 gene pairs served as a reference in the scCorr 
analysis using the scRNA-seq datasets 1 and 2 described 
above. In dataset 3, 360 genes and 1781 gene pairs on the 
same three KEGG pathways were used in the analysis to 
compare scCorr with three other methods (Supplemen-
tary Table 2).

Zero value distribution in merged cells The distribu-
tion of the percentage of zeros for each cell (Fig.  1B 
and D) and each gene (Fig.  1A and C) is shown using 
histogram plots. Two different gene sets were used: 
all 21,430 genes and only 347 genes on the 3 KEGG 
pathways from GSE130228. We examined the zero-
value distribution in different sets of merged cells from 
GSE130228 and from a simulation dataset. We simu-
lated 95% of zero values assuming 23,000 genes and 
20,000 cells. We randomly selected two cells and cal-
culated the percentage of zero values in 23,000 genes. 
Each two-cell selection was performed 1000 times, 
and the average of the zero percentage in 23,000 was 
determined. The selection of random cell numbers 
was repeated until 200 cells were merged. We also 

simulated different numbers of cells (2000, 8000, and 
14,000) and different sets of gene numbers (16,000, 
18,000, and 20,000). The distributions of zero values 
were essentially the same (Supplementary Fig. 1).

Zero‑value reduction through k‑partitioning The 
strategy to reduce zero values in gene expression 
involved using a k-partitioning algorithm to group 
cells into clusters and calculating the average gene 
expression in the cluster instead of in single cells. An 
adjacency distance matrix of single cells was estimated 
by the single-cell expression profile from the tSNE out-
put and converted into a weighted graph or network 
using the R package igraph (https:// cran.r- proje ct. org/ 
web/ packa ges/ igraph/ citat ion. html). The weight values 
were the length of the edges in the graph. The Louvain 
algorithm, an efficient graph-clustering method based 
on the modularity measure and a heuristic approach, 
was used to group cells into a predefined number of 
clusters through iteratively splitting and merging cell 
processes, as shown in the t-SNT plot of cluster num-
bers 50, 100 and 1000 (Supplementary Fig.  2A). The 
pseudocodes are included at the end of the Methods 
section. Cell number distributions from cluster num-
bers 10–100 and 100–1000 are displayed using box 
plots.

Visualization of cell clusters using the k‑partitioning algo‑
rithm Multiple cluster visualization functions were 
implemented to evaluate the k-partitioning algorithm 
performance to select desired cluster numbers. In the 
cluster overlay on the t-SNE plot, each dot represents a 
cluster with dot size proportional to cluster size (Supple-
mentary Fig. 2B). This provides a convenient function to 
identify uniformly distributed clusters. Using tree-based 
visualization of clusters, ladder and circle plots show 
the evolution of clusters at the different cluster numbers 
(Supplementary Fig.  3). Dot size is proportional to the 
cell number in one cluster, and lines between dots track 
the cluster development. Supplementary Fig. 3A presents 
a tree of 20–40 clusters from top to bottom. The tree can 
be arranged in a circular shape suitable for displaying a 
large number of clusters (Supplementary Fig. 3B and C); 
inner and outer circles correspond to the top and bottom 
trees, respectively.

Similarly, the results of k-partitioning clusters in the 
Dataset 3 are presented in Supplementary Fig.  4. tSNE 
plot shows relatively homogenous cells in the dataset. 
scCorr enables the partition of 10, 40, 100, and 400 mini 
clusters.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174804
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174804
https://www.ebi.ac.uk/gxa/sc/experiments/E-HCAD-30/results/tsne
https://www.ebi.ac.uk/gxa/sc/experiments/E-HCAD-30/results/tsne
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://cran.r-project.org/web/packages/igraph/citation.html
https://cran.r-project.org/web/packages/igraph/citation.html
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Gene‑gene correlation analysis Pearson and Spear-
man correlation coefficients at the single-cell and 
cluster levels were calculated between gene pairs 
extracted from KEGG pathways, as exemplified in the 
scatter and violin plots of MARPK1‑DUSP2 (Supple-
mentary Fig.  5). The correlation p values were esti-
mated using generalized linear models (glm). At the 
cluster level, the average gene expression of cells in 
a cluster was used as the gene expression value. The 
top 10 correlated gene pairs by p values based on 
100 clusters were selected to evaluate the effect of 
the number of clusters on the correlation. A total 
of 16 cluster sets were used: 40–100 and 100–1000 
in increments of 10 and 100, respectively. The rela-
tionships of glm p values and Pearson and Spearman 
correlation coefficients vs. different numbers of clus-
ters are illustrated using a line plot (Supplementary 
Fig.  6). In the dataset 3, scCorr identified 626 sig-
nificant pairs of correlated genes among 1769 pairs, 
while the uncluttering method identified 612 signifi-
cant pairs of correlated genes among 1781 pairs. Cor-
relation The correlation coefficients of paired genes 
by scCorr arewere greater than those of gene pairs by 
non-clusteringthe nonclustering method, while the p 
values of gene pairs by scCorr arewere smaller than 
those of gene pairs by non-clustering the noncluster-
ing method (Supplementary Fig.  7). Thus, scCoOrr 
outperforms non-clusteringthe nonclustering indi-
vidual cell gene-gene correlation method even in rel-
atively homogenous cells.

Time estimation for k‑partitioning clusters We imple-
mented calculation time for different numbers of cell 
clusters. In our analysis, using Rtsne with perplex-
ity = 30 and max_iter = 2000, the x and y coordinate 
regions were approximately from − 50 to 50. Before 
performing graph-based clustering, we suggest that 
the x and y coordinate regions are scaled from − 200 
to 200 or − 400 to 400 in cell numbers 5967 and 15,973, 
respectively. Supplementary Fig.  8 shows estimated 
times for a range of scaled clusters. On a tSNE plot scale 
of − 50 to 50 of 5976 cells, when the scale range is 200, 
the running time is smallest, regardless of the number 
of clusters. In a plot of 15,973 cells, a scale range of 400 
appears to be the most rapid option, regardless of the 
number of clusters. The different colors for the lines 
represent the numbers of clusters.

Codes
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