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Abstract

Background: Circular RNA (circRNA), a class of RNA molecule with a loop structure, has recently attracted researchers
due to its diverse biological functions and potential biomarkers of human diseases. Most of the current circRNA
detection methods from RNA-sequencing (RNA-Seq) data utilize the mapping information of paired-end (PE) reads to
eliminate false positives. However, much of the practical RNA-Seq data such as cross-linking immunoprecipitation
sequencing (CLIP-Seq) data usually contain single-end (SE) reads. It is not clear how well these tools perform on SE
RNA-Seq data.

Results: In this study, we present a systematic evaluation of six advanced RNA-based methods and two CLIP-Seq
based methods for detecting circRNAs from SE RNA-Seq data. The performances of the methods are rigorously
assessed based on precision, sensitivity, F1 score, and true discovery rate. We investigate the impacts of read length,
false positive ratio, sequencing depth and PE mapping information on the performances of the methods using
simulated SE RNA-Seq simulated datasets. The real datasets used in this study consist of four experimental RNA-Seq
datasets with ≥100bp read length and 124 CLIP-Seq samples from 45 studies that contain mostly short-read (≤ 50bp)
RNA-Seq data. The simulation study shows that the sensitivities of most of the methods can be improved by
increasing either read length or sequencing depth, and that the levels of false positive rates significantly affect the
precision of all methods. Furthermore, the PE mapping information can improve the method’s precision but can not
always guarantee the increase of F1 score. Overall, no method is dominant for all SE RNA-Seq data. The RNA-based
methods perform better for the long-read datasets but are worse for the short-read datasets. In contrast, the CLIP-Seq
based methods outperform the RNA-Seq based methods for all the short-read samples. Combining the results of
these methods can significantly improve precision in the CLIP-Seq data.

Conclusions: The results provide a systematic evaluation of circRNA detection methods on SE RNA-Seq data that
would facilitate researchers’ strategies in circRNA analysis.

Background
Circular RNA (circRNA) is a type of single-stranded RNA
molecule with a closed structure. Unlike the conven-
tional linear RNA, which is a straight nucleotide chain
in 5’-3’ direction commonly obtained in transcription,
5’ cap and 3’ poly-A tails do not exist in a circRNA
molecule. Instead, a reversed linkage between two ends

*Correspondence: TrungNghia.vu@ki.se
†Ha-Nam Nguyen and Trung Nghia Vu contributed equally to this work.
4Department of Medical Epidemiology and Biostatistics, Karolinska Institutet,
Stockholm, Sweden
Full list of author information is available at the end of the article

of the molecule forms its looping structure [1]. This cre-
ates some distinctive features in circRNA, for instance,
it degrades the effect of exonuclease digestion, thus pre-
serving circular RNAs longer in the cell [2]. CircRNA has
also been known to have other diverse functions, includ-
ing microRNA sponge [3, 4], RNA-binding protein (RBP)
sponge [5, 6], gene regulation by competing with pre-
mRNA splicing [7], and the parental gene modulation of
exon-intron circular RNAs [8, 9]. These typical features
attract researchers due to their applications in disease
studies, especially as potential biomarkers for cancer diag-
nosis [10].
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The rapid growth of recent studies on circRNA is
attributed to the availability of advanced RNA-sequencing
technologies that allow to sequence total RNAs including
circRNAs [11]. In total RNA sequencing, RNA molecules
extracted from cells or tissues are processed to deplete
the majority of ribosomal RNAs, usually by using the
Ribo-Zero protocol [12]. Then, the remaining RNAs are
converted to complementary DNAs to be fragmented
and sequenced at one end (single-end mode) or both
ends (paired-endmode) of the fragments. Paired-end (PE)
reads, which carry more information of a fragment, are
usually better than single-end (SE) reads in downstream
analysis such as the alignment and detection of genomic
rearrangement [13]. However, SE RNA-Seq can econom-
ically deliver a larger volume of data, which is suitable
for chromatin immunoprecipitation sequencing (ChIP-
Seq) or small RNA-Seq. Furthermore, short SE reads, e.g.,
of 50bp read length, can be used to achieve a robust
estimation for the gene-level expression and differential
expression analysis to save substantial resources [14, 15].
Multiple SE RNA-Seq datasets are used to study circRNAs
in different cell lines of Homo sapiens and Mus musculus
[16]. A large amount of SE RNA-Seq data have been gen-
erated, which are still a great resource for the community
today.
Although the cost of PE RNA-Seq has significantly

decreased recently, certain RNA-Seq methods allow only
SE reads. For example, cross-linking immunoprecipitation
sequencing (CLIP-seq) is used to analyze the interactions
between RNAs and RNA-binding proteins (RBPs). CLIP-
Seqmethods generally start with the cross-linking process
of RBPs to RNA-binding sites, followed by the sequenc-
ing of binding RNA fragments [17]. Thus, in principle,
the data from CLIP-Seq can be used to detect circR-
NAs. CircRNAs identified from the CLIP-Seq data would
be considered evidence for the interactions between cir-
cRNAs and RBPs [18]. CLIP-Seq can be used to study
the interaction between circRNAs, proteins, and microR-
NAs, for example, ciRS-7 serves as a binding platform
for AGO2 and miR-7 [3], suggesting the regulatory func-
tions of circRNAs [16]. Most CLIP-Seq protocols produce
very short SE reads [18], making the process of detecting
circRNAs highly challenging.
The key challenge to the methods to detect circR-

NAs from RNA-seq data is identifying genuine back-
splicing junction (BSJ) reads, which cover the link-
age of the downstream-3’-splice-donor exon attached to
the upstream-5’-splice-acceptor exon of a circRNA. The
identification of a BSJ from RNA-Seq data does not
always assure a true circRNA. Indeed, exon repetition,
genomic tandem duplication, trans-splicing, and reverse-
transcriptase template-switching [19] can generate linear
transcripts with the duplication of exons forming false

positive (FP) BSJs. For convenience, from this point on, we
call these transcripts “tandem RNAs”.
A common approach to identify FP BSJs caused by tan-

dem RNAs is utilizing the information of two reads of a
pair from the PE RNA-Seq data, following a simple rule:
if the paired mate of a supporting-BSJ read is mapped
outside the putative region of the circRNA candidate, the
reads likely originated from a tandem RNA. However, this
rule is not applicable in the SE RNA-Seq situation wherein
the mate pair is missing. Theoretically, circRNA detec-
tionmethods can achieve higher precision in PE RNA-Seq
rather than SE RNA-Seq. Read length is another factor
that has a great impact on circRNA detection. Some cir-
cRNA detection tools such as CIRI2 [20] are reported to
be unable to work with RNA-Seq reads shorter than 40bp
[18]. To our best knowledge, current comparative studies
[21–23] focus on evaluating the performances of circRNA
detection methods on PE RNA-Seq data. Furthermore,
the impacts of single-end reads, e.g., from the CLIP-Seq,
the proportion of false positives from the tandem RNAs,
and read lengths pertaining to these methods have not yet
been properly investigated.
In this study, we present a systematic evaluation of eight

advanced circular RNA detection tools including CIRI2
[20], CIRCexplorer [24], DCC [25], CircRNA_finder [26],
Find_circ2 [16], UROBORUS [27], CircScan [28], and
Clirc [18] on SE RNA-Seq datasets. In the simulation
study, a wide range of read lengths, different proportions
of false positives from the tandem RNAs, and sequencing
depth are taken into account. Furthermore, we evalu-
ate the impact of the PE mapping information through
the difference between the results of the SE datasets and
the corresponding PE datasets. Two types of experimen-
tal datasets are also used for the evaluation including 1)
four SE RNA-Seq datasets from four different cell lines –
HEK293, HEK293T, HELA, and HS68; and 2) 124 CLIP-
Seq samples from multiple CLIP-Seq protocols. The per-
formances of the circRNA detection methods are assessed
using various metrics including sensitivity, precision, F1
score, and true discovery rate.

Method
Circular RNA detection tools
Multiple tools and software packages [29] have been
developed to detect circRNAs from RNA-Seq data. In
general, all such tools require an aligner to identify
unmapped reads from the annotated references to dis-
cover the BSJs of circRNA candidates. Then, different
statistical adjustments and filters such as canonical splic-
ing conditions and minimum supporting reads can be
applied to eliminate potential false positives. Even though
most of the tools are developed to work on PE RNA-Seq
data, a few methods can also be applied to work with



Nguyen et al. BMC Genomics          (2022) 23:106 Page 3 of 13

SE RNA-Seq data. In this study, we pick methods that
can support SE reads for the evaluation. All selected tools
use traditional strategies which identify circRNAs through
direct BSJ discovery from handling raw sequence reads.
Other approaches to predict circRNAs that do not begin
with this type of data, such as machine-learning-based
methods [29], are not included in the study. In general, we
categorize them into two groups: RNA-Seq based meth-
ods and CLIP-Seq based methods. The selected RNA-Seq
based methods are originally developed to work with
RNA-Seq data including CIRI2 [20], CIRCexplorer [24],
DCC [25], CircRNA_finder [26], Find_circ2 [16], and
UROBORUS [27] . Among these, CIRI2 [20] and CIRC-
explorer [24] are the top-performing methods for PE
RNA-Seq data according to the most recent comparative
studies [21–23]. The CLIP-Seq based methods including
Clirc [18] and CircScan [28] are specifically developed for
detecting circRNAs from CLIP-Seq data . More details of
each method are summarized below.
CIRI2 [20] is one of the most widely used circular RNA

detection tools. Using the BWA-MEM [30] alignment
result, CIRI2 takes two scanning rounds to find potential
BSJs and eliminates false positive circRNAs from tandem
forward-splicing junctions (FSJs). In the first round, it
evaluates the paired chiastic clipping (PCC) signal of reads
to find whether they fit BSJ templates or not. The PCC sig-
nal is translated from the CIGAR (Compact Idiosyncratic
Gapped Alignment Report) of the read from the BWA
alignment. The PE mapping signal is also considered to
improve the result; however, this information is not avail-
able in the SE data. Further, the condition of the canonical
GT/AG splice sites from exon boundaries can be taken
into account. In the second round, CIRI2 uses an adapted
maximum likelihood estimation based on multiple seed
matching for determining the segment location and dis-
tinguishing BSJ reads from FSJ reads. This helps handle
unbalanced sequences and reduce the false discovery rate.
Find_circ2 [16] performs read alignment using BWA-

MEM. Generally, this tool extracts the 20 bp anchors at
both sides of the unmapped reads from the first alignment
and analyzes their mapping positions to decide whether
they stand for plausible circular RNA splicing. It also
applies additional steps for specificity improvement such
as the GU/AG signal of the splice site and at most two
mismatches allowed for a BSJ supporting read. Find_circ2
does not take into account the paired-end mapping infor-
mation [31].
CIRCexplorer [24] is a circRNA detection tool that

can support either TopHat or STAR (the default setting)
for alignment. Unmapped reads from the alignment are
split and realigned in reverse order to find BSJ reads. An
additional alignment to known gene annotation can be
performed to adapt sequencing reads’ positions to exon
boundaries accurately and consistently.

DCC [25] implements the mapping using STAR aligner
and identifies BSJ reads from the set of chimerically
aligned reads. DDC applies several filters including the
inner-circle region alignment of the mate read in PE
sequencing, the existence of GT/AT splicing signal in
putative BSJ junctions, and the elimination of candidates
mapped to repetitive or homologous regions.
CircRNA_finder [26] is a STAR-based tool. Chimeric

junction reads after STAR alignment are filtered by some
criteria, which includes matching GT-AG splice sites, at
most three mismatches allowed for BSJ supporting reads,
and 100kb of maximum distance between the acceptor
and donor anchors. For PE RNA-Seq data, it requires the
mate read of a BSJ supporting read to stay inside the
putative circRNA region.
UROBORUS [27] utilizes TopHat [32] together with

Bowtie [33] for alignment to obtain unmapped reads.
Then the tool trims the unmapped reads to extract 20bp
from two ends (head and tail) of the reads to form artifi-
cial paired-end reads. Next, these short paired-end reads
are mapped again to the genome using Tophat to get the
BSJ reads aligned to the joining region of two back-spliced
exons with 1) minimum 20bp of overhang at any of the
reads (balanced mapped junctions - BMJ) and 2) less than
20bp of overhang at one end of the reads (unbalanced
mapped junctions - UMJ). Finally, some filters are applied,
for example, chromosome locaction, maximum gene dis-
tance and the minimum number of supporting reads, and
etc.
Both Clirc [18] and circScan [28] are CLIP-Seq based

methods developed to address the typical issues concern-
ing most CLIP-Seq samples: SE reads with very short
read length (< 50 bases). Clirc starts with building the
sequences of linear transcripts and linearized circRNAs
and then maps input RNA reads into the prebuilt annota-
tion using Gsnap [34]. Only reads mapped across the BSJs
of linearized circRNAs are input into a filter step. This
step takes into account the length of overhangs from both
sides of the BSJs (minimum five bases) and the mismatch
rates in the overhangs (maximum 0.15).
Using another approach, CircScan maps input RNA

data to both genome and transcriptome sequences using
Bowtie [35]. Next, the unmapped reads are searched to see
if they contain both the donors and acceptors constructed
from known transcript annotations to collect BSJ candi-
dates. At this step, the mismatch penalty is considered to
score the junction reads. For the samples from PAR-Clip
[36], a common type of CLIP-Seq, the method compen-
sates for the mismatches caused by “T to C” mutations
at the site of cross-linking of photo-reactive nucleoside
4 4-thiouridine. Then, the BSJs from high-score junction
reads are mapped to multiple locations, and the junc-
tions non-overlapping with the aligned reads are excluded.
Finally, it shuffles the junction sequences 1000 times to



Nguyen et al. BMC Genomics          (2022) 23:106 Page 4 of 13

build a null distribution for scoring the BSJs and keeps the
significant BSJs with a false discovery rate < 5%.

Datasets
Simulated datasets
We take into account circRNAs, tandem RNAs, and linear
RNAs in the simulation for evaluating circRNA detection
methods. The FP BSJs in the simulated datasets are con-
trolled by the ratio between the numbers of tandem RNAs
and circRNAs to investigate the robustness of the meth-
ods. We consider four ratio settings: 5-95, 30-70, 50-50,
80-20, with the proportion of FP BSJs ranging from low
to high. For each FP ratio setting, we simulate both SE
RNA-Seq data and PE RNA-Seq data using eight different
read lengths including short reads (25, 42, and 50bp), long
reads (75, 100, and 150bp), and very long reads (200 and
250bp) to investigate their impact on the performances of
circRNA detection tools. The short reads of 25 and 42bp
indicate the minimum and median read lengths across
samples of the CLIP-seq dataset, respectively.
The simulated data are created by Circall-simulator

(https://github.com/datngu/Circall), a simulation tool
allowing to simulate RNA-Seq data for both circular
RNAs and tandem RNAs [37]. From 11,165 exonic cir-
cular RNAs of the HELA cell-line collected from the
circBase database [38], we divide them into two sets of
tandem RNAs and circRNAs in a specific ratio. We run
Salmon [39] on the experimental HELA RNase R- dataset
in Table S1 to obtain the expression of linear transcripts.
Then, we randomly assign the expression from the linear
transcripts to the circRNAs and tandem RNAs for simu-
lation. The simulator utilizes the information of reference
annotations and genome sequences to build the pseudo-
sequences of the circRNAs and tandem RNAs, Figure S1.
Finally, the circRNAs, tandem RNAs, and linear RNAs
with their corresponding expression are simulated using
Polyester [40] to generate a simulated paired-end RNA-
Seq dataset. We concatenate two reads of a paired-end
sample to build the corresponding single-end RNA-Seq
dataset.

Experimental RNA-Seq datasets
Table S1 summarizes four experimental PE RNA-Seq
datasets of human cell lines: HEK293, HELA, HS68, and
HEK293T. All datasets contain 1) a total RNA sample
(RNase R-) and 2) a total RNA sample with RNase R
treatment (RNase R+). The RNase R+ samples are not
supposed to have linear RNAs; thus, they can be used
for validating the circRNAs detected from the RNase R-
samples. Multiple samples of a dataset are merged to
build a single PE sample, and two reads of the PE sam-
ple are combined to produce an SE RNA-Seq sample for
evaluation.

Briefly, a RiboMinus kit is used for the depletion of
ribosomal RNA in all samples across four datasets. Then
the libraries are prepared using TruSeq protocol and
sequenced by Illumina HiSeq platforms. The HEK293
dataset [41] has an RNase R- sample (SRR3479243) and
RNase R+ sample (SRR3479244) with the PE reads of
150bp length. The HELA dataset [42] contains four sam-
ples equally divided into two groups: two original sam-
ples (SRR1637089 and SRR1637090) and two equiva-
lent samples after RNase R treatment (SRR1636985 and
SRR1636986) of 101bp PE reads. The HS68 dataset [43]
includes two samples SRR444975 and SRR445016 for
data without and with RNase R treatment, both contain-
ing 100bp PE reads. The HEK293T dataset [44] consists
of four RNase R- samples (SRR1562287, SRR1567913,
SRR1567914, and SRR1567915) and two RNase R+ sam-
ples (SRR2048277 and SRR2048278) of 100bp PE reads.
The details of the datasets are referred to the original
studies.

CLIP-Seq datasets
We collect a list of 124 public samples of high throughput
cross-linking immunoprecipitation sequencing (CLIP-
Seq) datasets from three cell lines, HELA (N = 63),
HEK293 (N = 42), and HEK293T (N = 19), for evaluation,
Table S2. These datasets are originally from 45 different
studies providing the RNA sequencing of RNAs linked
to 46 different RBPs using various CLIP-Seq protocols
including HITS-CLIP, iCLIP, irCLIP, miCLIP, PAR-CLIP,
PAR-CLIP-MeRIP, and PAR-iCLIP. A majority of the sam-
ples (80%) have short reads (≤ 50bp) with a median of
42bp. Details of all CLIP-Seq samples are provided in
Table S2 in the supplementary document.

Quality control
The fastq files of both the experimental RNA-Seq
and CLIP-Seq datasets are subjected to quality control
by FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). We exclude 16 CLIP-Seq samples which
do not pass the quality scores per sequence qualification
of FastQC from downstream analysis. The information
of quality control for individual samples are provided in
Table S2 in the supplementary document.

Performance metrics andmethod implementation
Six RNA-Seq based methods including CIRI2 version
2.0.6, CIRCexplorer version 1.1.10, DCC version 0.5.0,
CircRNA_finder version 1.2, Find_circ2 version 1.99, and
UROBORUS version 2.0.0 are used with all datasets. Two
CLIP-Seq based methods Clirc version 0.1.0 and CircScan
version 0.1 [28] are only used for the comparison between
the simulated SE datasets and the CLIP-Seq datasets.
Sequence reads of all datasets are mapped to the reference
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genome and transcriptome of UCSC hg19 Homo sapiens.
We set two as the minimum supporting reads in all meth-
ods. Further, other parameters are used with the methods’
default settings.
In the simulation study, the results of each tool are

collated with the true circRNAs from the simulation set-
ting to calculate sensitivity, precision, and F1 score for
comparison.

Sensitivity = Number of the discovered true positives
The total number of true circRNAs

,

(1)

Precision =
Number of the discovered true positives

The total number of circRNAs discovered through the method
.

(2)

F1 = 2 × Precision × Sensitivity
Precision + Sensitivity

. (3)

For the RNA-Seq data (RNase R-), we follow the com-
mon approach [21] that uses the corresponding RNase
R treated sample (RNase R+) for the evaluation. First,
the expression of the circRNA candidates of a sample is
normalized by the sample’s library size. A circRNA from
the RNase R- sample is considered “non-depleted” if its
expression is less than or equal to its expression in the cor-
responding RNase R+ sample. For each method, We rank
the detected circRNAs by their supporting reads and use
the non-depleted circRNAs to compute the true discovery
rate for method comparison.
Since both the CLIP-Seq based methods CircScan and

Clirc are developed for short-read CLIP-Seq data, not
long-read RNA-Seq data, we do not use the non-depleted
circRNAs for the assessment in the CLIP-Seq datasets.
For a fair comparison, we build a set of “true positives”
for each cell line from the circRNAs, which are discov-
ered from the RNase R+ samples by at least two methods.
Then, all the methods are evaluated based on these "true
positive" sets.

Results
Simulated datasets
Performances of the circRNA detectionmethods across read
lengths
Figure 1 presents the performances of the methods in
the ratio setting of 30-70 (30% FP BSJs for tandem RNAs
and 70% TP BSJs for circRNAs). The sensitivities of most
methods except that of Clirc and UROBORUS are pos-
itively correlated with the read length of the data. The
sensitivity of Clirc increases from a read length of 25bp to
50bp and then decreases from 75bp down to nearly zero

at 150-250bp, whereas the result of UROBORUS follows
a bell-curved shape with the peak at 100bp. The trend is
similar for the other FP ratio settings, see Figures S2-4.
CLIP-Seq basedmethods and Find_circ2 perform better

than the rest of the methods with the short-read datasets.
None of the RNA-Seq based methods reports circRNAs
for the read length of 25bp, and among the methods, only
Find_circ2 and UROBORUS discovers circRNAs from the
data with 42bp read length. For the shortest read length
(25bp), CircScan outperforms Clirc in sensitivity, preci-
sion, and F1 score across all FP ratio settings. However,
Clirc performs better in terms of both sensitivity and F1
score than CircScan in other cases of the short reads (42bp
and 50bp); see Fig. 1 and Figures S2-4.
For the longer-read datasets, UROBORUS and Clirc

achieve the worst and best precision respectively. The
precision of other methods is not significantly different,
making their F1 scores across read lengths highly depen-
dent on their sensitivity. Thus, for thosemethods, increas-
ing read length generally improves the F1 score. The
performances of CIRI2, CircExplorer, and Find_circ2 are
comparable in most FP ratio settings. The details of their
performances with the simulated datasets are provided in
Table S3-6 in the supplementary document.

Impact of tandem RNAs on the performances of the circRNA
detectionmethods
We assess the robustness of circRNA detection methods
with regard to the FP BSJs using four FP ratio settings
covering different proportions of tandem RNAs from low
to high. Figure 2(a) shows that the methods’ sensitivity is
nearly unchanged regardless of the increase in the ratio of
the FP BSJs. In contrast to sensitivity, the methods’ preci-
sion has a strong negative correlation with the proportion
of tandem RNAs, as shown in Fig. 2(b). The precision
median values are higher than the true positive rates in the
ratio settings (red squares). In other words, these methods
are better than the naïve approach that reports all BSJs.
However, the substantial decrease in precision in the ratio
settings with high FP rates indicates that the methods are
severely affected by the tandem RNAs. Since the sensi-
tivities are extremely close across the ratio settings, the
methods’ F1 scores are also negatively correlated with the
proportion of the FP BSJs, as indicated in Fig. 2(c).

Impact of sequencing depth on the performances of the
circRNA detectionmethods
To investigate the impact of sequencing depth, we simu-
late more data with different library sizes for all simulated
SE datasets with the ratio setting 30-70. Particularly, for
each dataset with a library size of L=89M reads, we use
the same setting to generate three extra simulated datasets
with the fold-changes of 0.25, 0.5, and 2 between their
library sizes and L, resulting 22M, 45M, and 178M reads,
respectively. We perform all methods using the same
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Fig. 1 Performances of all circRNA detection methods with the simulated SE datasets with the ratio setting 30-70 across read lengths. The x-axis
presents the read length of the simulated samples. The y-axis in panels (a), (b), and (c) presents sensitivity, precision, and F1 score respectively

parameters for these SE simulated datasets. The results
of all methods are summarized in Fig. 3. As expected,
the increase of sequencing depth allows the circRNA
detection methods to identify more BSJs, therefore, can
significantly improve the methods’ sensitivity, Fig. 3(a).
However, a larger library size also produces more FP BSJs,
which makes a slight decrease in the methods’ precision
for these simulated datasets, Fig. 3(b). Overall, similar to
the sensitivity, the F1 scores of the methods are highly
correlated with the sequencing depth, Fig. 3(c).

Performance differences between single-end reads and
paired-end reads
We further evaluate the impact of the PE mapping infor-
mation by comparing the results of the simulated SE data
with the output of corresponding simulated PE datasets.
CircScan and Clirc can run only on SE RNA-Seq data,
so they are excluded from any PE data analysis. For each
simulated PE dataset, we compute the precision differ-
ence of a method from the corresponding simulated SE
dataset. Thus, the difference indicates that a method has

an improvement in precision for the simulated PE data.
The calculation is done to all datasets across read lengths
and FP ratio settings, as depicted in Figures S5-8. A similar
procedure is performed to obtain the sensitivity difference
(Figures S9-12) and F1 difference (Figures S13-16).
Since Find_circ does not take into account the paired-

end mapping information [31], its results are almost the
same for both simulated SE and PE datasets. Most remain-
ing methods perform better in precision for the simulated
PE datasets; see Figures S5-8. The three methods Circ-
Explorer, DDC, and CircRNA_finder achieve the most
improvement in precision for PE reads at read lengths
of 250bp, while CIRI2 has similar precision differences
across all read lengths. Longer reads generally further
reduce sensitivity for the simulated PE datasets, indicated
in Figures S9-12. UROBORUS also obtains an improve-
ment in precision for PE reads at 200 and 250bp, but
its precision is worse for shorter PE reads. Furthermore,
UROBORUS reports a better sensitivity for PE reads
across read lengths. Similar patterns are found with regard
to the F1 scores, as shown in Figures S13-16. The F1
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Fig. 2 Performances of all circRNA detection methods with the simulated SE datasets across FP ratio settings. A box plot presents the results from all
simulated SE datasets of a setting across all methods and read lengths. Panels (a), (b), and (c) presents the results for sensitivity, precision, and F1
score respectively

differences of CIRI2 are very small (< 0.05) but mostly
positive, indicating that the performance of this method is
slightly better for the PE datasets in general. The F1 dif-
ferences of UROBORUS have the same trend with larger
values. The F1 scores of CircExplorer, DDC, and Cir-
cRNA_finder for the PE datasets clearly improve with
the read length of 50bp. However, longer reads including
150bp, 200bp, and 250bp degrade their F1 scores. More-
over, the increase of FP rates generally reduces the F1
differences between PE and simulated SE datasets.

Experimental RNA-Seq datasets
Figure 4 presents the true discovery curves of all methods
in the top 100 circRNAs ranked by their expression. The
x-axis denotes the number of top circRNAs and the y-axis
refers to the number of true positives in the top circRNAs.
Themethods with their curves closer to the diagonal black
line indicating 100% true discovery rate (TDR) are better.
The results show that CIRI2 and CIRCexplorer perform
rather well and are among the top-performing methods

for all datasets. CIRCexplorer has outperformances for
the HS68 and HEK293T datasets, while CIRI2 is the best
method for the HEK293 datasets. UROBORUS performs
rather well for HELA and HS68 datasets, however, it is not
among top-performing methods for the other datasets.
Further, Find_circ2 and CircRNA_finder deliver the worst
performances for the HS68 dataset. Since all experimental
RNA-Seq datasets in this study have long reads (≥ 100bp),
Clirc gives very poor performances. The method does not
even report any circRNAs in the HEK293 dataset with a
read length of 150bp. These results are also concordant
with the simulation study. CircScan delivers poor perfor-
mances with the HELA, HEK293, and HS68 datasets but
performs well with the HEK293T dataset. Extending the
curves to top 1000 and all circRNAs (Figures S17 and
S18), CIRI2 clearly outperforms the methods for HEK293
and HELA datasets and becomes comparable to CircEx-
plorer with HS68 and HEK293T datasets. UROBORUS
detects less than 1000 circRNAs across all datasets and
its performance drastically reduces for lower-ranked cir-
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Fig. 3 Performances of all circRNA detection methods with the simulated SE datasets across library sizes. A box plot presents the results from all
simulated SE datasets of a setting across all methods and read lengths. Panels (a), (b), and (c) presents the results for sensitivity, precision, and F1
score respectively

cRNAs. The performances of Find_circ2 are not stable.
The method is among the top-performing methods for
the HEK293 and HELA datasets but shows the worst
performance with the HS68 andHEK293T datasets. Com-
pared with the CLIP-Seq based methods, all RNA-Seq
basedmethods report substantially more circRNAs across
all datasets. The total numbers of circRNAs and non-
depleted circRNAs detected through individual methods
for each dataset is provided in Table 1.
Most methods achieve substantially fewer circRNAs

with the PE RNA-Seq datasets; see Table 1. The number of
circRNAs detected by DCC with the PE mode decreases
up to 80% in the HEK293 and HELA cell lines. In con-
trast, the number increases about two folds for the PE
mode of UROBORUS across all datasets. Similar to the
simulation study, the results of Find_circ2 with both SE
and PE data are nearly the same across cell lines. CIRI2,
CircExplorer, DCC, and CircRNA_finder gain better pro-
portions of non-depleted circRNAs from the PE data in
HEK293, HELA, and HS68 cell lines but show the worse

performances for the PE dataset of HEK293T cell line. We
further compare the results of PE and SE datasets based
on their differences in true discovery rate (TDR) across
methods. The circRNAs of each method are ranked by
their expression; then, the TDR is calculated for top cir-
cRNAs in both PE and SE datasets. For the PE HELA
and HEK293 datasets, all methods, except Find_circ2 and
UROBORUS, generally gave better TDR with the PE data
for highly expressed circRNAs, as provided in Figures S19
and S20. In contrast, the results of the SE dataset are better
than the results of the PE dataset for the highly expressed
circRNAs in the HEK293T cell line; see Figure S21. Only
DCC and CircRNA_finder achieved better TDR for the
highly expressed circRNAs of the PE dataset in the HS68
cell line, as shown in Figure S22.

CLIP-Seq datasets
From the results of the simulation study, the CLIP-Seq
based methods are superior to RNA-Seq based methods
with the short-read simulated datasets. In the CLIP-Seq
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Fig. 4 Comparison of all circRNA detection methods in the single-end experimental RNA-Seq datasets using top 100 circRNAs. The x-axis presents
the number of top circRNAs ranked by expression. The y-axis indicates the number of true positives (non-depleted circRNAs) in the top circRNAs.
The black solid diagonal line presents the perfect true discovery rate

datasets, 80% samples constitute short-read (≤ 50bp) data
(Table S2), making both CircScan and Clirc outperform
the other methods, as depicted in Fig. 5. Among RNA-
Seq based methods, CIRI2 obtains the best true discovery
curve, followed by CircExplorer, while Find_circ2 and
UROBORUS delivers the worst performance. CircScan
discovers the largest number of true positives (N = 678),
while Clirc reports only N = 357 true positives. However,
Clirc achieves the best precision (0.371), a bit higher than
the precision of CircScan (0.327); see Table 2. Find_circ2
identifies 386 true positives, slightly greater than the num-
ber identified by Clirc. However, it also identifies a huge
amount of circRNAs (N = 88,325), making it the method
with the lowest precision (0.004). Similarly, UROBORUS
identifies a large number of circRNAs (N = 10113) with
a small precision = 0.011. The remaining methods report
only a few true positives (< 30) across 108 samples; thus,
they are not practically efficient for the CLIP-Seq data.

Only Find_circ2 reports circRNAs from all 108 CLIP-
Seq samples, followed by Clirc, UROBORUS and Circ-
Scan with 69, 56 and 53 samples, respectively; the other
methods identify circRNAs in less than < 20% of the
CLIP-Seq samples; see Table 2. Overall, these results from
the CLIP-Seq data are in line with the findings of the
short-read datasets in the simulation study.
Table S7 presents the performances of all themethods in

individual CLIP-Seq protocols. CircScan obtains a higher
precision (0.473) than the results of Clirc (0.379) in the
largest group, PAR-CLIP, with N = 46 samples. However,
Clirc outperforms CircScan in other big groups including
iCLIP (N = 39), HITS-CLIP (N = 9), and irCLIP (N = 7).
RNA-Seq based methods do not perform well for irCLIP
even though all samples of the protocol contain long-read
RNA-Seq data (with 76bp read length).
The Venn chart in Figure S23(a) shows a little overlap of

detected circRNAs between CircScan, Clirc, UROBORUS
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Table 1 Results of all circRNA detection methods for single-end and paired-end experimental RNA-Seq datasets across four cell lines.
The columns Total, Non-dep, and Percent indicate the total detected circRNAs, the number of non-depleted circRNAs, and the
proportion of the non-depleted RNAs respectively. Clirc and CircScan are not applicable to the paired-end datasets

Dataset Method Single-end Paired-end

Total Non-dep Percent Total Non-dep Percent

HEK293 Ciri2 5841 3413 0.584 4397 3018 0.686

CircExplorer 4138 2393 0.578 1999 1389 0.695

DCC 2366 1389 0.587 301 193 0.641

circRNA_finder 5015 2656 0.530 2244 1510 0.673

find_circ2 4607 2899 0.629 4605 2897 0.629

UROBORUS 469 293 0.625 840 453 0.539

Clirc 0 0 0.000 . . .

CircScan 970 578 0.596 . . .

HELA Ciri2 7349 2981 0.406 6205 2885 0.465

CircExplorer 5469 2010 0.368 2728 1362 0.499

DCC 3704 1225 0.331 452 215 0.476

circRNA_finder 7086 2255 0.318 3299 1520 0.461

find_circ2 7529 2785 0.370 7520 2786 0.370

UROBORUS 640 266 0.416 1469 473 0.322

Clirc 136 37 0.272 . . .

CircScan 2269 943 0.416 . . .

HS68 Ciri2 5331 3406 0.639 4818 3198 0.664

CircExplorer 3950 2533 0.641 2683 1847 0.688

DCC 3122 1492 0.478 1747 1066 0.610

circRNA_finder 6402 2806 0.438 3520 2021 0.574

find_circ2 9070 3395 0.374 9076 3404 0.375

UROBORUS 551 356 0.646 1138 653 0.574

Clirc 114 68 0.596 . . .

CircScan 1727 1138 0.659 . . .

HEK293T Ciri2 8486 1806 0.213 7719 1435 0.186

CircExplorer 5347 1339 0.250 4102 679 0.166

DCC 3896 750 0.193 2548 376 0.148

circRNA_finder 8237 1521 0.185 4924 751 0.153

find_circ2 11891 1783 0.150 11896 1783 0.150

UROBORUS 794 157 0.197 1545 351 0.227

Clirc 166 23 0.139 . . .

CircScan 2080 648 0.312 . . .

and Find_circ2. More than half of the true positives iden-
tified by Find_circ2 and UROBORUS can be discovered
by either CircScan or Clirc, as provided in Figure S23(b).
The sets of overlapping circRNAs between the methods
have better precision than the sets of distinct circRNAs
of individual methods. For example, 107 of 135 circRNAs
discovered by both Clirc and CircScan are true positives.
Thus, the true positive rate (0.793) of the overlapping set
between the two methods is two times greater than the
overall precision of each method.

Discussion and conclusion
In this study, we evaluate the performances of five RNA-
Seq based methods and two CLIP-Seq based methods in
the detection of circRNAs from both simulated and exper-
imental SE RNA-Seq data. In the simulation study, we take
into account the impacts of read length and the ratio of
FP BSJs caused by tandem RNAs, and sequencing depth
on the performances of the methods. For their assessment
using real data, four experimental RNA-Seq datasets with
long reads (≥ 100bp) and 124 CLIP-Seq samples with
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Fig. 5 Comparison of all circRNA detection methods with the CLIP-seq dataset using true discovery rate.. The x-axis presents the number of top
circRNAs ranked by expression. The y-axis indicates the number of true positives (non-depleted circRNAs) in the top circRNAs. The black solid
diagonal line presents the perfect true discovery rate. The x-axis and y-axis are presented in log-scale

mostly short reads (≤ 50bp) from 45 different studies
are utilized. A comparison with the results of PE RNA-
Seq data is also done for the simulated datasets and the
experimental RNA-Seq datasets.
The simulation study shows that increasing either read

length or sequencing depth can improve the sensitivities
of the methods for the SE RNA-Seq data. Only Clirc’s sen-
sitivity reduces when the read length is greater than 75bp.
The sensitivities are not greatly affected by the changes in
the ratio of FP BSJs, indicating that most methods detect
the BSJs efficiently. However, the ratio of FP BSJs sig-
nificantly affects the precision of all methods with the
simulated SE data. The PE mapping information indeed
improves the precision of most RNA-Seq based methods
for the simulated PE datasets. However, in the cases of the
very long-read data (read length > 150bp), CircExplorer,

Table 2 Results of all circRNA detectionmethods for the
108 CLIP-seq samples

Method # samples
detected

# circRNAs
detected

True
positives

Precision

CircScan 53 2076 678 0.327

Clirc 69 962 357 0.371

CIRI2 10 51 13 0.255

CircExplorer 19 290 22 0.076

DCC 15 687 23 0.033

CircRNA_finder 24 4140 27 0.007

Find_circ2 108 88325 386 0.004

UROBORUS 56 10113 115 0.011

DDC, and CircRNA_finder show the substantial reduc-
tion of sensitivities and F1 scores with the PE data in the
comparison with the SE data. Therefore, these methods
perform better with the SE read rather than the PE read
for the very long-read data. In contrast, UROBORUS per-
forms better for the very-long PE read data, but it does not
utilize well the PE mapping information for the shorter PE
read data.
The results in this study are also concordant with the

findings from the previous benchmark studies [21, 22]
which are performed for PE long-read data. For example,
we also observe that there no single method outperforms
the others on all datasets. However, CIRI2 and CIRC-
explorer are usually among the top-performing tools for
the long-read SE data. Furthermore, there are signifi-
cantly different performances between circRNA detection
tools, especially in the CLIP-Seq datasets. For the long-
read simulated datasets, Find_circ2 generally achieves the
highest sensitivity and lowest precision; however, the per-
formances of this method with the real datasets are highly
dependent on the complexity of the data.
The CLIP-Seq based methods outperforms the RNA-

seq based methods for both the short-read simulated
datasets and the CLIP-Seq dataset.We note that the devel-
opers of RNA-Seq based methods might not have applied
themethods for SE short-read RNA-Seq like the CLIP-Seq
data, so their uses in this study are purely for compara-
tive purposes. Neither Clirc nor CircScan is dominant for
all datasets. Clirc is better than CircScan for the simulated
data with read lengths of 42bp and 50bp but not 25bp.
Regarding the CLIP-Seq protocols, CircScan outperforms
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Clirc in the PAR-LIP protocol, while Clirc performs bet-
ter than CircScan in iCLIP and HITS-CLIP protocols.
Find_circ2 outperforms the other RNA-Seq based meth-
ods with the short-read datasets. However, it reports
a great number of false positives with the CLIP-seq
datasets. In addition, integrating the results of CircScan,
Clir, and Find_circ2 can significantly improve precision.
One of the study’s limitations is that we evaluated the

circRNA detection methods based only on human data.
Thus, performances of these methods on the SE RNA-
Seq data of other species, such as mouse and plants, were
not taken into account. Such an investigation is out of
the scope of the current study and can be considered in
the future. The validation of circRNAs using the RNase
R+ samples in this study is widely used in circRNA stud-
ies, but it is not a perfect method. The digestion of linear
RNAs in the RNase R+ samples does not always perform
well [45]. Therefore, an independent validation for the
detected circRNAs such as RT-PCR would help. A dis-
advantage of the RT-PCR approach is that it cannot be
applied to a great number of circRNAs.
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