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Abstract 

Background: Single-cell CRISPR screens are powerful tools to understand genome function by linking genetic 
perturbations to transcriptome-wide phenotypes. However, since few cells can be affordably sequenced in these 
screens, biased sampling of cells could affect data interpretation. One potential source of biased sampling is clonal 
cell expansion.

Results: Here, we identify clonal cells in single cell screens using multiplexed sgRNAs as barcodes. We find that the 
cells in each clone share transcriptional similarities and bear segmental copy number changes. These analyses sug-
gest that clones are genetically distinct. Finally, we show that the transcriptional similarities of clonally expanded cells 
contribute to false positives in single-cell CRISPR screens.

Conclusions: Experimental conditions that reduce clonal expansion or computational filtering of clonal cells will 
improve the reliability of single-cell CRISPR screens.
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Background
CRISPR screens are powerful genetic tools to study the 
function of genes and regulatory elements genome-
wide. Traditional CRISPR screens rely on a phenotypic 
selection step such as proliferation. Recently, single-cell 
CRISPR screens have been developed to link genetic per-
turbations with high content transcriptome-wide pheno-
types [1–5]. However, standard procedures for single-cell 
CRISPR screens have not been systematically evaluated, 
and how certain experimental parameters affect data 
interpretation remain understudied. One such parameter 
is clonal cell expansion. Cancer cells are heterogeneous, 
and distinct clones have genetic features that facilitate 
proliferation [6, 7]. Excessive clonal cell expansion could 
potentially bias cell-based screening by oversampling 

highly proliferative clones, thereby increasing false sig-
nals or decreasing true signals.

Traditional bulk CRISPR screens analyze millions of 
cells, which limits clonal expansion artifacts [8]. How-
ever, in single-cell CRISPR screens, a relatively smaller 
number of cells can be affordably sequenced, which 
increases the risk of clonal expansion. Quantification of 
clonal cells is necessary to assess the clonality in single 
cell screens.

Single-cell CRISPR screens have introduced multi-
ple sgRNAs per cell to increase throughput [4, 5, 9]. 
We reason that the combination of sgRNAs in a cell 
can serve as a barcode to track clonal cells. We devel-
oped a computational strategy to identify clones based 
on multiplexed sgRNA barcodes in sequenced cells. To 
test this approach, we performed a single-cell screen in 
breast cancer cells. We identified distinct populations 
of clonal cells, and we show that removal of clonal cells 
significantly reduces false discovery. Finally, we identify 
segmental copy number changes by comparing the tran-
scriptomes of clonal cells, and these data suggest that 
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clones are also genetically distinct. In sum, this approach 
can be used to improve the quality and interpretation of 
single-cell CRISPR screens, and it can allow clonal line-
age information [10–13] to be derived from these data.

Results
Multiplexed sgRNAs serve as a clonal barcode
We reasoned that the presence of multiple sgRNAs in a 
cell could be used to barcode distinct clones. Therefore, 
we infected MDA-MB-231 cells stably expressing the 
CRISPRi effector dCas9-KRAB with a high MOI virus 
spanning a complex library of 20,000 distinct sgRNAs 
(Fig.  1A). To enhance our ability to identify clones, we 
performed these analyses in low cell numbers (0.2 million 
cells) with long antibiotic selection (24 days). Overall, we 
performed single-cell RNA-Seq on ~ 55,000 cells passing 
robust data quality standards including the removal of 
dying cells and cell doublets by cell hashing [14] (Supp. 
Fig. 1, see Methods). On average, we detected 33.9 sgR-
NAs (median 32) expressed in each cell and the average 
UMI for each detected sgRNA in a cell is 15.1 (Supp. 
Fig. 1).

To identify clones, we developed a computational strat-
egy based on the hypergeometric test to group clonal 
cells using the set of sgRNAs expressed in each cell as 
its clonal barcode (Fig.  1B). Overall, we identified 3541 
clones spanning 96% of all sequenced cells (Fig. 1C). On 
average, each clone contained 14 cells. We identified 54 
major clones each with more than 100 cells (Supp. Fig. 2) 
and 1886 high-confidence non-clonal cells. This analysis 
was robust to the approach used to identify sgRNAs in 
each cell (Supp. Fig. 3).

To assess the accuracy of our clone definitions, we 
compared sgRNAs across clones (Supp. Fig.  2). If each 
clone is distinct, then we expect sgRNAs to be shared 
within each clone but not between clones. We therefore 
calculated the p-value of sgRNA overlap between pairs 
of cells in clonal and non-clonal groups (Fig.  1D). We 
observe that cells from the same clone exhibit statisti-
cally significant overlap of sgRNAs, while cells from dif-
ferent clones do not. A rare set of cells exhibiting sgRNA 
overlap with multiple clones coincided with cell hashing 
doublets, suggesting that sgRNAs can also identify cell 
doublets [14].

To quantify these observations, we compared the 
sgRNA overlap rate within and between clones. On aver-
age, cells in each major clone share 77.3% of sgRNAs 
(Fig. 1E). In contrast, cells between major clones exhibit 
significantly less overlap (0.068%) (Fig.  1F). Similarly, 
clonal cells do not exhibit significant sgRNA overlap with 
non-clonal cells (0.036%), and likewise non-clonal cells 
rarely share sgRNAs (0.35%).

Next, we applied our computational pipeline to two 
publicly available datasets [4, 5]. We rarely found clonal 
expansion in these datasets: 99% (K562), 98% (K562), 
and 83% (HeLa) of sequenced cells are high-confident 
non-clonal (Supp. Fig.  4). Notably, these studies used 
more cells and shorter antibiotic selection time, which 
reduced clonality. Overall, these results suggest that our 
approach can identify clonal cells using multiple sgRNAs 
as a barcode.

Clonal cells identified by sgRNA barcodes have distinct 
genomic features
To understand the impact of clones on single-cell CRISPR 
screens, we performed differential expression analysis of 
targeted genomic regions. Unexpectedly, we observed 
that some perturbations targeting independent genomic 
regions often share many differentially expressed 
genes (Fig.  2A). For example, two perturbed regions 
(chr5:91296670–91,297,170 and chr14:92760258–
92,760,758) are on different chromosomes but share clus-
tered down-regulation of multiple genes on chromosome 
19 (RPL28, RPL13A, FTL). Interestingly, we noticed that 
a large proportion (35%) of these cells share sgRNAs from 
both perturbed regions (Fig. 2B). This overlap is statisti-
cally unlikely to occur by chance (p = 3.42e-35, hyper-
geometric), suggesting that overlapping cells are clones. 
Indeed, we found that 98% of the overlapping cells come 
from major clone 18.

To assess whether clonal cells can influence the iden-
tification of differentially expressed genes, we repeated 
our analysis in clonal and non-clonal cells. We find that 
clonal cells retain clusters of differential gene expres-
sion, especially on chr19, while non-clonal cells do not 
(Fig. 2C). Simulations also confirm that increasing num-
bers of clonal cells increases the detection of clone-spe-
cific hits (Supp. Fig. 5). These results suggest that removal 

Fig. 1 Multiplexed sgRNAs serve as a clonal barcode. A. Overview of single-cell CRISPR screen performed in this study (~ 20 k sgRNAs, ~ 50 k cells 
sequenced, ~ 30 sgRNAs per cell). B. Examples of clonal (left) and non-clonal (right) cells. Shown is the overlap of sgRNAs between two sequenced 
cells and the significance of this overlap (hypergeometric p-value). C. The proportion of clonal cells and non-clonal cells in the single-cell CRISPR 
screen dataset. 96% of sequenced cells have some degree of clonality, with at least one other cell sharing significant overlap of sgRNAs. D. We 
sampled 500 random cells from either clonal (left) or non-clonal (right) populations and then calculated p-values of sgRNA overlap for each pair of 
sampled cells. Shown is a heatmap of these p-values. E. Distribution of pairwise sgRNA overlap rate in 54 major clones. Given two cells, the sgRNA 
overlap rate is the number of shared sgRNAs (intersection) divided by the number of total sgRNAs (union). F. Pairwise sgRNA overlap rate for cells: 
in the same clone, between different clones, between clones and non-clones, and within non-clonal cells. Given two cells, the sgRNA overlap rate is 
the number of shared sgRNAs (intersection) divided by the number of total sgRNAs (union)

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Fig. 2 Perturbation clones have distinct genomic features. A. Manhattan plots showing the differentially expressed genes for cells with sgRNAs 
from two independent genomic regions. X-axis: genes ordered by chromosomal coordinate. Y-axis: significance differential gene expression. Positive 
values: up-regulated genes; negative values: down-regulated genes. Note that these distinct perturbations share the same sets of differential 
expressed genes in chromosome 5 and chromosome 19. B. We sequenced 1225 and 578 cells with sgRNAs targeting chr5:91296670–91,297,170 
and chr14:92760258–92,760,758, respectively. Shown is the overlap of cells, which is statistically significant (p = 3.42e-35, hypergeometric p-value). 
C. We randomly selected 400 cells from either major clonal cells or other cells. The Manhattan plots show that the signals come from clonal cells. D. 
Clone 18 represents most of the overlapping cells in 2B. (top) For all 483 cells in clone 18, the heatmap shows the z-score normalized expression of 
all genes ordered by chromosomal coordinate. (bottom) Average values across all cells. The putative segmental deletions of chromosomes 5 and 
19 are consistent with the differentially expressed genes in Fig. 2A. E. For each of the 54 major clones identified, the heatmap shows the z-score 
normalized expression of all genes ordered by chromosomal coordinate. F. For Clone 0, shown is the average z-score normalized expression of 
genes, ordered by chromosomal coordinate. Several tumor suppressors (red) and oncogenes (red) that overlap potential regions of segmental 
amplification or deletion, respectively, are labeled. G. Power analysis indicates the p-value of sgRNA overlap in two sequenced cells as a function of 
sgRNA library size and the number of sgRNAs detected per cell. We assume that clonal cells share 75% of detected sgRNAs
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of clones is necessary to avoid false discovery. As an 
alternative approach, recently developed computational 
frameworks for single-cell screens such as SCEPTRE and 
Normalisr could be used to adjust for clones by modeling 
them as covariates [15, 16].

Since clone 18 has clustered down-regulation of genes 
in chromosome 19, we hypothesized that the cells in this 
clone may have a segmental deletion of chromosome 
19. To test the hypothesis, we used the grouped tran-
scriptomes to visualize relative changes in genomic copy 
number. We first calculated expression z-scores for each 
cell and gene pair. Our rationale is that clusters of genes 
with positive z-scores indicate gain in copy number while 
clusters of negative z-scores indicate copy number loss. 
We removed genes expressed in less than 10% of cells to 
focus on genes with the most robust signal, which are 
8282 genes in total. Our analysis shows that clone 18 
exhibits clustered depletion of gene expression on both 
chromosomes 5 and 19 (Fig.  2D), consistent with the 
clustered down-regulated genes observed in differential 
expression analysis (Fig. 2A). Thus, these results suggest 
that cells from clone 18 may have segmental deletions of 
these chromosomes.

Next, we expanded this analysis across the 54 major 
clones. We found evidence for distinct copy number 
gains and losses in different clones (Fig.  2E). For exam-
ple, Clone 45 exhibits copy number loss across chromo-
some 17. In contrast, Clone 31 exhibits copy number loss 
across multiple chromosomes (chr2, chr6, chr7, chr19, 
chr21). Interestingly, segmental deletion of chromo-
some 19 frequently occurs in many clones (18 clones, 
3625 cells). In addition, we find that the signatures of 
structural changes in clonal cells are distinct from those 
in non-clonal cells (Supp. Fig.  6). As an alternative 
approach, we also visualized transcriptomes with t-SNE 
analysis. While the cells from the same major clone often 
did not fall into a single cluster, clonal cells do have lower 
Shannon entropy compared with non-clonal cells (Supp. 
Fig. 7) [17], indicating that clonal cells share similar tran-
scriptomes. Overall, these results suggest that clones 
identified from sgRNA barcodes are also genetic clones 
with distinct genomic structure. Since our experimental 
approach uses catalytically dead dCas9 lacking cleavage 
activity, sgRNA activities are unlikely to explain segmen-
tal changes in gene expression. In addition, the sgRNAs 
are not enriched in the segmental deletion regions, which 
further excludes the possibility that CRISPR perturbation 
leads to segmental deletion (Supp. Fig. 8). Separately, we 
also applied recent computational approaches that have 
been developed to identify clones from single-cell tran-
scriptomes alone [18, 19]. However, we could not identify 
clones, likely because our dataset does not satisfy all the 
criteria of these approaches.

Since major clones have the most number of cells, they 
are the most proliferative. To understand why the major 
clones expand more than other cells, we overlapped their 
genomic features with known oncogenes and tumor sup-
pressors. We found that amplified regions in major Clone 
0 overlap with oncogenes including MYC, while deleted 
regions overlap with tumor suppressor genes including 
TP53 and BRCA1 (Fig. 2F). We observe similar results in 
other clones (Supp. Fig. 9).

Finally, to determine the optimal experimental param-
eters for sgRNA-based clonal analysis from single cell 
experiments, we performed power analysis (Fig.  2G, 
Supp. Fig. 10). Assuming an sgRNA overlap rate of 75% in 
clonal cells (Fig. 1E-F), we calculated p-values as a func-
tion of sgRNA library size and the number of sgRNAs 
detected per cell. Overall, it is easier to identify clones 
with larger sgRNA libraries and more sgRNAs per cell. 
As a rule of thumb, a library size of at least 1000 sgRNAs 
with at least 10 sgRNAs per cell is sufficient for clonal 
analysis, which were satisfied in published studies [4, 5].

Conclusions
In summary, this study highlights the importance of 
clone identification in single-cell CRISPR screens. We 
developed a computational pipeline to identify clonal 
cells without genomic DNA sequencing or additional 
engineering of clonal barcodes. We found that clonal 
expansion in single-cell CRISPR screens contributes 
to bias and leads to false discovery. Thus, experimental 
conditions that reduce clonal expansion or computa-
tional filtering of clonal cells will improve the reliability 
of single-cell CRISPR screens. This analysis could also be 
useful for understanding how distinct clones respond to 
perturbation.

Methods
Experimental details
Cell culture
MDA-MB-231 cells were purchased from ATCC and 
cultured with alpha modified MEM medium (Sigma) 
with supplement of 10% FBS, 1 mM sodium pyruvate 
(Gibco), 10 mM HEPES (Sigma), 1X Glutamax supple-
ment (Thermo Fisher), 1X MEM non-essential amino 
acid (Sigma), 1 mg/mL insulin, 1 ng/mL hydrocortisone, 
25 μg/mL EGF and pen/strep at 37C and 5% CO2 [20]. 
Lenti-X 293 T cells are purchased from Takara and cul-
tured with DMEM medium with 10% of FBS. Cells were 
checked monthly for mycoplasma. To repress the activ-
ity of regulatory elements, we utilized catalytic dead 
Cas9 (dCas9) fused with the KRAB repressor domain. 
This effector lacks the ability to cut genomic DNA. To 
generate the stably expressed dCas9-KRAB, we used 
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lenti-dCas9-KRAB-blast (Addgene ID: 89567) to package 
into lentivirus and infected MDA-MB-231 cells.

sgRNA library construction
sgRNA library construction was performed as described 
in Xie et  al., 2019 [4]. Briefly, 20,139 single stranded 
sgRNA were synthesized by Genescript, and amplified by 
NEBNext High-Fidelity PCR master mix to make them 
double stranded. sgRNAs were inserted into the BsmBI-
digested CROPseq-Guide-Puro backbone (Addgene ID: 
86708) with Gibson Assembly. The final plasmid library 
was amplified and purified through electroporation 
under ampicillin selection overnight. ZymoPURE plas-
mid maxiprep kit was used to extract the plasmid library.

Virus packaging and infection
Virus packaging and infection was performed as 
described in Xie et al., 2019 [4]. Briefly, the sgRNA plas-
mid library was packaged into lentivirus by co-trans-
fecting with pMD2.G and psPAX2 (Addgene ID 12259 
and 12,260) to Lenti-X 293 T cells using linear polyeth-
ylenimine (Transporter 5® Transfection Reagent, Poly-
sciences). Medium was changed after 8 h of transfection, 
and the supernatant was collected and filtered through a 
0.22 um filter 48 h after transfection. Virus was concen-
trated with the Lenti-X concentrator (Clontech) accord-
ing to the manufacturer’s instructions.

We performed lentivirus infection of MDA-MB-231 
cells in 24-well plate format. To maximize MOI, we 
infected MDA-MB-231 with a serial dilution of virus, 
and focused sequencing efforts on healthy cells with the 
highest MOI, as in [5]. In this experiment, 4 wells of cells 
under antibiotic selection for 24 days were used. We con-
firmed the per-cell titer of sgRNAs by performing single-
cell RNA seq.

Single‑cell CRISPR screen library construction
Single-cell library construction was performed as 
described in Xie et al., 2019 [4]. Briefly, cells were labeled 
with 10 different antibodies using the cell hashing pro-
tocol [13]. Twenty-five thousand cells were loaded into 
each of 6 lanes of the 10X Chromium Single-Cell 3′ V3 
RNA-seq kit. Transcriptome libraries were constructed 
following the manufacturer’s instructions. sgRNA librar-
ies were amplified from 50 ng of transcriptome PCR1 
products using the SI primer and sgRNA enrichment 
primer. Nextera indexes were added in the second run of 
PCR. We used 1.6X of SPRI purification to clean up the 
final sgRNA libraries (~ 500 bp).

Sequencing
Libraries were sequenced on the Illumina NextSeq (R1 
28bp, R2 56bp, and idx1 8 bp) and the Illumina NovaSeq 

(R1 150bp, R2 150bp, idx1 8 bp). Each transcriptome 
library has ~ 300 M reads, and each sgRNA library and 
Cell Hashing library has ~ 30 M reads.

Computational analysis
sgRNA library design
We combined 4451 breast cancer GWAS SNPs [21] into 
133 1-Mb loci, which are across all 23 chromosomes. 
We identified regulatory elements based on ATAC-
seq [22] and H3K27ac ChIP-seq signals [20]. We called 
the ATAC-seq signals using the function callpeak from 
macs2, and we quantified the H3K27ac ChIP-seq sig-
nals within the ATAC-seq peaks by using ‘featureCounts’. 
The cutoff for H3K27ac ChIP-seq signals is more than 
1 RPKM. There are 884 promoters and 1214 enhancers 
after all the filterings. To find the sgRNAs targeting the 
enhancers, we expanded the ATAC-seq signal peak to 
500 bp, and identified 10 non-overlapping sgRNAs span-
ning each targeted region. We aligned the sgRNAs in the 
human genome with BLAST to reduce off targets. Over-
all, 99.9% of the sgRNAs in the library are aligned to only 
one region of the human genome (Supp. Fig. 1).

Data preprocessing and hits calling
Data processing was performed as described in [4]. 
Briefly, transcriptome libraries were mapped to the 
human reference genome (hg38) with Cellranger soft-
ware (version 3.1), with expected cell number of 20,000 
and default parameters. Cell hashing libraries were 
mapped with the cellranger software together with the 
transcriptome libraries. We searched all the possible 
sgRNA sequences in fastq files with regular expression 
analysis, allowing one base pair of mismatch.

Experimental doublets were removed through cell 
hashing [14]. We performed Louvain clustering [23], 
and we removed one distinct cluster of cells that highly 
expressed mitochondrial genes (Supp. Fig.  1). sgRNA 
counts were summarized for each cell, and UMIs were 
processed with the ‘directional’ method described in 
UMI-tools [24]. For each cell, we filter out low UMI 
sgRNA by applying a saturation curve method as 
described in Drop-seq [25]. The metrics for all the librar-
ies can be found in Supplementary Table 1. Overall, the 
average UMI for each detected sgRNA in each cell is 15.1.

We grouped all the sgRNAs for each perturbed region 
and calculated if the expression level of each gene 
changed significantly due to perturbation using hyper-
geometric test [4]. To adjust for false discovery, we 
calculated the background p-value for each gene by per-
forming the hypergeometric test with 10,000 randomiza-
tion of sgRNA combinations [4]. The Significance Score 
for each gene is then the observed  log10p minus the rand-
omized background  log10p.
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Grouping cells into clones using sgRNA information
The input is the sgRNA matrix with cell barcodes as 
columns and all the sgRNA sequences as rows. To 
statistically test whether two cells belong to the same 
clone, we use multiplexed sgRNAs as clonal barcodes 
and we use the hypergeometric test (‘scipy.stats.hyper-
geom.sf ’ function) with the parameters below:

x: The number of overlap sgRNA between the two 
cells minus one.
M: The size of the sgRNA library.
n: The number of sgRNA in cell 1.
N: The number of sgRNA in cell 2.

The agglomerative algorithm to group cells into 
clones proceeds as follows. Clonal information is stored 
as a Python dictionary data structure D, initially empty. 
We iterate through each cell c in the population C and 
compare sgRNA overlap to cells in D. If cell c does not 
have significant sgRNA overlap with any cell in D, then 
c is added to D as a new clone. If cell c has significant 
sgRNA overlap with exactly 1 clone d in D, then c is 
added to clone d. The Bonferroni-corrected p-value 
cutoff for the same clone is 0.05. Cells with statistically 
significant sgRNA overlap with multiple distinct clones 
were removed from downstream analysis because they 
are likely cell doublets. The pseudocode is below:

D = empty clone dictionary

for each cell c in the set of all cells C:

if c has sgRNA overlap with 0 clones in D, then add 
c as a new clone to D
if c has sgRNA overlap with exactly 1 clone d in D, 
then add c to clone d
if c has sgRNA overlap with > 1 clones in D, then 
mark c as doublet

Simulations of clones to assess method robustness
To estimate the robustness of our approach, we simulated 
1000 clonal cells, each having 30 sgRNAs where 75% of 
the sgRNAs were derived from a clone and the remaining 
25% of the sgRNAs were randomly selected from the full 
sgRNA library. Next, we simulated 1000 non-clonal cells 
by randomly selecting 30 sgRNAs from the whole sgRNA 
library. To assess robustness, we then repeated our analy-
sis with the 2000 simulated cells (Supp. Fig. 2).

Visualizing segmental copy number changes from gene 
expression
We normalized the transcriptome count matrix with 
the sequencing depth for each cell by calculating counts 

per millions (cpm). We filtered out genes expressed 
in less than 10% of all cells and calculated the nor-
malized expression z-score of cpm matrix for each 
expressed gene relative to all sequenced cells with the 
function stats.zscore(cpm_matrix, axis = 1, ddof = 1). 
We then arranged the expressed genes based on the 
chromosome position and plotted the heatmap with 
the ‘imshow’ function of the matplotlib package. More 
details can be found in the jupyter notebook here: 
https:// github. com/ yihan 1119/ Group_ clone/ blob/ 
main/ Noteb ooks/ All_ clones_ zscore- Github. ipynb.
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