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Abstract 

Background: Multiple sclerosis (MS) is a debilitating immune-mediated disease of the central nervous system that 
affects over 2 million people worldwide, resulting in a heavy burden to families and entire communities. Understand-
ing the genetic basis underlying MS could help decipher the pathogenesis and shed light on MS treatment. We 
refined a recently developed Bayesian framework, Integrative Risk Gene Selector (iRIGS), to prioritize risk genes associ-
ated with MS by integrating the summary statistics from the largest GWAS to date (n = 115,803), various genomic 
features, and gene–gene closeness.

Results: We identified 163 MS-associated prioritized risk genes (MS-PRGenes) through the Bayesian framework. 
We replicated 35 MS-PRGenes through two-sample Mendelian randomization (2SMR) approach by integrating data 
from GWAS and Genotype-Tissue Expression (GTEx) expression quantitative trait loci (eQTL) of 19 tissues. We demon-
strated that MS-PRGenes had more substantial deleterious effects and disease risk. Moreover, single-cell enrichment 
analysis indicated MS-PRGenes were more enriched in activated macrophages and microglia macrophages than 
non-activated ones in control samples. Biological and drug enrichment analyses highlighted inflammatory signaling 
pathways.

Conclusions: In summary, we predicted and validated a high-confidence MS risk gene set from diverse genomic, 
epigenomic, eQTL, single-cell, and drug data. The MS-PRGenes could further serve as a benchmark of MS GWAS risk 
genes for future validation or genetic studies.

Keywords: Multi-omics, Bayesian framework, Multiple sclerosis, Two-sample Mendelian randomization, Single-cell 
RNA-sequencing
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Background
Multiple sclerosis (MS) is an immune-mediated disease 
of the central nervous system characterized by the dis-
semination of lesions in space and time with demyelina-
tion and inflammation. MS affects over 2 million people 
worldwide, with over 75% of MS patients being women, 
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which imposes a heavy burden on patients, families, and 
the public health system [1]. Currently, there is no treat-
ment to stop or reverse the pathogenesis of MS. Moreo-
ver, the etiology of MS is poorly understood, as it involves 
both genetic and environmental factors.

Epidemiologic and genetic studies have identified the 
critical role of genetic factors underlying MS during the 
recent decades [2–5]. The completion of the human ref-
erence genome and newly developed genotyping tech-
nologies have made it possible to conduct large-scale 
population-based association studies between cases and 
controls [6]. The most recent genome-wide association 
studies (GWAS) of 47,429 MS cases and 68,374 con-
trol subjects have reported 200 autosomal susceptibility 
variants outside the major histocompatibility complex 
(MHC) [7]. However, identifying the corresponding MS-
associated risk genes is still a popular area of research, 
given that true risk genes may be located at a far distance 
from the susceptibility variants. Thus, there is still a need 
to prioritize the genes and functions linked to the genetic 
variants depicted by the MS GWAS.

Although there is a genetic component to MS onset, 
monozygotic twins are often discordant for MS [8]. Fur-
thermore, there are different subtypes of MS, and the 
disease course may vary significantly among individuals 
with MS. This indicates that there is also an environmen-
tal component to MS etiology. During the past two dec-
ades, epigenetic studies have made tremendous progress 
in expanding our understanding of environmental fac-
tors in MS. DNA methylation is the most studied epige-
netic mechanism, which plays an important role in gene 
expression regulation without altering DNA sequence 
[9]. Huynh et  al. have reported that changes in DNA 
methylation were associated with gene expression, which 
affected oligodendrocyte susceptibility, and led to dam-
age among brain samples of MS cases [8].

Considering that a large proportion of GWAS loci are 
in the noncoding regions of the genome, the strategy of 
choosing the closest gene to each index single nucleotide 
polymorphism (SNP) might not explain the complicated 
regulatory mechanisms well [10, 11]. This is because 
the ’real’ risk gene may locate at a far distance or on dif-
ferent chromosomes [12]. Therefore, explicit methods 
that could leverage the accumulating genomic and epi-
genomic evidence have been developed for fine map-
ping these genetic risk loci in complex diseases [13–16]. 
However, to our knowledge, there have been few studies 
integrating multi-omics data [17–19] to predict the risk 
genes for MS.

To fill the gap, the current study aims to predict the 
MS-associated risk genes in the most recent GWAS 
of 115,803 individuals [7]. Specifically, we extended a 
recently developed Bayesian framework, Integrative Risk 

Gene Selector (iRIGS) [14], to incorporate genomic fea-
tures and multi-omics information in network space to 
identify MS-associated prioritized risk genes. We name 
them as MS-PRGenes. We subsequently conducted two-
sample Mendelian randomization (2SMR) analyses to 
validate the MS-PRGenes in 19 tissues [20]. Furthermore, 
we investigated their genetic features and conducted 
single-cell enrichment analysis in both case and control 
samples to explore the cell-specific functions [21, 22]. 
Lastly, we performed pathway and drug signature enrich-
ment analyses of the MS-PRGenes to better understand 
the function of these prioritized genes and explore the 
potential drug repositioning strategies for MS.

Results
Integrative Risk Gene Selector (iRIGS)
The study design and analysis pipeline are summarized in 
Fig. 1. Features used in the prioritization of MS-PRGenes 
and validations are shown in Table 1. In the current study, 
we applied a modified version of iRIGS [14] to prioritize 
MS-associated risk genes. We performed this analysis 
using the 200 risk lead SNPs reported in the previous 
GWAS of 14,802 MS cases and 26,703 control subjects 
[7]. Following the pipeline of iRIGS, we firstly identified 
3,691 unique candidate risk genes – those genes were 
located within the 2-Mb region centered at each of the 
200 MS-associated index SNPs. We subsequently added 
the genomic and epigenomic information into the algo-
rithm. We integrated genomic and epigenomic data into 
the current analysis, including the distance from lead 
SNP locus to the transcription start site (TSS) of each 
candidate gene, Functional Annotation of the Mam-
malian Genome 5 (FANTOM5) data [23], genome-wide 
chromosome conformation capture (Hi-C) data [24, 25], 
and differentially expressed gene data of 21 post-mortem 
brain samples (11 MS cases and 10 control subjects) [17]. 
In addition, we integrated gene-level DNA methylation 
statistics using the data generated from 28 MS cases and 
19 control subjects [8] (see Methods) into our modified 
Bayesian framework. Gene–gene relationships derived 
from the Gene Ontology (GO) network were adopted in 
the iRIGS framework (see Methods). Based on this inte-
grative multi-omics analysis, we identified 163 unique 
MS-PRGenes with the highest posterior probability 
at each index SNP (Additional file  1: Table  S1). Among 
them, prioritized genes KMT2A and LITAF possessed the 
highest posterior probability at four lead SNPs. Six genes 
(CD48, CD86, CD9, MAF, MYC, and TNFAIP3) had the 
highest posterior probability at three lead SNPs. There 
were 11 MS-PRGenes (Fig. 2A) with high posterior prob-
abilities (≥ 0.75), including MYC, LPIN1, MAF, ATXN1, 
JARID2, TNFAIP3, SATB1, GATA3, ELMO1, SGK1, and 
ZNF217. Strikingly, 127 of 163 (77.91%) MS-PRGenes 
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were not the closest genes to the corresponding index 
SNP loci.

Two‑sample Mendelian randomization analysis
Two-sample Mendelian randomization (2SMR) is a cost-
efficient method to estimate potential causal effects of 
gene expression-outcome relationships with SNP sum-
mary statistics from two independent datasets [26, 27]. 
To validate the gene list generated by modified iRIGS, we 
subsequently adopted the R package TwoSampleMR [20] 
to conduct 2SMR analyses on 3,691 candidate risk genes. 
We used eQTL as the genetic instruments generated 
from 19 relevant tissues [28] (Additional file  1: Tables 
S2-S21). The Benjamini-Hochberg (BH) procedure [29] 
was applied to the result of each tissue for multiple test 
corrections and to generate the respective false discovery 
rate (FDR). Of those genes that were significantly associ-
ated (FDR < 0.05) with MS in at least one tissue, we iden-
tified a total of 35 genes that were overlapped with 163 
MS-PRGenes (Fig. 3, Additional file 1: Table S2). Among 
them, we found that the IQ Motif Containing GTPase 
Activating Protein 1 (IQGAP1) gene was consistently 
upregulated in MS cases among 18 of 19 tissues. The 
strongest association for IQGAP1 was found in whole 

blood (Wald ratio estimate = 0.50, FDR = 3.39 ×  10–3). We 
also identified CD40 molecule (CD40) and plectin (PLEC) 
genes that were downregulated in MS cases among 14 of 
19 tissues. Moreover, we found the strongest association 
between upregulated EXTL2 and MS in the whole blood 
(Wald ratio estimate = 1.83, FDR = 4.72 ×  10–9). Overall, 
2SMR analyses of whole blood, brain cerebellum, and 
spleen validated more MS-PRGenes than other tissues 
(Figs. 2B-2D, Additional file 1: Tables S3-S5).

Gene features of MS‑PRGenes
To further validate the result of iRIGS, we conducted 
genetic feature analyses of MS-PRGenes. We compared 
the genetic features of MS-PRGenes with those of a 
gene set derived from the conventional Multi-marker 
Analysis of GenoMic Annotation (MAGMA, v1.07) 
tool [30]. By applying the MAGMA tool, we obtained 
the gene-level p-value related to MS. We then gener-
ated a gene set of 457 MAGMA genes, which we consid-
ered statistically significantly associated with MS after 
Bonferroni correction  (pBonferroni < 0.05). To compare 
the genetic features, we firstly obtained the probability 
of being loss-of-function (LoF) intolerant (pLI) scores 
[31] for the 163 MS-PRGenes and the 457 MAGMA 

Fig. 1 Workflow of the study. Multi-omics data input for MS-associated risk gene prioritization and validation are labeled in blue. Primary analyses 
of MS-associated risk gene prioritization and validation are labeled in orange. Analyses on MS-PRGenes and validation gene sets are labeled in red
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genes. Figure  4A shows that MS-PRGenes have signifi-
cantly higher pLI scores than MAGMA genes (average 
 pLIMS-PRGenes = 0.57 (± 0.42), average  pLIMAGMA = 0.32 
(± 0.40),  praw = 3.97 ×  10–11), indicating that MS-
PRGenes are more likely to be deleterious. Sixty-one 
MS-PRGenes possessed a pLI score over 0.9, suggesting 
that those genes have a high probability of intolerance to 
loss-of-function variation. We subsequently compared 
the pLI scores within MS-PRGenes to investigate the dif-
ference between MS-PRGenes closer to index SNP and 
MS-PRGenes further away from index SNP. As shown in 
Fig. 4B, there is no significant difference between the pLI 
scores of 36 the MS-PRGenes closest to the index SNPs 
and the pLI scores of the 127 non-closest MS-PRGenes 
 (praw = 0.25). Furthermore, we found no significant dif-
ference in the pLI scores between the 35 2SMR validated 

MS-PGRs and the other 127 MS-PRGenes  (praw = 0.13) 
(Fig.  4C). These findings indicated that the pLI scores 
were consistent within MS-PRGenes.

Next, we explored the evolutionary selective pressure 
of both gene sets. The evolutionary selective pressure is 
defined as the ratio of the number of nonsynonymous 
substitutions per nonsynonymous site to the number 
of synonymous substitutions per synonymous site (dN/
dS) [32]. It has been reported the disease genes tend to 
have lower evolutionary rates compared to non-disease 
genes [33]. After we parsed averaged evolutionary rates 
of 144 MS-PRGenes and 341 MAGMA genes from the 
previous study [33], we found MS-PRGenes had signifi-
cantly lower averaged evolutionary rates than MAGMA 
genes (average dN/dSMS-PRGenes = 0.26 (± 0.26), average 
dN/dSMAGMA = 0.33 (± 0.27),  praw = 0.01) (Fig. 4D). On 

Table 1 Summary of features used in the prioritization of MS-PRGs and validation

Feature Description

Bayesian framework (refined version of iRIGS) features

Genetic variants in MS 200 genetic variants from the currently largest MS GWAS with genome-wide signifi-
cance

Functional Annotation of the Mammalian Genome 5 (FANTOM5) Annotations of mammalian regulatory components, such as promoters, enhancers 
lncRNAs and miRNAs (provided by original iRIGS analysis)

Genome-scale chromosome conformation capture (Hi-C) Brain Hi-C data including both short- and long-range interactions among genomic 
loci (provided by original iRIGS analysis)

Expression in MS brain tissue Differentially expressed genes in MS brain tissue from 21 post-mortem brain samples 
(11 MS cases and 10 control subjects)

DNA methylation in MS brain tissue Differentially methylated genes from epigenome-wide changes in DNA methylation 
levels of 28 MS cases and 19 control subjects

Gene–gene relationships Gene interactions from Gene Ontology (GO) network (provided by original iRIGS 
analysis)

Two-sample Mendelian randomization (2SMR) feature

Expression quantitative trait loci (eQTL) Top cis-eQTL of 19 tissues based on tissue expression data from the Genotype-Tissue 
Expression (GTEx) portal

Genetic features used in validation

Probability of loss of function (LoF) intolerant (pLI) scores A high pLI score indicates the gene is more likely to be intolerant towards protein-
truncating variant(s)

Evolutionary rate The ratio of nonsynonymous over synonymous substitution rate (dN/dS)

Genes of human diseases From OMIM and ClinVar databases

Cell type features used in validation

Single-nuclei RNA-sequencing (snRNA-seq) Cell type-specificity enrichment analysis using a snRNA-seq dataset from the brain 
tissue of 4 progressive MS patients and 5 non-neurological controls

Drug features used in validation

MS drug targets 32 MS drug targets were collected from the DrugBank database, followed by the 
enrichment analysis

Connectivity Map (CMap) drug signatures The co-expressed gene-set enrichment analysis (Cogena) R package was performed 
for the downregulated and upregulated 100 CMap gene sets

Fig. 2 Manhattan plots of results of iRIGS and 2SMR. A Manhattan plot of posterior probabilities of candidate genes from iRIGS. Highlighted genes 
are candidate risk genes with the highest posterior probability at each index SNP. Genes are labeled with high posterior probability (> 0.75). (B‑D) 
Manhattan plots of 2SMR analyses on whole blood, spleen, and brain cerebellum. Highlighted and labeled genes are significant genes (FDR < 0.05) 
overlapped with MS-PRGenes

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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the contrary, we found that the averaged evolutionary 
rates were consistent within groups of MS-PRGenes 
(Figs. 4E and 4F)  (praw > 0.05).

Lastly, we compared the MS-PRGenes and MAGMA 
genes to explore if those genes are enriched in known 
human disease genes. We parsed 15,104 genes from 
Online Mendelian Inheritance in Man (OMIM) data-
base with phenotype description [34]. We obtained 
11,229 genes with disease variations from the Clin-
Var database [35]. As shown in Figs.  4G and 4H, the 
comparison with MAGMA genes indicated that more 
MS-PRGenes were overlapped with disease-related 
OMIM genes  (praw = 9.54 ×  10–5) and ClinVar genes 
 (praw = 4.90 ×  10–9).

Single‑cell RNA‑sequencing context‑specific enrichment 
analyses of MS‑PRGenes
To understand the cell type and the context of how 
MS-PRGenes manifest their impact, we used one MS 

single-nuclei RNA-sequencing (snRNA-seq) dataset 
from the brain tissues of four progressive MS patients 
and five non-neurological controls [36]. By applying 
our previously developed tool of cell type-specificity 
enrichment analysis  [21, 22, 37, 38], we identified that 
the MS-PRGenes and MAGMA genes varied from each 
other in MS case and control panels (Fig.  5). Interest-
ingly, we identified MS-PRGenes were enriched in the 
top 3 cell types of Macrophages  (praw = 2.86 ×  10–5), 
Microglia_Macrophages   (praw = 7.21 ×  10–5), and Astro-
cytes  (praw = 2.24 ×  10–4) in the MS case panel (Fig. 5A). 
Meanwhile, the top 3 enriched cell types in the control 
panel (Fig.  5B) were Astrocytes  (praw = 1.76 ×  10–4), 
Astrocytes2  (praw = 3.71 ×  10–4), and Microglia_Mac-
rophages   (praw = 3.47 ×  10–3). These findings indicated 
that MS-PRGenes tended to be highly expressed in acti-
vated macrophages and microglia macrophages. On 
the other hand, the enrichment of astrocytes remained 
stable in inflammatory and non-inflammatory tissues. 

Fig. 3 Heatmap of 2SMR analysis estimates of significant genes overlapped with MS-PRGenes in 19 tissues. Gene names are shown on the x-axis. 
Tissue names are shown in the y-axis ordered by the number of significant genes in each tissue. Red and blue are proportional to the effect size of 
each gene in each tissue

Fig. 4 Exploration of the gene features of MS-PRGenes and MAGMA genes. (A) Comparing the boxplots of pLI scores between MS-PRGenes 
and MAGMA genes in a two-sided t-test. (B) Comparing the boxplots of pLI scores within the closest gene and non-closest gene groups of 
MS-PRGenes in a two-sided t-test. (C) Comparing the boxplots of pLI scores within the 2SMR validated gene and 2SMR unvalidated gene groups of 
MS-PRGenes in a two-sided t-test. (D) Comparing the boxplots of evolutionary rates between MS-PRGenes and MAGMA genes in a two-sided t-test. 
(E) Comparing the boxplots of evolutionary rates within the closest gene and non-closest gene groups of MS-PRGenes in a two-sided t-test. (F) 
Comparing the boxplots of evolutionary rates within the 2SMR validated gene and 2SMR unvalidated gene groups of MS-PRGenes in a two-sided 
t-test. (G) The proportional comparison of MS-PRGenes and MAGMA genes overlapped with disease genes parsed from OMIM in the chi-squared 
test. (H) The proportional comparison of MS-PRGenes and MAGMA genes overlapped with known genes with disease-associated variants parsed 
from ClinVar in the chi-squared test

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Surprisingly, we failed to detect any significantly enriched 
cell types for MAGMA genes (Figs. 5C and D), suggest-
ing that MAGMA genes might contain many false posi-
tive genes and miss some long-distance (> 50 kb) signals.

Biological and drug pathways enriched for MS‑PRGenes
A total of 32 drug targets were identified for the FDA-
approved drugs indicated for MS. Within the list of 163 
MS-PRGenes, 3 MS drug targets were present: HDAC1, 

Fig. 5 Single-cell context-specific enrichment analysis. (A, B) Single-cell context-specific enrichment analysis of MS-PRGenes in MS snRNA-seq case 
and control panels, respectively. (C, D) Single-cell context-specific enrichment analysis of MAGMA genes in MS snRNA-seq case and control panels, 
respectively
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IFNAR2, and RELA, none of which had been reported in 
the independent multi-omics studies. The co-expressed 
gene-set enrichment analysis (Cogena) implemented 
in the Bioconductor R package was applied to examine 
gene functions by pathway and drug signature enrich-
ment analyses (see Methods). The scores reported for 
the enriched pathways represent negative log2 FDR, as 
reported from the Cogena hypergeometric tests [39]. 
Biological pathway enrichments yielded a "toll-like recep-
tor signaling pathway" as the top enriched KEGG path-
way (score = 44.4 in all clusters). Other enriched KEGG 
pathways included "acute myeloid leukemia" (score = 33.1 
in all clusters), "pathways in cancer" (score = 32.2 in all 
clusters), "T cell receptor signaling" (score = 28.3 in all 
clusters), "B cell receptor signaling" (score = 26.1 in all 
clusters), among other biological pathways (Additional 
file 2: Figure S1). Moreover, the MS-PRGenes were also 
enriched with drug signatures from both the downregu-
lated and upregulated 100 Connectivity Map (CMap) 
gene sets. Top enriched drugs from the downregulated 
100 CMap gene set included fisetin (score = 15.1 in 
cluster 9), mitoxantrone (score = 15.1 in cluster 9) and 
monorden (score = 10.9 in all clusters) (Fig.  6A). The 
drug signature enrichment analysis of upregulated 100 
CMap gene sets in MS-PRGenes yielded enrichment of 
the drugs 8-azaguanine (score = 20.6 in cluster 9), the 
small molecule MS-275 (score = 14 in all clusters), and 
pioglitazone (score = 12.1 in all clusters), among other 
drugs (Fig. 6B).

Discussion
In this study, we extended the Bayesian framework, 
iRIGS, and applied it to MS to prioritize 163 MS-
PRGenes from 200 genetic loci that had been reported 
in the current largest MS GWAS. We validated 35 MS-
PRGenes through parallel 2SMR analyses of 3,691 unique 
candidate genes on 19 tissues. MS-PRGenes demon-
strated a higher disease relevance than other gene sets. 
We found MS-PRGenes had significantly higher pLI 
scores, lower averaged evolutionary rates, and higher 
overlap rates with MS-associated genes obtained from 
OMIM and ClinVar. Moreover, results of single-cell 
enrichment analyses showed that MS-PRGenes were 
enriched in macrophages and microglia among MS cases. 
Lastly, we explored potential drug repositioning strate-
gies for MS by performing drug signature enrichment 
analysis of the MS-PRGenes. Drug signature enrichments 
depicted several drugs associated with MS mechanisms. 
We specifically discussed the therapeutic potentials of 
fisetin, monorden, 8-azaguanine, the small molecule 
MS-275, and pioglitazone in MS.

MS-PRGenes were aligned with known disease risk 
genes. The strongest association of 2SMR was found 

between upregulated EXTL2 and MS in whole blood. The 
genetic role of EXTL2 has been validated in an animal 
study, which reported that EXTL2 deficiency was asso-
ciated with exacerbated axonal damage and myelin dis-
ruption [40]. Several MS-PRGenes with high posterior 
probabilities (> 0.75), such as MYC, ATXN1, and GATA3, 
have also been reported in recent MS studies [41–43].

MS-PRGenes are more deleterious and disease-related 
than the genes identified by the conventional MAGMA 
tool. We found that MR-PRGenes had significantly 
higher pLI scores than MAGMA genes (Fig. 4A), and 61 
of them possessed pLI scores greater than 0.9. Of inter-
est, the IQGAP1 gene possessed a pLI score over 0.99. 
We observed consistent associations that the IQGAP1 
gene was overexpressed in MS cases in 2SMR analyses in 
18 of 19 tissues (Fig.  3). This result aligns with a previ-
ous study, which shows that individuals with a homozy-
gous MS risk allele have a significantly higher expression 
of IQGAP1 compared to controls [44]. However, it is still 
unclear how higher IQGAP1 expression could increase 
the risk of MS. A study has indicated that IQGAP1 may 
play an important role among cytoskeleton-mediated 
processes in immune cells [45]. It has been hypothesized 
that increasing IQGAP1 expression might lead to abnor-
mal leukocyte cell migration and thereby contribute to 
MS disease [44]. Moreover, tumor necrosis factor alpha-
induced protein 3 (TNFAIP3) gene, identified through 
iRIGS with a posterior probability over 0.75, also pos-
sessed a pLI score greater than 0.99. A previous study 
shows that TNFAIP3 expression level is diminished in 
monocytes and CD4 + T cells of MS patients, suggest-
ing TNFAIP3 plays a role in anti-inflammatory pathways, 
which might contribute to MS risk [46]. Furthermore, the 
averaged evolutionary rates of MS-PRGenes were sig-
nificantly lower than those of MAGMA genes (Fig. 4D). 
The result suggested that MS-PRGenes might have under 
stronger selective pressure than MAGMA genes. This is 
consistent with a previous study [33], which has reported 
that disease genes tended to have lower averaged evo-
lutionary rates than non-disease genes. We also found 
MS-PRGenes contained more known disease genes than 
MAGMA genes (Figs.  4G and H), adding more confi-
dence to the result of iRIGS.

Our snRNA-seq context-specific enrichment analy-
ses showed that MS-PRGenes tended to be more acti-
vated in immune function-related cells (macrophage and 
microglia) in the disease state. This is consistent with the 
report by Mu et al. that human immune traits, including 
MS, have disease context-dependent regulatory factors 
[47]. On the other hand, our finding aligned with the fact 
that MS is a chronic neurological disease with proinflam-
matory dysregulation in the central nervous system [48] 
(Fig. 5). The complex roles of microglia and macrophages 
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Fig. 6 CMap drug signatures enriched in the MS-PRGenes depict potential drug repositioning strategies. (A, B) Drugs enriched for the MS-PRGenes 
are shown on the y-axis. Enrichment scores represent -log2 (false discovery rate), as reported by the Cogena R package. The color is proportional to 
the enrichment score. (A) Drugs listed on the y-axis show the enrichment in the drug signatures of downregulated 100 CMap gene set. (B) Drugs 
show the enrichment from the drug signatures of upregulated 100 CMap gene set
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on MS pathology have been widely reported [49]. The 
activation of microglia and macrophages in the early 
phase of the disease is associated with increased secre-
tion of proinflammatory cytokines, such as TNF-α, lead-
ing to demyelination and axonal loss [50]. While in the 
later stage, the activation of microglia and macrophages 
are associated with disease alleviation by secreting neu-
roprotective molecules and promoting remyelination 
[51]. However, the conventional MAGMA genes failed 
to capture this signal. Among MS-PRGenes, studies have 
shown the CD40 gene broadly expressed in macrophages 
and activated microglia, while the expression level 
of CD40 is low during resting state [52, 53]. In our 2SMR 
analyses (Fig. 3), CD40 was lowly expressed (Wald ratio 
estimate < 0) in 12 of 13 brain tissues among MS cases. 
On the other hand, CD86, another MS-PRGene, has been 
reported as co-expressed with CD40. Both genes belong 
to the M1-type maker (classically activated macrophage) 
of macrophages, activated microglia, and myelin-loaded 
macrophages in MS lesions [52]. Based on the result 
of 2SMR analyses, we found no significant association 
between CD86 expression and MS in all brain tissues, but 
CD86 was upregulated among whole blood (Wald ration 
estimate > 0). This discrepancy might indicate a tissue-
specific expression pattern. A recent single-cell transcrip-
tome study has reported diverse transcriptional changes 
of blood and cerebrospinal fluid leukocytes [54].

Pathway enrichment analysis of the MS-PRGenes 
could yield relevant functions that have implications for 
disease mechanisms (Additional file  2: Figure S1). The 
top enriched KEGG pathway for the MS-PRGenes was 
"toll-like receptor signaling pathway." Toll-like recep-
tors are receptors of the innate immune system that 
recognize invading pathogens. Toll-like receptors may 
play a role in the pathogenesis of autoimmune diseases, 
like MS, by fighting suspected infections and activat-
ing autoimmune reactions [55]. Interestingly, although 
we integrated multi-omics data from brain tissue sam-
ples, we also highlight KEGG pathways enriched for 
immune-related pathways, such as "T cell receptor 
signaling pathway," "B cell receptor signaling pathway," 
and "chemokine signaling pathways." This suggests that 
there is infiltration of peripheral immune cells in the 
MS brain samples. Single-cell profiling of neuroinflam-
matory states has shown that infiltration of peripheral 
immune cells indeed occurs during neuroinflammatory 
pathologies [56]. Several cancer-related KEGG pathways 
were also enriched in our MS-PRGenes, such as "acute 
myeloid leukemia," "pathways in cancer," and "chronic 
myeloid leukemia." The link between MS and cancer has 
previously been investigated [57].

Drug targets of MS FDA-approved drugs were present 
in the MS-PRGenes. Drug targets of MS medications 

present in the list of MS-PRGenes were HDAC1, IFNAR2, 
and RELA. These genes have not been reported by MS 
GWAS, transcriptomic or epigenetic study. HDAC1, a 
gene that encodes for histone deacetylase, is a drug target 
of the MS medication fingolimod, which may play a role 
in epigenetic mechanisms of MS. In the mechanism of 
action of fingolimod, HDAC1 is inhibited, thereby allow-
ing specific histone acetylation to occur. This drug tar-
get has also been identified as central by network-based 
analyses of previous MS GWAS [58]. IFNAR2 is a target 
of the MS medication interferon beta-1, and polymor-
phisms of IFNAR2 have previously been implicated in 
the susceptibility of MS [59]. RELA is a drug target of the 
medication dimethyl fumarate. The RELA gene encodes 
an important mediator of the NF-kB signaling pathway, 
which plays a critical role in cellular immune responses. 
It has been demonstrated that the NF-kB signaling path-
way is dysregulated in MS patients, and that RELA is 
particularly increased during progressive phases of the 
disease [60].

Enrichment of downregulated and upregulated 100 
CMap gene sets was also observed in drug signature 
enrichment analyses of MS-PRGenes. The top enriched 
drugs for downregulated 100 CMap signatures included 
fisetin, mitoxantrone, and monorden (Fig.  6A). Mitox-
antrone, in particular, is a chemotherapeutic medica-
tion that has been used to treat progressive forms of 
MS. Mitoxantrone is an efficacious and low-cost therapy 
for MS; however, it may pose safety concerns with a risk 
profile of potential adverse effects [61]. Fisetin, another 
enriched drug, is a dietary compound that may possess 
neuroprotective qualities. Recent preclinical models have 
demonstrated that it reduces the progression of several 
neurological disorders, including MS [62]. Monorden, also 
known as radicicol, is an experimental small molecule and 
antifungal antibiotic. It may also possess neuroprotective 
effects, as studies of monorden with animal models have 
shown that monorden prevented cell death and diminished 
tumor necrosis factor (TNF) in neuron-glia cultures [63]. 
This suggests that monorden may be a potential therapy 
for diminishing neuron cell death in neurodegenerative 
diseases like MS. The top enriched drugs with upregulated 
100 CMap signatures included 8-azaguanine, the small 
molecule MS-275, and pioglitazone (Fig.  6B). The small 
molecule 8-azaguanine has been previously used to treat 
acute myeloid leukemia, as it was initially developed as an 
antineoplastic agent. However, in recent years, 8-azagua-
nine has been identified as an immunomodulatory agent 
for its cytotoxic effects on natural killer cells [64]. Immu-
nomodulatory actions of 8-azaguanine may be considered 
for MS treatment. Pioglitazone is a medication which has 
been used to treat diabetes. The potential of pioglitazone 
as a treatment for MS has been investigated in a mouse 
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model of experimental autoimmune encephalomyelitis 
(EAE). Oral administration of pioglitazone reduced white 
matter loss in the spinal cord of mice, and it was concluded 
that pioglitazone may decrease myelin damage and inflam-
mation in MS [65]. Finally, MS-275 is another experimen-
tal compound that inhibits histone deacetylases. Because 
HDAC1 is already a target of FDA-approved MS medica-
tions, the compound MS-275 also shows promise for MS 
treatment.

In the current study, we modified the iRIGS algorithm 
to highlight MS-PRGenes by integrating GWAS sum-
mary statistics, gene expression, DNA methylation, 
FANTOM5, and brain genome-scale chromosome con-
formation capture (Hi-C) data. We think the resulting 
MS-PRGenes are highly confident, as the algorithm har-
monized accumulating multi-omics signals that perform 
complex biological functions collaboratively. However, 
the results should be interpreted with caution. First, we 
only selected the candidate risk gene with the highest 
sampling frequency at each locus as the MS-PRGene. 
Although the current algorithm can rank all candidate 
risk genes by their sampling frequency, iRIGS cannot 
detect how many risk genes that are truly associated 
with MS. Besides, the brain-specific Hi-C data used in 
the current study were generated from the cortical and 
subcortical plate of the fetal brain [25]. As we discussed 
previously, the risk genes expression of immune traits, 
including MS, may be associated with disease context-
dependent regulation [47]. Thus, we believe the MS risk 
genes prediction accuracy will be further increased if 
more disease context-related epigenomic and Hi-C data 
are incorporated into the algorithm.

Conclusions
To conclude, we modified the Bayesian framework 
of iRIGS by integrating disease-specific multi-omics 
data of MS. We prioritized 163 genes for MS risk (MS-
PRGenes). We further conducted a series of analyses, 
including eQTL analyses, 2SMR, single-cell RNA-seq 
context-specific enrichment analyses, and gene features 
exploration, to validate the MS-PRGenes and gene-based 
MAGMA genes. Lastly, we performed CMap drug signa-
ture enrichment analyses and identified several potential 
drugs that could be repurposed for MS treatment. Over-
all, our MS-PRGenes optimize the information from 
multi-omics data and demonstrate better performance 
than conventional methods, which could serve as a high-
confidence MS risk gene set and benchmark.

Methods
GWAS summary statistics
MS GWAS summary statistics were retrieved from a 
comprehensive genetic association study conducted by 

International Multiple Sclerosis Genetics Consortium 
(IMSGC) [7]. The summary statistics collected from the 
IMSGC website (accessed on 3/29/2019) corresponded 
to the discovery set of this study, which included 8.86 
million SNPs from 14,802 MS cases and 26,703 controls. 
In addition, they conducted rigorous quality checks for 
all data sets, and the genotype data were imputed based 
on the 1000 Genomes Project reference panel [66]. In 
total, 233 genetic variants were reported, while 200 auto-
somal susceptibility variants outside the major histocom-
patibility complex were used in the following analysis.

Gene expression data
We obtained the gene expression data from a recent 
study which profiled expression data of post-mor-
tem brain tissue of 10 MS cases and 11 control sub-
jects (Gene Expression Omnibus (GEO) accession ID: 
GSE111972 on 11/15/2020) [17]. The original study gen-
erated expression data from microglia samples of white 
matter and grey matter using Illumina NextSeq500 
SR75 kits. Here, we analyzed the samples derived from 
white matter. Raw read counts were normalized through 
R package DESeq2 [67], and then DESeq2 was used to 
obtain differentially expressed genes between white 
matter samples of 10 MS cases and 11 control sub-
jects. Raw p-values generated from the differentially 
expressed gene analysis were used for the multi-omics 
analysis of risk gene prioritization.

Methylation data
We approached the methylation data from an epige-
nome-wide difference study of 28 MS cases and 19 con-
trol subjects (GEO accession ID: GSE40360 on 2/1/2021) 
[8]. Post-mortem brain frontal lobe specimens were dis-
sected, and global DNA methylation levels were assessed 
using Illumina Infinium HumanMethylation450 Bead-
Chip. Firstly, we used the limma package to obtain the 
association values for each CpG probe [68]. Methyla-
tion analyses typically perform single-CpG differentially 
methylated probes analysis and differentially methylated 
regions analysis. However, neither of these methods was 
suitable for obtaining gene-level methylation scores. 
Here, we used the promoter region CpGs as the surrogate 
for gene-level methylation, as they have been reported 
regulating the gene expression. Specifically, we adapted 
the CpGs annotated in the transcription start site 
(TSS) of genes. This information was obtained from the 
GPL13534 annotations file for HumanMethylation450 
BeadChip. To generate gene-level methylation scores, we 
firstly calculated a Z score for each CpG probe based on 
respective raw p-values and the log fold changes yielded 
by limma. Next, we used Stouffer’s Z score method [69] 
to combine p-values, following the formulas:
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where ZCpG is the z-score pertaining to a CpG probe, 
Sign (log2FC) is the sign (+ or -) of fold change, p is the 
p-value of CpG probe, ZM is the methylation score for 
a particular gene, and k is the number of CpGs anno-
tated for a gene. Lastly, we reversed gene-level z values to 
gene-level p-values for each mapped gene. The gene-level 
p-values were used in following risk gene prioritization.

Multi‑omics data integration and risk gene prioritization
We adopted a newly developed Bayesian algorithm, inte-
grative risk gene selector (iRIGS), to prioritize MS-asso-
ciated genes from the result of the largest MS GWAS and 
additional multi-omics data [14]. The detailed methods 
can be found in the original publication [14]. In brief, all 
genes within two Mb regions centered at each index SNP 
(200 index SNPs in the current study) were identified as 
candidate risk genes. The algorithm aims to identify a set 
of candidate risk genes with maximized posterior prob-
ability considering the integrated multi-omics evidence 
and a predefined gene–gene network.

To tackle the computational infeasibility from calculat-
ing all gene combinations, iRIGS applied a Gibbs sam-
pling algorithm [70] to sample only one gene at a single 
locus per iteration, assuming risk genes at other loci have 
been selected. At each iteration, the sampling algorithm 
was treated as a Bayesian model selection question that 
each candidate gene in a locus was seen as a model. The 
prior odds of each model were derived from the prede-
fined network using the walk with restart algorithm. The 
original publication provided the predefined network 
that the weighted network was calculated using informa-
tion from the Gene Ontology database [71]. The iRIGS 
uses integrated multi-omics evidence as the surrogate for 
the Bayes Factor in the model. Specifically, the algorithm 
employed the Mahalanobis decorrelation transforma-
tion [72] on FANTOM5, distance to TSS, and Hi-C data. 
First, these data were transformed into independent and 
identically distributed random variables, each following a 
univariate standard Gaussian distribution. The p-value of 
each of the above features was subsequently calculated. 
Then, the p-values from differentially expressed genes 
analysis data and gene-level methylation data were con-
catenated to generate a p-value matrix. Finally, the iRIGS 
applies Fisher’s product method to integrate all p-values 
of each gene, and the products were used as the surrogate 
for the Bayes Factor in the model.

ZCpG = Sign
(

log
2
FC

)

× ϕ−1(
p

2
)

ZM =

∑k
i=1

ZCpGi√
k

With the prior odds and Bayes Factor information, the 
iRIGS iteratively sampled one candidate gene at a time. 
The sampling frequency of all candidate genes was calcu-
lated after each round of the sampling process on all risk 
SNPs. The process was repeated until the sampling fre-
quency reaches a stationary distribution, defined as the 
sum of squares of frequency difference of selected genes 
was smaller than a preset threshold (0.01 was used in the 
current study).

In the current study, we adopted a modified version of 
iRGS on 200 risk SNPs identified from GWAS of MS men-
tioned in the previous method (Fig. 1) [7]. Following their 
method, we integrated multi-omics data into the algo-
rithm, including FANTOM5 data, which provide critical 
links between regulatory elements and the genes that they 
regulated [23]. Then, the distances between the index SNP 
to TSS of candidate genes were calculated. Next, brain 
genome-scale chromosome conformation capture (Hi-
C) data were incorporated, which provide global views of 
both short- and long-range interactions among genomic 
loci [24, 25]. FANTOM5 data and Hi-C data were available 
in the original iRIGS method. In addition, differentially 
expressed gene data generated from 21 post-mortem brain 
samples (11 MS cases and 10 control subjects) [17] were 
included as well. Compared to the original iRIGS method, 
we additionally integrated differentially methylated gene 
data generated from 47 post-mortem brain samples (28 
MS cases and 19 control subjects) [8]. All multi-omics 
data were integrated using the method mentioned above. 
Finally, we defined the genes with the highest sampling fre-
quency at each locus as the MS-PRGenes.

Comparison with conventional GWAS‑based gene‑level 
p‑value
To compare the MS-PRGenes with another gene set, we 
applied a Multi-marker Analysis of GenoMic Annotation 
(MAGMA, v1.07) [30]. The MAGMA tool calculated the 
gene-level p-values, from which we generated a conven-
tional MAGMA gene set. Briefly, SNPs located within 50 kb 
upstream and 35  kb downstream of the gene body were 
mapped to each gene. We computed the gene-level p-values 
based on mean χ2 statistics for these SNPs. The effects of 
the gene length, SNP density, and local linkage disequilib-
rium (LD) structure were considered in MAGMA analysis. 
The 1000 Genome Project Phase 3 European population 
was used as the reference panel. We performed Bonferroni 
correction on MAGMA gene-level p-values. Genes with 
 pBonferroni < 0.05 were defined as MAGMA genes.

Two‑sample Mendelian randomization analysis
Mendelian randomization (MR) is a statistical method 
for evaluating causality between an exposure and an 
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outcome using genetic variants as instrumental variables. 
2SMR method was subsequently developed to overcome 
the challenge that individual-level data is not always 
available [73]. With the growing number of summary sta-
tistic data available in public, 2SMR analysis provides a 
cost-efficient way to explore the potential causal effects of 
gene expression on MS [26, 27]. To validate the result of 
MS-PRGenes, we conducted the paralleled 2SMR analy-
ses using the same candidate risk genes for the iRIGS 
model among various tissues.

Following the R package TwoSampleMR [20], we firstly 
inquired Genotype-Tissue Expression (GTEx v8) Por-
tal [28]. We obtained the top cis-expression qualitative 
trait locus (cis-eQTL)  (praw < 1 ×  10–4) for all candidate 
risk genes, which were identified in the previous step 
as genetic instrumental variables. We obtained top cis-
eQTL of 19 tissues, including spleen, whole blood, all 
brain tissues (13 tissues), as well as stomach, heart left 
ventricle, artery coronary, and colon sigmoid. Consider-
ing that eQTL may be associated with disease SNP due 
to linkage disequilibrium (LD) patterns, we performed 
LD clumping on each set of SNPs. We used a function 
provided by TwoSampleMR to remove all SNPs pre-
sent in the 1000 Genomes European population with 
 r2 > 0.001 and within 10  Mb of the top SNPs [20]. With 
remaining SNPs, we extracted and harmonized matched 
summarized data from outcome GWAS [7]. We subse-
quently conducted 2SMR on harmonized data for each 
tissue using the Wald ratio method if one independent 
SNP remained for the candidate risk gene. Otherwise, we 
used the inverse-variance weighted method if multiple 
SNPs were mapped to the candidate risk gene after LD 
clumping. Benjamin-Hochberg (BH) procedure [29] was 
applied for multiple test correction with a false discovery 
rate (FDR) of 0.05 as the threshold.

Single‑cell RNA‑sequencing context‑specific enrichment 
analysis
We obtained one MS snRNA-seq dataset (GEO acces-
sion ID: GSE118257 on 11/22/2019) of 20 brain sam-
ples from 4 progressive MS patients (11,208 cells) 
and 5 non-neurological controls (6,591 cells) [36]. We 
adapted their cell type annotation and implemented 
our t-statistics-based method [37, 38] to construct the 
disease context-specific panels for MS cells and health 
control cells. Specifically, we filtered out genes with 
more than a 95% read count equal to 0, leaving 5,659 
genes in the case panel (23 cell types) and 7,657 genes 
in the control panel (19 cell types). Lastly, we applied 
our previous cell type-specific enrichment analysis [21] 
to detect the cell type-specificity of candidate genes.

Pathway and drug signature enrichment analyses
Drug targets were collected for FDA-approved drugs 
indicated for MS from querying the DrugBank data-
base [74]. A drug target query was performed for the 
MS-PRGenes, based on the collection of MS drug tar-
gets. We also performed pathway and drug signature 
enrichment analyses by using Cogena Bioconductor R 
Package [39]. Cogena is a framework that calculates the 
co-expression of input genes to determine gene expres-
sion signatures and create clusters associated with the 
disease mechanisms. Cogena uses hypergeometric tests 
to perform gene set enrichment analysis of biologi-
cal pathways or curated drug signature gene sets. The 
input for Cogena is a gene expression matrix for the 
prioritized genes. Here, we constructed a gene expres-
sion matrix with the MS-PRGenes identified from the 
MS multi-omics data. Then, we used this matrix as the 
input for Cogena. The gene expression matrix included 
10 MS cases and 11 controls and the corresponding 
RNA-seq expression values from brain tissue expres-
sion for each MS-PRGene. The default parameters were 
used to perform pathway and drug signature enrich-
ment analyses: ten clusters, two cores, hierarchical and 
pam methods for clustering methods, and correlation 
for distance metric. We used three curated gene sets 
from the Cogena R package to perform these analyses: 
the KEGG gene set, the connectivity map (CMap) gene 
set for the top 100 downregulated genes per drug, and 
the CMap gene sets for the top 100 upregulated genes 
per drug.
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