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Abstract 

Background: Inferring historical population admixture events yield essential insights in understanding a species 
demographic history. Methods are available to infer admixture events in demographic history with extant genetic 
data from multiple sources. Due to the deficiency in ancient population genetic data, there lacks a method for 
admixture inference from a single source. Pairwise Sequentially Markovian Coalescent (PSMC) estimates the historical 
effective population size from lineage genomes of a single individual, based on the distribution of the most recent 
common ancestor between the diploid’s alleles. However, PSMC does not infer the admixture event.

Results: Here, we proposed eSMC, an extended PSMC model for admixture inference from a single source. We evalu-
ated our model’s performance on both in silico data and real data. We simulated population admixture events at an 
admixture time range from 5 kya to 100 kya (5 years/generation) with population admix ratio at 1:1, 2:1, 3:1, and 4:1, 
respectively. The root means the square error is ±7.61 kya for all experiments. Then we implemented our method to 
infer the historical admixture events in human, donkey and goat populations. The estimated admixture time for both 
Han and Tibetan individuals range from 60 kya to 80 kya (25 years/generation), while the estimated admixture time 
for the domesticated donkeys and the goats ranged from 40 kya to 60 kya (8 years/generation) and 40 kya to 100 kya 
(6 years/generation), respectively. The estimated admixture times were concordance to the time that domestication 
occurred in human history.

Conclusion: Our eSMC effectively infers the time of the most recent admixture event in history from a single indi-
vidual’s genomics data. The source code of eSMC is hosted at https:// github. com/ zacha ry- zzc/ eSMC.
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Introduction
As a challenge faced by evolutionary biology, the diver-
sity of life history is the foundation of biodiversity  [1]. 
Accelerating the development of sequencing technolo-
gies and data analysis methods, individuals and organ-
isms’ genomes have become carriers of evolutionary 
and ecological events  [2]. Reconstructing the demo-
graphic histories from genetic data plays an essen-
tial role in elucidating the prehistoric events  [3, 4]. 
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Population admixture is a ubiquitous feature of demo-
graphic history and occurs when isolated populations 
gather and exchange genetic information  [5]. As one 
reason for anciently diverged alleles, admixture events 
increase genetic diversity by merging genotypes among 
populations and masking deleterious mutations [6]. 
Admixture could increase the fitness of hybrids, reduce 
gametic isolation, and disrupt local adaptation  [7, 8]. 
As one of the most important types of genetic flow, 
admixture event span over the history of species evolu-
tion. Thus identifying admixture events and admixture 
time is one of the most essential problem in population 
study.

Methods and theories have been developed for popu-
lation history with admixture inference from extant 
multi-population genetic data  [9]. Some ways inferred 
demographic histories based on allele frequency spec-
trum (AFS). However, as a computationally challenging 
method, AFS ignores linkage information  [10]. Other 
non-parametric methods, such as Principal Component 
Analysis (PCA), could also be used for inferring popula-
tion structure. However, when the PCA-based method 
is used in the temporal samples, the sample dates might 
be ignored, resulting in incomplete plots  [11, 12]. Also, 
all of these method require sequencing data or micro 
array data of existing populations as input, and estimate 
the admixture trees or admixture graphs for those input 
populations. However, more than 1000 species will go 
extinct, making it almost impossible to observe the his-
torical genetic data [13].

Sequencing several individuals’ whole genome instead 
of sequencing several loci of many individuals implies 
a trend in population genetics  [14]. Derived from the 
coalescent theory from the 1980s, inference of the most 
recent common ancestor (TMRCA) of two or more lin-
eage genomes has been widely used in evolutionary 
biology [15]. Many approaches have been reported for 
estimating TMRCA. One way to evaluate TMRCA is 
to consider multiple genetic neutral markers for multi-
population [16]. Another Hidden Markov Model (HMM) 
based methods could infer TMRCA from the complete 
chromosome information, such as multiple Sequen-
tially Markovian Coalescent (MSMC)  [17] and Pairwise 
Sequentially Markovian Coalescent (PSMC)  [18]. As a 
computational method, PSMC relies on the distribution 
of TMRCA between alleles along with a diploid individ-
ual genome [19]. PSMCs estimate the historical effective 
population size from genome-scale data of a single indi-
vidual [20]. Specifically, the PSMC models use an HMM 
framework and infer the timing of population diver-
gence and estimate mutation rates and recombination 
rates  [21]. Nevertheless, PSMC does not consider the 
admixture event in the HMM modeling.

Herein, we developed eSMC, an extended PSMC 
model, which attaches the admixture time as a free-
parameter to model the abrupt increase in effective 
population size from single individual. eSMC yields the 
most recent admixture event time and all the results 
that PSMC should have. To validate the correctness of 
admixture time inference, we simulated 2000 experi-
ments with the admixture time range from 5 kya to 100 
kya (5 generations/year) and the admix ratio at 1:1, 2:1, 
3:1, and 4:1, respectively. Our method accurately inferred 
the admix time with the root mean square error (RMSE) 
±7.61kya . The model is more accurate at small admix 
ratio ( RMSE = ±5.7kya at ratio 1:1 and RMSE = ±9.75 
at ratio 4:1) and admixture time range from 20 kya to 80 
kya. As admix ratio adjacent to 1 represents the large rel-
evant historical effective population size of the admixed 
subpopulation. The admixture events most recent 
than 20 kya or later than 100 kya can hardly be identi-
fied in the current genome sequence. We also applied 
our method on four human, five donkey and five goat 
individuals, respectively. Our model indicated that the 
admixture events happened at 60 kya to 80 kya for Han 
and Tibetan individuals (25 years/generation), 40 kya to 
60 kya for donkey (8 years/generation) and 60 kya to 100 
kya for goats (6 years/generation). The estimated results 
concordant with the hump start position in PSMC’s his-
torical effective population size curve.

Implementation
Under the PSMC model, the observed sequence is 100 bp 
non-overlapping bins along a diploid genome with “.”, “0,” 
and “1” as values, where “.” representing missing, “0” rep-
resenting homozygous, and “1” representing heterozy-
gous, respectively.

The method estimates population scaled mutation 
rate, scaled recombination rate, and piecewise con-
stant effective population size by taking the discrete 
TMRCA between alleles along the diploid genome as 
hidden states. The emission probability is e(1|t) = e(−θ) , 
e(θ |t) = 1− e(−θ t) and e(.|t) = 1 , the transmission prob-
ability is

where t is the hidden state, θ is the scaled mutations rate, 
ρ is the scaled recombination rate, δ(.) is the Dirac delta 
function. q(t|s) is a function of the relative effective popu-
lation size at state t ( �(t) = Ne(t)/N0 ), representing the 
transmission probability under the condition there being 
a recombination event.

We consider the admixture events between popula-
tions under the following assumptions: 1) the admix-
ture event happens at an instant time, not a duration; 2) 

(1)p(t|s) = 1− e(−ρt)q(t|s) + e(−ρt)δ(t − s)
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the two populations have the same sequence length; 3) 
the two populations have the same scaled mutation rate 
θ and scaled recombination ρ ; 4) the two populations 
have the same N0.

Given two populations P1 and P2 with relevant effec-
tive population size �a(t) and �b(t) . Assuming popu-
lation P2 admixed into population P1 at time ta . The 
relevant effective population size is

While the relevant effective population size �′(t) are free 
parameters for the model, we further look back at the 
equations of the PSMC model.

The emission probability remains unchanged with 
the scaled mutation rate and the TMRCA t at loci. 
Denote R as the recombination event at the locus s. 
R = 1 stands for a recombination event between l and 
l + 1 , and R = 0 stands for there is no recombination 
event between l and l + 1 . Denote the conditional tran-
sition probability for population P1 and P2 are qa and 
qb . Assuming the hidden state (TMRCA) at l is s, and 
the hidden state at l + 1 is t, the conditional transition 
probability q′ has the following conditions (as illus-
trated in Fig. 1(A)): 

 1). t > ta The recombination event happened before 
the admixture event (the blue dots in Fig.  1(A)). 
Then the conditional probability will be as same as 
there is only one population P1. 

 2). t ≤ ta < s The admixture event happened between 
the two TMRCA time slot s and t (the vertical 
curve before brown dots in Fig.  1(A)). Under this 
circumstance, the recombination event happened 
at only one population between P1 and P2. 

 3). t ≤ ta and s ≤ ta As the two populations have 
admixed together. The emission probability will be 
in the same form with PSMC, where the relevant 
effective population size will be �′(t) = �(a)+ �(b) 
(the brown dots in Fig. 1(A)). 

(2)�
′(t) =

{

�a(t) if t > ta
�a(t)+ �b(t) if t ≤ ta
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 The transition matrix, after considering admixture 
events in the population history, will be 

Additional to the PSMC model, we set the admixture 
time ta as free parameters. The estimated admixture time 
is set to 0 at the initial stage of the expectation-maximi-
zation (EM). Parameter estimation is conducted between 
coalescent time intervals in the discrete-state HMM 
model. Figure 1(B) provide a demo for eSMC. The model 
captures the increase in effective population size at the 
admixture event time by the increased frequency of het-
erozygote markers.

Results
We verified the effectiveness of eSMC on both simulated 
and empirical data.

eSMC can accurately infer admix events in in silico 
experiments
We subsequently admixed back to a single population for 
a year ranging from 5 kya to 100 kya. We set the effec-
tive population size of the simulated diploid genome to 
1e5, the years per generation to 5, the mutation rate to 
2.5e − 8 , the recombination rate to 5e − 9 respectively. 
The ratio of the effective population size of two diverged 
sub-populations at the admixture time was set to 1:1, 1:2, 
1:3, and 1:4, separately. The estimated historical effective 
population size, the simulated admixture time, and the 
estimated admixture time are shown in Fig.  2. The four 
curves represent the historical effective population size 
with simulated data at different admixture ratios. The 
dots represent the estimated admix time, and the vertical 
dash lines represent the simulated admix time.

The results of the experiments are shown in Fig. 3. The 
x-axis is the simulated admixture time, and the y-axis is 
the estimated admixture time. RMSE measured the accu-
racy of our method. The diagonal dash line in black is the 
data line. The red line is the linear regression line by the 
experiment time dots. The time dots cluster horizontal 
steps for all figures as the admixture time was estimated 
by discrete coalescent time interval. The overall RMSE 
for all experiments is ±7.61ky . For admixture ratio 1:1, 
our method can accurately estimate the admixture time 
as the dots are closely situated to the datum line. The dots 
spread dispersed to the datum line when the admixture 
ratio becomes lower - this concordance with the large 

(5)q′(t|s) =
1
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∫ min{s,t}
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(6)p′(t|s) = (1− eρt)q′ + eρtδ(t − s)
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Fig. 1 Illustration of the eSMC model. A The eSMC using a Pairwise Sequentially Markovian Coalescent model where the observed states are the 
sequence heterozygosity and the hidden states are the discrete TMRCA. The emission probability and the transition probability is calculated by 
considering the admixture time ta of the populations. The brown dots on the on the curve represents TMRCA states after the admixture events, 
and the blue dots on the curve represents TMRCA states before the admixture event. The P1 and P2 represents the two admixed populations. B We 
applied the eMSC method on a 300 kbp diploid genome simulated by msHOT. The black curve indicate the estimated TMRCA (hidden state) along 
the genome. The heatmap is the inferred TMRCA probability at each loci with the observed sequence. The estimated admixture time is shown as 
orange dash line on the heatmap. The red stripes at the simulated sequence indicate the heterozygote positions
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RMSE in low admixture ratio. The error is primarily due 
to the high signal-to-noise ratio, as the admixture event 
between populations with small effective population size 
can hardly be captured.

To further explore our method’s effective time interval, 
we estimated our method’s accuracy at 5-time intervals, 
namely before 20 kya, 20 kya-40 kya, 40 kya-60 kya, 60 
kya-80 kya, and 80 kya-100 kya separately. As shown 
in Fig. 4, the estimated admixture times are most accu-
rate at 40 kya-80 kya for all admixture ratios. Admixture 
events in most recent than 20 kya or later than 100 kya 
can hardly be identified in the current sequence. Our 
method tends to postpone the admix time at time inter-
vals before 20 kya and prepone the admix time at time 
intervals 80 kya to 100 kya.

eSMC’s admix event inference on Han and Tibetan 
individuals
We downloaded the sequencing Han and Tibetan data 
from the Genome Sequence Archive (GSA) under acces-
sion number PRJCA000246. The selected Tibetan indi-
vidual IDs were SAMC006381, SAMC006382, and 
the selected Han individual IDs were SAMC006428, 
SAMC006429. The downloaded sequencing reads were 
aligned to GRCh38 by BWA-0.7.17(r1188) with mem 
command and default parameters. The mutation rate and 
mutation time were set 2.5e − 8 and 25 years/generation. 

We performed eSMC to the aligned sequence and 
inferred the admixture event at 60 kya to 80 kya for both 
Han populations and Tibetan populations as shown in 
Fig. 5(A).

The estimated effective population curves were similar 
to the YRI individuals in PSMC analysis. We observed 
hump structures in the historical effective population 
size of the four individuals. The hump structure may 
generate by population split and admixture events. Our 
model indicated that the admixture events happened at 
60 kya to 80 kya with eight years/generation, concordant 
with the hump start position in PSMC’s historical effec-
tive population size curve.

eSMC’s admix event inference on Somali wild donkeys 
and domesticated donkeys
We applied our method to five diploid donkey genomes, 
as shown in Fig. 5(B). One of them is a Somali wild don-
key, while the others are domestic donkeys in Eurasia, 
namely, Guangling Donkey, Jiami Donkey, Kulun Donkey, 
and Qingyang Donkey. We downloaded the Somali wild 
donkey and the four domestic donkeys from the Gen-
Bank database under BioProject accession PRJNA431818 
and National Genomics Data Center(assession numbers: 
ERR650540-ERR650547 and ERR650570-ERR650703), 
respectively. The sequencing data were aligned to 
a chromosome-level reference genome assembly 
GCA_016077325.1 [22] by BWA-0.7.17 (r1188) [23] 

Fig. 2 Estimated admixture time and simulated admixture time on PSMC curve. Different colors show the historically effective population sizes of 
different admix ratios. The dots on the curve are the estimated admixture time by eSMC, and the vertical dash lines are the simulated real admixture 
time
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with default parameters. The mutation rate and genera-
tion time were set to 7.242e − 9 and 8 years/generation 
according to previous reports  [24, 25]. Our model indi-
cated that the admixture events happened at 40 kya to 60 
kya with eight years/generation.

Our results consistant with the previous study  [24]. 
The estimated historical effective population size of all 
the domestic donkeys mixed together. The two ancient 

donkey populations, E. africanus somaliensis and E. asi-
nus diverged   0.11 million years ago, and the domesti-
cation of the donkeys began at 7 kya to 9 kya  [26]. The 
admixture event of domestic donkeys happened well 
before the domestication, indicating that the domesti-
cated donkeys may derived from a single source or two 
sources with a similar biogeography.

Fig. 3 Dot plot for estimated admixture time versus real admixture time in simulated data. Figures A to D are the dot plots of experiments for 
admix ratio at 1:1, 2:1, 3:1, and 4:1, respectively. Each dot on the figure represents an experiment, with the x-axis representing the simulated real 
admixture time and the y-axis representing the estimated admixture time. The black dash diagnosis lines are the datum line. The red lines are the 
linear regression lines with the simulated data
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eSMC’s admix event inference on wild and domestic goats
We downloaded the sequencing goat data from the GigaDB 
dataset (BioProject: PRJNA399234). The selected domes-
tics sample IDs were SAMN07594311, SAMN07594312, 
SAMN07594313. We also downloaded the sequencing 
genome of one species of wild goats, namely two sam-
ples from Capra aegagrus blythi. The sample IDs of Capra 

aegagrus blythi were SAMN07594323 and SAMN07594324. 
The sequencing data were aligned to a reference genome 
assembly Capra hircus genome V1 by BWA-0.7.17 (r1188) 
[23] with default parameters  [27]. The mutation rate and 
generation time were set to 1.33e − 8 and 6 years/genera-
tion according to previous study [28]. We performed eSMC 
to the aligned sequence and inferred the admixture event 

Fig. 4 Box plot for experiment errors (the deviation between real admixture time and estimated admixture time) in simulated data. To assess the 
effectiveness of eSMC at a different time interval, we split the experiments into five-time slots by the simulated admixture time, namely before 20 
kya, 20 kya to 40 kya, 40 kya to 60 kya, 60 kya to 80 kya, and 80 kya to 100 kya, respectively. The errors are calculated by the deviation value between 
the simulated real admixture time and eSMC estimated admixture time
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at 40 kya to 100 kya, around 40 kya later than domesticated 
donkeys as shown in Fig. 5(C).

Both the historical effective population size and the 
inferred admixture time for domestic goats and wild 

goats mixed together. This indicate goat breeds are very 
different compared to most domesticated species. Con-
cordance to the conclusion in previous study that the 
gene flow among goat populations are probably lacking 

A

B

C

Fig. 5 Admix event inference on donkeys and goats. Potential admixture events and admixture times inferred by eSMC. The dots indicated the 
admixture events on the PSMC effective population size curves. A for the Han and Tibetan individuals; B for the Somali wild donkey (red) and 
domesticated donkeys; C for the five goat individuals



Page 9 of 11Wang et al. BMC Genomics          (2022) 23:827  

geographical isolation rather than adherence to pedi-
gree or the use of herd-books [29].

Goats have a larger effective population size com-
pared to donkeys. The historically effective population 
size of goats has a similar pattern with domesticated 
donkeys. The indicated admixture time range in or 
approximate to the Upper Paleolithic or so-called Late 
Stone Age dates between 12 kya to 50 kya. This period 
covered half of the Last glacial period with automatic 
modern human beings emerged. This explains the rapid 
drop in historical effective population size in goat his-
tory and may result in the disappearance and admixture 
of sub-populations. Domestication occurred afterward 
with the last glacial period, and human beings started 
to captive animals.

Discussion and Conclusion
With the report of the draft genome of Neanderthals, 
an exploration of human history and origin is constantly 
unfolding [30]. For non-African populations, about 2% of 
Neanderthal ancestry was found from modern-day peo-
ple’s sequencing data. In 2020, a Princeton team devel-
oped a method named IBDmix, based on identity by 
descent (IBD) [31, 32]. IBDmix detected a higher signal of 
Neanderthal ancestry from African instead of non-Afri-
can(  30%). Neanderthal DNA in modern humans may 
have positive and negative effects. Recently, it has been 
reported that DNA segments inherited from Neander-
thals may be closely related to severe COVID-19 infec-
tion and hospitalization [33]. Although ancient hominins 
vanished across history, we still trace their genetic infor-
mation in modern humans [34]. The potential admixture 
event in ancient populations may reveal the migration 
histories and provide hints to archaeology studies.

Large-scale paleogenomics research tends to search 
for ancient human DNA. Similar research in nonhuman 
species is also developing [35]. Whole genome-wide data 
are now easy to obtain due to the continuous develop-
ment of sequencing technologies [36]. As a sustained 
transition in human history, the domestication of animals 
and plants resulted in population admixture and gene 
flow [22, 37].

Due to intense artificial selection, the process of 
domestication is usually accompanied by a decrease 
in genetic diversity and an increase in linkage disequi-
librium. Domestication tends to adapt to the “less is 
more” mode, discarding unnecessary variations based 
on 2%-4% of human selection [38]. Currently, 28% of 
domesticated varieties have vanished [39]. Reconstruc-
tion of the domestic population structure provides new 
insights into a biological invasion, farming industry, and 
global warming [40].

Reconstruction demographic history of the observed 
population is always used to address anthropological 
and evolutionary questions  [41]. Regarding the classic 
demographic models, there are three ways to deal with 
this complex issue  [42, 43]. 1) As for multi-population, 
allele frequency-based methods such as AFS might be 
a straightforward way. However, this method regards 
all alleles are dependent. 2) Methods based on IBD or 
identity-by-state (IBS) could also be a powerful way for 
inferring demographic models requiring phased data. 
3) HMM-based methods provide an effective means of 
inferring historical demographics in terms of genomic 
data. It is instrumental when genomic sequences are lim-
ited to a few individuals  [44]. However, there are chal-
lenges in interpreting the output of PSMC and MSMC, 
as the underlying models for testing hypotheses usually 
require more available data [45].

Our method takes the genomic data of one individual 
as the input to infer the most recent admixture event in 
its population history. We verified our method on simu-
lated data with different admixture ratios, and applied 
our methed on real data, including human individuals, 
wild and domesticated donkeys as well as goats to infer 
their historical population demographics and further 
insights into their domesticating history.

Our model can hardly estimate the admixture events in 
most recent than 20 kya or later than 100 kya (for 5 years 
per generation). As expected, the height of the hump 
in the historical effective population size generated by 
admixture events steps down to the effective population 
size of the admixed sub-population. Thus, our method 
eSMC can hardly handle admixture events for sub-pop-
ulations with small effective population size (large admix 
ratio). Moreover, sequencing data from multiple individ-
uals can provide more reliable and accurate information 
in admixture event estimation. We will modify our model 
to make it feasible for multiple individuals in the sample 
population.

Availability and requirements
Project name: eSMC

Project home page: https:// github. com/ zacha ry- zzc/ eSMC
Operating system(s): Platform independent
Programming language: Shell script, Python script, C++
License: see web page
Any restrictions to use by non-academics: license needed.

Abbreviations
PSMC: Pairwise Sequentially Markovian Coalescent; eSMC: extended Pairwise 
Sequentially Markovian Coalescent; AFS: allele frequency spectrum; PCA: Prin-
cipal Component Analysis; TMRCA : the most recent common ancestor; MSMC: 
multiple Sequentially Markovian Coalescent; HMM: Hidden Markov Model.
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